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FIXED POINTS AND BEST APPROXIMATIONS
FOR MEASURABLE MULTIFUNCTIONS
WITH STOCHASTIC DOMAIN

NIKOLAOS S. PAPAGEORGIOU

Abstract. In this paper we prove a best approximation and a ran-
dom fixed point theorems for Hausdorff continuous multifunctions with
stochastic domain. Our result extend several earlier ones existing in the
literature. We also show that in Engl [3] some of the hypotheses can be
weakened.

1. Introduction

In this note we prove a fixed point principle and a best approximation the-
orem analogous to Reich’s results [10]. This is done for a class of continuous
multifunctions with stochastic domain. Our results are general enough to incor-
porate earlier works on this subject, like those of Ttoh [5], Engl [3], Sehgal-Waters
[13], Sehgal-Singh [12], Papageorgiou [9], Lin [8], and Xu [15].

2. Preliminaries

Let (€,X) be a measurable space and X a separable Banach space. We will

be using the following notations:

Pj)(X) = {A C X : nonempty, closed, (convex) }.
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and

Pi(y(X) = {A C X : nonempty, compact, {convex; }.

A multifunction F : Q— P;(X) is said to be measurable, if for all z € X

the IR ,-valued function w—d(z, F(w)) = inf{||z — 2|| : 2 € F(w)} is measurable.
| Recall that a measurable function f : Q—X is said to be a “measurable seiector”
of F(.), if for all w = @, f(w) € F(w). It turns cut (see Wagner [14], theorem
4.2), that this definition of measurability is equivaient to saying that there exist
neasurable selectors f : @ > X n 2 1 of F(-), sit. forallw € Q F(w) =

{we: Flw)nU # @} € X. Following schil [11] and Engl [3], we will say that
F : Q—Ps(X) is “separable” if it is measurable and there exists a countable set
DCX st forallwe Q, DN F(w) = F(w).

Let F: Q-»Ps(X) be a measurable muliifunction and let GrF = {{w,z) €
Ix X :2 € F(w)} (the graph of F(-)). We know (see Waguer [14], theorem
4.2) that GrF € ¥ x B(X), with B{(X) being the Borel o-field of X. Then
T : GrF—2% {0} is a measurable multifunction with stochastic domain F{-) if
and oy if for all U € X open, {w € @ : T(w,2)NT # 0,2 € F(w)} € X. We
will say that T'(+,-) is an h-continuous measurable multifunction with stochastic
domain F(-), if in addition for every w € 2, the multifunction z—T{w,z)is
h-continniois on F(w) (see definition below).

On F( X)) we van define a generalized metric, known in the literaiure as the
Hansdorff metric, by setting

h(A,B) = maz[sup d(a,B),sup d(b, A)]
agA be3

whete d(0,B) = inf{|la -~ b|| : b € B} and d(b,A) = inf{||b — a]| : « € A}.

it is well known that (P¢(X),A} is a complete metric space and (Py.(X),h) a
closed (hence complete) subset of it. In fact, Pxc(X),h) is also separable, while
(Ps(X),h) is not. I ¥ is a topological space, a multifunction F : Y —Py(X) is
sald to be Hausdorf continuous (h-continuous) if and only if it is continuous as

a map from Y into the metric space (Pf(X), h).
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Let Z be a set and denote DY P(Z} s a collection of subsets of Z. Denote
Ly & the set of all infinite sequences of positive integers and by No, the set
of ali finite sequences of positive integers. A set A C Z is said to be obtained
from P(Z) by applying the Souslin operation, if there exists a map k : No—

cO ~

P(Z) st. A= U N k(r|n), where rin denotes the first n-elements ofr € N
reN =1

(see Jacobs [6]). Note that the union in the Souslin speration is uncountable. So

if P(Z) is a o-field, then A may be outside of P(Z). If however P(Z) is closed
under the Souslin operation, then we say that P(Z) is a Souslin family. For

example every complete o-field is a Souslin family (see Wagner [14]).

Let (Q,%) be a measurable space, Y a separable metrizable space and Z
a metrizable space. A function f:QxY—>2Zis said to be a Caratheodory
function, if for all y €Y, w—f (w,y) is measurable and for all w € Q, y—f(w,¥)
s cooitinnnas 1 i well-known that such a function is jointly measurable; i.e.

(w, ) fiw, 5} is {L X HY), B{Z))-measurable.

3. Main Results

We start with an approximation result, which can be viewed as the stochastic
version of a result originally obtained by Reich [10]. Our result also generalizes
theorem 2 of Sehgal—Singh [12], where the multifunction had a deterministic

domain,

In- i}

Theorem 3.1. If (2,X) s a measurahle space with T a Souslin family, X
is @ separable Banach space, K : Q— Pio(X) is a separable multifunction and
T : GrK — Pio(X) is an h-continuous, measurable multifunction with stochastic
domain K(-), then there ezists a measurable map z : Q— X s.t. forallw € Q
z(w) € K(w) and d(z(w), T(w,z(w))) = §(K(w), T(w,z(w))) = inf{Jlv-—w| :v €
K(w),w € T(w,z(w))}-

Proof. Using corollary 3.1 of Kandilakis-Papageorgiou [7], we can find a
multifunction T 1 @ X X = Pre(X) s:t. w-ﬁj’(w,z) is measurable, z—T(w, %)
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is h-continuous and ’f‘|G,K — T. Then consider the multifunction H : Q—2%
defined by

Hw) = {y€ Kw):d(sT(wy) = 6(K(w),T(wy))}

From lemma 1.6 of Reich [10], we know that for every w € Q, H(w) # 0.

Let ¢ : Q@ X X—IR4 be defined by p(w,z) = d(z,T(w,z)). Cleatly ¢(-,-) is
a Caratheodory function. Also let k, : =X n > 1 be measurable selectors of
K(-) s.t. for all w € Q, K(w) = {kn(w) : n =1,2,3,...} (see section 2). Then

we have:

§(K(w)T(w,y)) = inf inf )||kn(w)—z||.

n21 zeT(w,y

Set Yn(w,y) = inf ||kn(w)—2||. Theorem 6.1 of [7] tells us that for every

2€T(w,y

n > 1, w—Pn(w,y) is measurable, while proposition 23, p. 120 of Aubin-Ekeland
[1] tells us that for every n > 1, y—¥a(w,y) is continuous. So Pn(-,-) n > 1lisa
Caratheodory function, hence jointly measurable. Thus ¥(w,y) = T{I;fl Yn(w,y)
is a measurable function s.t. for all w € Q, ¥(w, -) is upper semicontinuous (see
for example Bertsekas-Shreve [2], lemma 7.14, p. 147). Let n(w,y) = p(w,y) —
¥(w,y). Then clearly 7(-,-) is jointly measurable, and for every w € Q, n(w,-) is
lower semicontinuous. Also note that for all (w,y) € Qx X, n(w,y) > 0. Observe
that H(w) = {y € K(w) : n(w,y) < 0}. Hence for all w € Q, H(w) € Pr(X).

Set Lo(w) = {y € X : n(w,y) < 0} = {y € X : g(w,y) = 0} and observe
that

H(w) = K(w)n Lo(w).

Since 7(-,-) is jointly measurable, we have GrL, = {(w,y) € 2 X X :
n(w,y) = 0} € £ x B(X). Since by hypothesis ¥ is Souslin family, from theorem
4.2(g) of Wagner [14], we get that Lo(-) is measurable = H(-) is measurable.
Applying the Kuratowski-Ryll Nardzewski selection theorem (see Wagner [14]),
we get z : Q—X measurable s.t. for all w € Q, z(w) € H(w). Then z(w) € K(w)
and d(z(w), T(w,z(w))) = §( K(w), T(w,z(w))) for all w € Q. Q.E.D.

The next result is a general fixed point principle, that incorporates all ran-

dom fixed point theorems involving continuous multifunctions. In particular, it
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contains as special cases the fixed point theorem of Itoh [5], theorems 8, 13, 14
and 15 of Engl [3], theorem 2 of Sehgal-Waters [13], corollary 1 of Sehgal-Singh
[12], theorem 6 of Papageorgiou [9], theorems 4 and 5 of Lin [8] and theorems 1,
9, 3 and 4 of Xu [15]. From the above works, only Engl [3], considered multifunc-
tions with stochastic domain. However he assumed that there exists a o-finite
measure p(-) on (2,X), that intK (w) # Op — a.e. and that the multifunction
w—intK (w) admits a measurable selector zo(-). Furthermore, his random fixed
point satisfies z(w) € T(w,z(w))p — a.e. and not for all w € Q. Our result drops
o]l the above extra hypotheses of Engl [3] and obtains a random fixed point for
every w € () by assuming that ¥ is Souslin family. In addition, our proof is
considerably simpler and shorter than that of Engl [3]. Finally in proposition
3.3, we show that the selector hypothesis on the multifunction w—intK(w) is
superfluous, since it is automatically implied by the other hypotheses that Engl
[3] made.

Theorem 3.2. If (2,%) is a measurable space with £ a Souslin family, X
a separable Banach space, K : Q— P;(X) a separable multifunction, T : GTK—
Pre(X) is an h-continuous measurable maultifunction with stochastic domain K(-)
and for everyw € Q Hw) ={z € K(w): 2 € T(w,z)} # 0, then there exists a
measurable map = : Q—X s.t. for allw € Q z(w) € K(w) and z(w) € T(w,z(w))-

Remark. So this result says that under the above hypotheses, “determin-
istic” solvability of the fixed point problem implies “stochastic” solvability of
it.

Proof. Applying corollary 1.3 of [7], we get T : Q% X— Pi.(X) a multifunc-
tion s.t. w—+T(w,x) is measurable, :z:——»T(w, z) is h-continuous and TIGTK = T,
Let H : 0—2% be defined by

Hw) = {z€ KW):z € T(w,2)}.

By hypothesis, for all w € Q H(w) # @ and it is easy to check using the
h-continuity of T(w,-), that for all w € Q H(w) € Py(X). Let ¢ : Qx X—=Ry
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be defined by o(w,z) = d(z,T{w,z)). Cleasly ¢(:,-)is a Caratheodory function.
Then note that

GrH = GrK n{(w,z) € A X X : p(w,z) = 0} € T x B(X).

Since T is a Souslin family, theorem 4.2 of Wagner [14], tells us that H )
is measurable. So applying the Kuratowski-Ryll Nardzewski selection theorem,
we got z : §—X measurable s.t. for all w € 2, z(w) € H(w). Clearly z(-) is the
desired random fixed point for 7(-,-). Q.ED.

Finally in the next proposition, we show that in theorem 8 of Engl [3], the
hvpothesis that there exists a measurable function zo : Q- X s.t. zo(w) €

int K (w)n — a.e. is superfiuous.

Proposition 3.3. If (2, %, u) is a o-finite measure space . X is a separclhie
Ranach c:przce and K @ Q-—= Py XY} is a multifunction s.t. (JTI\ € ¥ x B(X)

and intK () # 0 p— a.e., then ti’ere ezist zo 1 -~ X measurable funchin s.t.

zo(w) € intK(w)u — a.e.
Precf. Observe that
GrintK() = {(w,z) € @ x X :d{z,bdK(w)) >0} N GrK

whera hd X {w) denotes the boundary of K{w). Note that bdF(w) may be empty.

In that case ag ueval d(z,bd K (w2)) = +0c. But from theorem 4.6 of Himmelbherg
(4], we know that if D = {w € Q : bdk () # @}, then D € = 5 and w—hdF (i)

is measurabic on D. Hence {(w,z) € & x X : d{z,bdK(w)) > Gy N drk =
{(w,z) € Dx X :dz,bdK(w)) > 0} uU{2°x X )] N Grk € ¥ x B(X). (Nate
that {(w,z)—d(z,F(w)) is a Caratheodory function on D X X, hence jointly
measurable). Therefore GrintK € I x B(X). Apply Aumann’s selection
theorem (see Wagner [14], to get zo : 2 — X measurable s.t. zo(w) €

intK(w)p — a.e. Q.E.D.

Remark. Note that our hypothesis on K(-) is weaker than that of Engl [3]

(theorem 8), since we only assume graph measurability of K(-) and not measur-
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ity of it. Recall that for a P¢(X)-valued maultifunction measurability implies

eraph ineasurability.

reinarks.
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