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ITERATIVE CONSTRUCTION OF FIXED POINTS OF
A DISSIPATIVE TYPE OPERATOR

XINLONG WENG

Let D be a nonempty closed convex subset of a Hilbert space, H, with inner

product {,-), and let T': D — D satisfy the dissipative type condition
Re(T(z) - T(w),2 — v < Cll= — 9l (1)

for some C < 1 and all z,y € D. If T is also Lipschitz continuous on D, then T
has precisely one fixed point Z € D [1). Moreover, if {Cn} C (0,1] satisfies the

following conditions:

o0
Jg%ocn = 0 Z‘)Cn = o0 (2)
then the recursion
Tl = (1= Cr)zn+t Cud(2n) zo € D (3)

will converge to Z [2]. Rhoades (3] has shown that if D is a bounded interval
of B! and T maps D into D, then {z,} will converge to some fixed point of
T if T is merely continuous and {Cy} satisfies (2). The process (3) and the
more general processes of Mann [4] and Ishikawa [5] have been investigated for
operators satisfing various conditions of the continuity and contractivity type on

special Banach spaces, a summary of some contributions to this field is given in

3,6-8].
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In [16], Dunn introduced the weaker version of (1) namely,

Re(¢ - 3,2 — %) < Cllz — &||”
for some £ € D, C < 1, and forall z € D, £ € Tz. Here T is set valued and no
continuity restrictions of any kind are imposed on T, also D need not be closed
or open. Instead, it is assumed that the range of T is bounded. Dunn showed
that if z € T(z), i.e., if z is a fixed point of T then z = Z, s0 that 7' can have at

most one fixed point. Moreover, if {z} is a sequence in D satisfying

Tn+l = (1 = C’n)xn + Crén (5)
where &, € T(z,), with {C,} C (0,1] satislying
Z Cyn = 08 E £F 2 & (6)
n=0 n=0

then {z,} strongly converges to Z.

Recently, Chidume [17] extended the results of Dunn [16] from Hilbert spaces
to the L, spaces for p > 2, which has at least two disjoint sets of positive finite
measure. 7

Our purpose in this paper is to extend all results of Chidume and Dunn to
the general complex uniformly smooth Banach spaces and obtain a convergence

rate in the L?, e?, WP spaces for 1 < p < o0.

1. Definitions and Preliminary Results

Let X be an arbitrary Banach space with dim X > 2, the modulus of convexity
6x(€), 0 < € <2, of X is defined by
bx(¢) = inf{l—|lz+yll/2:2,9 € X,|lzll = llyll = Lllz - yll = ¢}

X is said to be uniformly convex if §x(¢) > 0 for every € > 0, and uniformly
smooth if the dual space X* is uniformly convex. The estimation of the modulus
of convexity for the spaces LP, e?, WE, 1 < p < oo are [21]:

6x(€) >(p—1/16)*, 1<p<2

§x(e) >p~'(e/2)P, p2>2
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For the Banach space X, we shall denote by J the normalized duality map-

ping from X to 2X" given by
Jo = {fe X = el = = )

where (-,-) denotes the generalized duality pairing. If X iz uniformly smooth,
iLen J is single-valued and is uniformly coatinuous on bounded set.

We define for positive ©

Clearly 8 : (0,00) — [0,00) is nondecreasing, continucus and f(ct) < cg(t) for

¢ > 1. Also we have

Lemma 1. (Refer [18]) If X is a uniformly smooth Banach space and [(t)
is defined as above, then lim;—o+ B(t) =0 and

Iz + y|I* < ll=l|* + 2Re(y, J (2)) + max{]le[l, LIyl AClyll) (7)

for all z,y € X.

Proof. The proof is same as S.Reich proved for a real uniforinly smooth

Fanach space [18].

Lemmer 2. Let 3, be a noncgalive sequence satisfying
rdn-{—l .<_ (1 - ?‘n;‘/jn + on

with 6, € [0,1],5°2, §; = 00 and o, = 0(6,). Then limp_.e0 fn = 0.
i=1

Proof. Since 0, = 0(8,), let 05, = €765, and €, — 0. By a straightforward

induction, one obtains

n

0< Bapr ST (1-8)Bk+ Y [6; [] (1-8)le; ()

j=k 1=341
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We have N
[Ta-6)< e Fi=k% — 0
i=k

and

zn:esj ﬁ (1—6)<1 Vn,k
ji=k

i=j+1

Given ¢ > 0, pick k such that ¢; < € for all j > k, from (*) we have
0 < liminf B, < limsup B, <€

Letting € — 0, we obtain limn_. Bn=0.
For the uniformly smooth Banach spaces, we consider a mapping T: D g
satisfying
Re(€ —3,J(z — &) < Cllz - 3] (8)

for some Z € D, C < 1, and for all z € D, £ € T(z). Actually, (8) is a natural

generalization to a Banach space of the (4) for a Hilbert space.

2. Main Results

Theorem 1. Let D be a subset of a uniformly smooth Banach space and
T :D s 2P, z € D satisfy (8). Ifz s a fized point of T, then z = Z, thus T
can have at most one fized point.

Moreover suppose the range of T is bounded and let {z,} C D be generated
by (5) with {Crn} C (0,1] satisfying (2) then {z,} strongly converges to Z.

Proof. Let z be a fixed point of T, i.e., z € T(z). The condition (8) yields
(x—%,J(z - %)) <Cllz - ||

so that
Iz — Z|* < C|l= - Z|I*.

Since C < 1, this gives ¢ — Z.



FIXED POINTS OF A DISSIPATIVE TYPE OPERATOR 209

Now set
Bn = |lzn—2|*
and

d = sup{|l¢ — Z|| : € € T(2),z € D} (9)

Because Cn, — 0, it is easy to show there exists an integer N > 1 such that when
n>N
[1-(1—C)Cn)? 4+ d*Cup(Cn) £ 1

Let B=max{8;:1<i1< N, 1}. First we want to show 8, < B? and
Bps1 < [1= (1 = C)Cn)*Bn + B*d*CnB(Ch)- (10)
From (5), (7), (8) and (9), we have

Brtr = llzns1 = 2| = (1= C)(@n = 2) + Calln = z)||*
< (1= Cu)||zn — &2 +2Ca(1 — Cu)Re(én — 2, (20 — 2))
+ max{||zn — Z]l,1}Callén — Z|IB(Callén = Z[1)
< (1= Ca)*Bn + 2Cn(1 — Cr)C P + max{||za — Zl|,1}d*CrB(Cn)
< [1 = (1 = C)Cul?Bn + max{Bn, 1}d*CnfB(Cr) (11)
For n < N, by the definition of number B, we have 3, < B?. Forn > N, we
apply induciton: assume fn < B? then
Brsr < [1= (1= C)Cul*Bn+ B*d*CaB(Cn)
< {[1 = (1= C)Cnl* + CuB(Cr)} B*
< B?
So we obtain B < B? for all n and from (11) we get (10). Now apply Lemma 2
to inequality (10). We get that {z,} strongly converges to the fixed point Z.

Remark 1. If Tz # 0 for = € D, then by the axiom of choice T has a
single-valued section, T : D — D, T*z € Tz. For any such section, and for D

convex and {Cr} C (0,1], the recursion

Intl = (1 - Cn)zn + CnT g €D
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generates a sequence {Z,} C D.

Remark 2. Theorem 1 is a generalization of [17] in Banach spaces, and
for {C,} we use weaker conditions (2) to replace stronger conditions (6) that
Chidume used in L,(p > 2) spaces.

For the special uniformly smooth Banach spaces X = L?, ef, WE,1<p<

0o, we have the estimate [19]:
A(t) < Mt

Where s = 2if2 < p< 00, s =pif 1 <p<2,and M is some constant. Then

we are able to obtain a convergence rate in the setting of Theorem 1.

Theorem 2. Let X = L?, e?, W2 and T, {z»}, Cn be as in Theorem 1.
Then we can find {C*} such that for corresponding sequence {z2} we have the
estimate

let — 2]l < O(1/nt+=D/2). (12)

Where s =2 if2<p<oo,s=pifl<p<2 Inasense to be made precise
below, the above estimate is the “best estimate” and the sequence {z}} is the

“best sequence” in this class for each fized value of the constant C in (8).

Proof. Let

(1 _ C)l/(a—l)

n - 1 +n(1 _ C)s/(s—l)

zhiy = (1-Cr)zy + CulTzy
By = |l=n — &

afy =[1—(1-C)Chlah+Cx* of 2 (MB™d") ™A

Solve above equations we get

*
* al

[+ (n - 1)aCD(1 - C)s/e-D)s-1

n

From (10) and the estimation of A(t) in L, spaces, we have f; < (M B**d*)an,

n =1,2,.... Thus, we get (12). Now we turn to prove following claim. Claim:
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for any sequence {Cr}, we get sequence
ont1 = [1=(1-C)Crl’an +Chn o = af.
Then we have o < an, n=1,2,3.... Consider the function
g(z) = [1-(1-C)z]’ay, +2°.

Then
g(z) = -1-C)s(1-(1- C)z)* tal + sz*
Let ¢'(z) = 0, we get

a;“_"l/("l) (1 _ C)l/(s—-l)
1+ 6D - ¢)els-1)

r =

Combine this equation with previous equation, we have z = Cr, i.e. the mini-

mum point is C};. We apply induction: if a} < aj then

oty =[1-(1-C)ClPag + C}°
<[1-(1-C)CilPa + Ck
< [1 — (1 — C')C'k]’ak +- C}: = Qk41

The proof is completed.
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