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CERTAIN CLASSES OF MEROMORPHIC
MULTIVALENT FUNCTIONS

B. A. URALEGADDI AND C. SOMANATHA

Abstract. Let f(z) = —},— + E:‘;l :;‘_‘i be regular in the punctured
disk B = {z:0 < |z] < 1} and D*+P-1f(z) = -z—;-(-l—_%)“—ﬂ; * f(z) where
* denotes the Hadamard product and n is any integer greater than —p.
For -1 < B < A< 1,let Cn(A, B) denote the class of functions f(z)

satisfying

1+ Az
1+ Bz

- DM f(2)) < p A <1

This paper establishes the property Cn41,5(A,B) C Cn,p(A4, B). Fur-
ther property preserving integral operators, coefficient inequalities and
a closure theorem for these classes are obtained. Our results generalise
some of the recent results of Ganigi and Uralegaddi [1].

1. Introduction

1
Let Ep denote the class of functions f(2) = = i zgg i Z;li :

are regular in the punctured disk F = {z:0 < |z| < 1} and p a positive integer.
Let D*tP-1f(2) =

+ ..., that

2P(1 — z)ntp * f(2), where n is any integer greater than —p

and the operation = denotes the Hadamard product. A function f of Ep is said
to be in the class Cp, ,(A, B) if

14 Az

— Pt pntp-1 /
2P( f(2)) 2P By

zeA = {z : |z| < 1}where
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~1 < B < A<1, and the symbol < denotes subordination.

Equivalently, a function f of Zp belongs to C, ,(A, B) if and only if there
exists a function w regular in A, satisfying w(0) = 0 and |w(z)| < 1 for zeA
such that

» 1+ Aw(z)
— P+l ntp-1 R . Bt i 1
PO () = pri g N
It is easy to verify the identlty
D™ f(2)) = (n+p)D™*Pf(2) — (n+ 2p)D"P1£(2). (2)
Using (2), (1) may be written as
1+ Aw(z)

=#*[(n+p)D™*?f(2) = (n+ 2p)D"**7f(2)] = p3 ¥ Bus) (3)

This paper establishes the property Cy41 ,(4, B) C Crnp(A, B). Further we
obtain class preserving integral operators, coefficient inequalities and a closure
theorem for functions in these classes. By assigning speciffic values to A and B

and putting p = 1, we obtain some of the results in (1, Th.1 and Th.2].

2. The classes C, ,(A4, B).
We shall prove the following.

Lemma. A function f in Ep belongs to the class Cy, ,(A,B), -1 < B <
A <1 if and only if

|Z2TH(D™P1f(2)) + m| < M, zeA (4)

where

m = p(1 - AB)/(1 - B*)andM = p(A — B)/(1 - B?). (5)
Proof is similar to that of lemma 2.1 in [3].

Theorem 1.

Cﬂ+1,P(A’B) L Cn,P(A’B)v n> —p.
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Proof. Let feCpy1 (A, B). Suppose that

1+ Aw(z)

~2P[(n + p)D""*?:f(z) ~(n+2p)D™?1f(2)] = Py T Bu(z)’

That is

14+ Aw(z)

Ant DDS(E) = (a4 D) = —ppi oS (©)

where w is either regular or meromorphic in A. clearly w(0) = 0 becasuce

the left side of (6) is —p when 2z = 0. Differentiating (6) and using (1) we obtain

A f() = it aild) _(AZBy swls)

1+ Bu(z) "\n+p/l0+Buk)

Hence

P 0D Flo 1oy = (m—p)—(Ap—Bm)w(z)
PO )Y 4m = (RED P

"”(ilﬁ)[u fgz(uz()z)y]' (7)

Let r* be the distance from the origin to the nearest pole of w in A. Then w is
reqular in [2] < 7o = min{r*,1}. By a lemma due to Jack [2] for |z| < r(r < 7p)

there exists a point 2y such that
Z()'U)’(Zo) = k'LU(Zo), k - Le (8)
From (7) and (8) we have

N(z0)

2D f( ) +m =

where
N(z0) =(n + p)(m — p) + [(n + p)(Bm — Ap) + B(n + p)(m — p)
— kp(A — B)lw(20) + B(n + p)(Bm — Ap)W?(2)

and

R(20) = (n+p)(1+2Bw(z) + B*W?(=)).
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Now suppose if possible ImIaJx |w(z)| = 1 for some 7, r < ro < 1. At the point

zo where this occured, we would have |w(zp)| = 1. Then by using the identities

p—m = BM and Ap— Bm = M

we have

|N(20)]* = M*|R(20)]*> = z+2y Re{W(20)} (10)
where

z = kp(A - B){kp(A ~ B) +2M(n +p)(1 + B*)}
and

y = 2kp(A - B)MB(n + p).
From (10) we have

|N(20)|* = M?|R(2)|* >0, provided z+2y>0 (11)
Now |

z+2y = kp(A - B){kp(A - B)+2M(n+p)(1+ B)*} >0
and

z -2y = kp(A - B){kp(A - B)+2M(n +p)(1- B)*} > 0.
Thus it follows from (9) and (11) that
8D f(20))' + m]| > M.

But, in view of the above lemma, this is a contradiction to the fact that
feCni1,5(4,B). So we cannot have |w(z)| = 1. Thus |w(z)| # 1 in |2| < ro.
Since w(0) = 0, |»(2)| is continuous and |w(z)| # 1 in |z| < rg, we cannot have
a pole at |z| = ro. Hence w is regular in A and satisfies |w(z)| < 1 for zeA.
Therefore, from (3) it follows that feCn,p(A, B).

In the next theorem we obtain property preserving integral operators for

Cr (A, B).
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Theorem 2. Let p be a posilive integer and n 1s any integer greater than

—p. If f(2)eChr 5(A, Bj mﬁ_}ss-;_.: ~ p4+1)> 0 then

c—p+1 [? )
Fz) = STEES /0 1€ f(2)dteChn (A, B). (12)

Proof. From the definition of F' defined by (12) we have
AD™PIR@)) = (e-p+ DD () = (c+ DDPTIR().  (13)

Let us suppose that

14 Aw(z)

_ P+l ntp—-1 24AE
L d PT{ Buz)

(14)

where the function w is either regular or meromorphic in A. Clearly w(0) = 0.
Elimiating (D™"*?~1 F(z))’ from (13) and (14), we have

- " o[ 1+ Aw(z)
_ n+p—1 - ntp-1 i Pho il o NS
(e=p+ D)D" f(z) = (e+ DD P F(z) —pz~? |17 oGyl (1)
Differentiating (15) and using (14), we obtain
_ 1+ Aw(z) A-B zw'(z)
p+1¢ npn+p-1 ST - ) . =1.
&R /() pl-}—Bw(z) p(c—p-{—l’t(l + B'w(z))?]
Hence
bt et oy e L (= D) = (Ap— Bra)uiz)
., A—B zw'(2)
—p(c_p+ 1)[(1—}-Bw(z))2 ' (16)

The rema,ining part of the proof is similar to that of theorem 1.

Remark. Forp=1, A =1-2a and B = —1 theorems 1 and 2 yield the
earlier results in [1, Th.1 and Th.2].
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Theorem 3. Let p be a positive integer and n is any integer such that
n > —p and F(z) = (n + p)z~"~% [ t"*2P~1f(t)dt. Then FeCny1,(A,B) if
and only if feCy ,(A, B).

Proof. From the definition of F we have
(D™*?F(z)) = (D™*?7! f(2))

and the result follows.

Now we obtain coefficient inequalities for the class C, ,(A, B).

Theorem 4. Let f(2) = % + ;25 + ;825 + ---. If feCrn (A, B), then
p(A - B)
‘ g = b=l 1
|ak 1| i (k—p)a('n,,k)’ 94y 9 ( 7)

n+p+j5-1

ol A ) Then result is sharp.

where a(n, j) = (
Proof. Since feC, ,(A, B), we have

— s Aw(z)

(D™= f(2)) = -pz T3 Bu(s)

where w(z) = Y72, t;27 is regular in A and |w(z)| < 1 for zeA. Then
(D™ f(2)) +p27P71 = —[Apz7P7! 4 B(D™PTf(2))|w(2)

or
l O
> - pe(n f)aj1 27
j=1

= ~[(A-B)pz" "'+ B Z(] —p)a(n,j)aj_yz Pt itjzj. (18)

i=1 =1

Comparing coefficients of like powers of z on both the sides of (18) we see that

the coefficient a;_; on the left side of (18) depends only on ag,a;,...,ar_3, Ax_2
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on the right side of (18). Hence for j = 1,2, ..., it follows from (18) that

k ' o5
Y (i — p)a(n, aj1 277+ 4 Y " epaH
j=1 j=k
k-1 .
= —[(A-B)pz "'+ B (j - p)a(n,j)aj_1z77Y " w(z)

i=1

where c; are some coumplex numbers. Since |w(2)| < 1, by using parseval’s

identity we obtain

k oo
3 = P (alm )Pl 12D 4 Y e 2P
j=1 i=k

k-1
< (A= By PP 4 B ) (5 - p)*(a(n, ) lag-a 2P
j=1
k-1
< (A= B)’p' + B*) (j - p)*(a(n,5))|aj-al?
j=1

Letting » — 1 on the left side of this inequality we get
k k-1
> (G = p)*(an, 7))*laj1* < (A - BY*p* + B ) (i - p)*(a(n, )@’
§=1 F=1
Thus

(k = p)*(a(n, k))*|ax—1|? <(A — B)?*p? — (1 - B? Z (G - p) (e, 5))*]aj-1]?
<(4 - BY*p*.

Hence
p(A - B)
(k - p)a(n, k) .

The estimate is sharp for the function f(z) given by

lak-1] <

AR ()
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Further we obtain a sufficient coefficient condition, for a function to be in
tha ciaes O (A, B) when =1 < B < 0.

Theorem 5. Let the function f(z) = ;17 4 gy & <A & ..o be regulor in

Eand -1<B<0.If

(eo)

S (k - p)(1 = B)a(n, K)loxs] < p(A — B) (19)
k=1
where a(n, k) = (n ii; _ki I 1), then feC, ,(A, B). The result is sharp.

Proof. Suppose (19) holds. Then, for ze/\, we have
|27 FH (D27 f(2)) + p| — |Ap + BzPH (D771 f(2))|

= }:(k' — p)a(n,k)ag_12*| - |[(A— B)p+ B Z(k — p)a(n, k)as_, z"|

k==, k=1
< ‘:O kb — p)odn. k) ko A o Bt B ‘;:'J“‘u,_ dn b ky
< p_tk=plein,Eliog.|r {(A-B)p+ B Lf__,l\,}v pla(n,k)|ax—_1|r")
l::.:[ k=1
< N _(F=plaln,B)laga| ~ (A~ B)p— B S (k- pa(n,k)|ay—i|
b =
o0 .
= > (k—=p)1 - B)a(n,k)|ak-1| - (A - B)p
k=1
< 0.

It follows that
{71 (D™ ()Y + p}I/[{Ap + B (D1 )y} <1 (20)

It is easy to see that the inequality (20) is equivalent to (1). Hence feCy »(4, B).
The estimate is sharp for the function

P(A - B) .
(k= p)(1 - B)a(n, k)

1 B
f(Z) = ;;"" p, k=1’2a""

For this function

{ T (D™ 1)) + p}|/{Ap + B+ (D=1 f(2))'}] = 1, for z = 1
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and the equality is attained in (19).

Remark The converse of the above theorem need not be true. Consider

the function
ap ax

zp—1 t zpP—2

1+ Az
1+ B2’

Clearly feCy p(A, B). Also it is easy to verify that

1
2 = = + + ....where

- (DMl f(2)) = p -1<B<0, zA.

_(A- B)p(-B)*!

H T Tk = p)a(n, k)
Hence
> (k=p)(1 = B)a(n,k)lak_1]| = (A= B)p> (1-B)(-B)** > (A- B)p.

The result follows.
Finally we state the following closure theorem for the class C, ,(A, B), the

proof of which is obvious.

Theorem 6. If the functions f and g belong to the class Cp ,(A,B) and
0 < s <1, then the function F defind by F(z) = sf(z)+(1-s)g(2) also belongs
to Cn »(A, B).
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