NEW REPRESENTATION OF A SPECIAL NON-SYMMETRIC HOMOGENEOUS DOMAIN IN \mathbb{C}^n $n \geq 6$

GR. TSAGAS AND G. DIMOU

1. Introduction

Let D be a homogeneous bounded domain in \mathbb{C}^n , $n \geq 6$. One of the problems for the homogeneous bounded domains in \mathbb{C}^n , $n \geq 3$ is to classify those which are not symmetric. In each \mathbb{C}^4 and \mathbb{C}^5 there is only one non-symmetric homogeneous bounded domain. In a previous paper we have given a new representation of each those non-symmetric homogeneous bounded domains in \mathbb{C}^4 and \mathbb{C}^5 ([10]).

The aim of this paper is to describe with a new representation one of the non-symmetric homogeneous bounded domains in \mathbb{C}^n , where $n \geq 6$.

The whole paper contains three paragraphs. Each of them is analyzed as follows.

In the second paragraph we give the relation between these domains, Siegel domains and normal J-algebras.

The description of this special non-symmetric homogeneous bounded domain in \mathbb{C}^n , $n \geq 6$, is included in the last paragraph.

2. Let \mathbb{C}^n be the *n* dimensional Euclidean complex space.

An open connected subset D of the \mathbb{C}^n is called domain. We denote by G(D) the group of all holomorphic automorphisms of D. If D is bounded, then G(D)

Received February 28, 1992.

is a Lie group are there exists on D a volume element w, which is defined by

$$w = (\sqrt{-1})^{n^2} k dz_1 \wedge \ldots \wedge dz_n \wedge d\overline{z}_1 \ldots d\overline{z}_n$$

where z_1, \ldots, z_n are complex coordinates in \mathbb{C}^n and k the Bergaman function on D, which is positive. The Bergman function k gives a Kähler metric g on D defined by

$$g = \sum_{h=1}^{n} \sum_{\ell=1}^{n} \frac{\partial^{2} \log k}{\partial z_{h} \partial \overline{z}_{\ell}} dz_{h} \wedge d\overline{z}_{\ell}$$

and therefore (D, g) is a Kähler manifold. The bounded domain D in \mathbb{C}^n is called homogeneous, if the group G(D) acts transitively on D and therefore D, in this case, can be written

$$D = G(D)/H, (2.1)$$

where H is the isotropy subgroup of G(D) at the point $z_0 \in \mathbb{C}^n$. The relation (2.1) can also be written as follows

$$d = G_0(D)/H_0$$

where $G_0(D)$ is the identity component of G(D) and H_0 the isotropy subgroup of $G_0(D)$ at $z_0 \in D$

It is known that there exists a solvable Lie subgroup S of G(D) which can be identified with D

Therefore S is a kähler manifold on which there exists a complex structure on it denoted by \mathcal{J} .

Let s be the Lie algebra of S which can be identified with the tangent space of S at its identity element e. The almost complex structure J on D defines an endomorphism \mathcal{J}_0 on s with the following properties

$$\mathcal{J}_0: s \to s, \mathcal{J}_0: X \to \mathcal{J}_0(x), \quad \mathcal{J}_0^2 = -id$$
 (2.2)

This endomorphism \mathcal{J}_0 satisfies the following relation

$$[X,Y] + \mathcal{J}_0([\mathcal{J}_0(X),Y]) + \mathcal{J}_0([X,\mathcal{J}_0(Y)]) - [\mathcal{J}_0(X),\mathcal{J}_0(Y)] = 0$$
 (2.3)

which is obtained from the fact that the almost complex structure on D is integrable. The Kähler metric g on D induces a Hermitian positive definite symmetric bilinear form B on s. From B we obtain a quadratic form ω defined by

$$\omega: s \to R, \quad \omega: X \to \omega(X) = B(X, \mathcal{J}_0(X))$$
 (2.4)

satisfying the following conditions

$$\omega([\mathcal{J}_0(X), \mathcal{J}_0(Y)]) = \omega([X, Y]) \tag{2.5}$$

$$\omega([\mathcal{J}_0(X), X]) > 0 \qquad X \neq 0 \tag{2.6}$$

Therefore from the homogeneous bounded domain D = G/H we obtain the set $\{s, \mathcal{J}_0, \omega\}$, where s a special solvable Lie algebra, \mathcal{J}_0 is an endomorphism on s having the properties (2.2) and (2.3) and ω quadratic form on s with the properties (2.5) and (2.6)

This set $\{s, \mathcal{J}_0, \omega\}$ is called normal J-algebra

Every normal J-algebra has also the property that the operator

$$\alpha d\tau_0 : s \to s, \ \alpha d\tau_0 : \tau \to \alpha d\tau_0(\tau) = [\tau_0, \tau]$$
 (2.7)

has only real characteristic roots $\forall \tau_0 \in s$, that is, $\alpha d\tau_0$, as a matrix, is IR-triangular

The inverse is also true. Let $(s, \mathcal{J}_0, \omega)$ be a triple, where s is a solvable Lie algebra having the property (2.7), \mathcal{J}_0 an endomorphism on s having the properties (2.2) and (2.3) and ω quadratic form on s having the properties (2.5) and (2.6). Then there exists a unique solvable Lie group S whose Lie algebra is s which can be identified with the tangent space of S at its identity e. The endomorphism \mathcal{J}_0 on s gives arise the complex structure on s and finally the quadratic form ω on s induces a Hermitian inner product on s defined by

$$\langle X, Y \rangle = \omega([\mathcal{J}_0 X, Y]) \tag{2.8}$$

which determines the Kähler metric g on S. The couple (S,g) is a Kähler manifold beholomorphically isomorphic onto homgeneous bounded domain in

- \mathbb{C}^n . In the next paragraph we shall give one triplet $(s, \mathcal{J}_0, \omega)$ and the Kähler manifold (S, g) which is obtained by this triple.
- 3. We consider the solvable Lie algebra s, which can be described by the set of matrices

$$s = \left\{ A = \begin{bmatrix} 0 & x_1 & x_2 & x_3 & x_4 \cdots x_{n-2} & x_{n-1} & x_n \\ 0 & \phi_1 & 0 & 0 & 0 \cdots 0 & 0 & 0 \\ 0 & 0 & \phi_2 & 0 & 0 \cdots 0 & 0 & 0 \\ 0 & 0 & 0 & \phi_2 & 0 \cdots 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 \cdots 0 & \vdots & \ddots & \ddots \\ 0 & 0 & 0 & 0 & 0 \cdots 0 & \phi_{n-2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \cdots 0 & \phi_{n-1} & 0 \\ 0 & 0 & 0 & 0 & 0 \cdots 0 & 0 & \phi_n \end{bmatrix}$$

$$(3.1)$$

From this constuction of s we conclude that the endomorphism \mathcal{J}_0 has the form

$$\mathcal{J}_0 = (\beta_{k\ell}), \ \beta_{k\ell} \in \mathbb{R} \quad k = 1, \dots, n, \ \ell = 1, \dots, n$$
 (3.2)

which must satisfy the relations (2.2) and (2.3)

From these conditions and after a lot of estimates we obtain

$$\mathcal{J}_{0} = \begin{bmatrix}
p_{1} & 0 & 0 \cdots 0 & \xi_{1} & 0 & 0 \cdots 0 \\
0 & p_{2} & 0 \cdots 0 & 0 & \xi_{2} & 0 \cdots 0 \\
0 & 0 & p_{3} \cdots 0 & 0 & 0 & \xi_{3} \cdots 0 \\
\vdots & \vdots \\
0 & 0 & 0 \cdots p_{n} & 0 & 0 & 0 \cdots \xi_{n} \\
-\frac{1+p_{1}^{2}}{\xi_{1}} & 0 & 0 \cdots 0 & -p_{1} & 0 & 0 \cdots 0 \\
0 & -\frac{1+p_{1}^{2}}{\xi_{2}} & 0 \cdots 0 & 0 & -p_{2} & 0 \cdots 0 \\
0 & 0 & -\frac{1+p_{3}^{2}}{\xi_{3}} \cdots 0 & 0 & 0 & -p_{3} \cdots 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 \cdots -\frac{1+p_{n}^{2}}{\xi_{n}} & 0 & 0 & 0 \cdots -p_{n}
\end{bmatrix}, p_{1}, \dots, p_{n} \in \mathbb{R}$$

$$\xi_{1}, \dots, \xi_{n} \in \mathbb{R}^{*}$$

The quadratic form ω , on this Lie algebra s, is difined by

$$\omega(X) = \langle X_0, X \rangle \tag{3.5}$$

where <> the usual inner product on s and $X_0=(K_1,K_2,\ldots,K_n,K_{n+1},\ldots,K_{2n})$ is a fixed vector. In order that ω satisfies the conditions (2.5) and (2.6) we must have

$$K_1\xi_1 > 0, \quad K_2\xi_2 > 0, \dots, \quad K_n\xi_n > 0$$
 (3.6)

Now, we have proved the following theorem

Theorem 3.1. There exists a homogeneous bounded domain in \mathbb{C}^n , $n \geq 6$ haveing $(s, \mathcal{J}_0, \omega)$ normal J-algebra, where s, \mathcal{J}_0 and ω are given by (3.1), (3.4) and (3.5) respectively

Now, we determine the solvable Lie group S which corresponds to the solvable Lie apgebra s

We denote by GL(s) the group of all nonsigular endomorphisms of s. The Lie algebra gl(s) of GL(s) consists of all endomorphisms of s with the standard bracket operation

$$[X,Y] = XY - YX \tag{3.7}$$

The mapping

$$\alpha d : s \to gl(s), \qquad \alpha d : B \to \alpha dB$$
 (3.8)

where

$$\alpha dB : s \to s, \qquad \alpha dB : T \to \alpha dB(T) = [T, B]$$
 (3.9)

is a homomorphism of s onto a subalgebra $\alpha d(s)$ of gl(s). Let Int(s) be the analytic subgroup of GL(s) whose Lie algebra is $\alpha d(s)$ which is called adjoint group of s. The group Aut(s) of all automorphisms of s is a closed subgroup of GL(s). Thus Aut(s) has a unique analytic structure under which it becomes a topological Lie subroup of GL(s). We denote by d(s) the Lie algebra of Aut(s). Now, the group Int(s) is connected, so it is generated by elements $e^{\alpha dX}$, $X \in s$. Therefore Int(s) is a normal subgroup of Aut(s)

From the above we conclude that the solvable Lie group S of s is defined

$$s = \left\{ L = \begin{bmatrix} 1 & \frac{x_1}{\psi_1} (e^{\psi_1} - 1) & \frac{x_2}{\psi_2} (e^{\psi_2} - 1) & \cdots & \frac{s_n}{\psi_n} (e^{\psi} - 1) \\ 0 & e^{\psi_1} & 0 & \cdots & 0 \\ 0 & 0 & e^{\psi_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & e^{\psi_n} \end{bmatrix} \begin{array}{c} x_i \in \mathbb{R} \\ y_i \in \mathbb{R} \\ i = 1, \dots, n \end{array} \right\}$$

$$(3.10)$$

The inner product on the solvable Lie algebra is defined by

$$\langle X, Y \rangle = \omega([\mathcal{J}_0 \ X, Y]) \tag{3.11}$$

where ω is given by (3.5). This inner product determines the Kähler metric on S which is essentially the Bergaman metric on it.

Now, we can state the following theorem

Theorem 3.2. The homogeneous non-symmetric bounded domain in \mathbb{C}^n $n \geq 6$ is biholomorphically isomorphic onto the solvable Lie group defined by (3.10). The Kähler metric g on S defined by the relation (3.11).

Let F be a Lie automorphism on s. This F can be represented by matrix

which becomes an isometry with respect to the inner product

$$< X,Y> = < X, [\mathcal{J}_0X,Y]> \ = \ \omega([X,Y])$$

If we have

$$a_{\ell\ell} = \pm 1, \quad \ell = 1, 2, \dots, n \quad a_{\ell,\ell+n} = \frac{p_{\ell}\xi_{\ell}}{1 + p_{\ell}^2} \cdot \frac{1 - a_{\ell\ell}}{a_{\ell\ell}} \quad \ell = 1, \dots, n$$

$F_{isom} egin{bmatrix} a_{11} & & & & & & & & & & & & & & & & & & $	$=$ 0 a_{22} 0 0 0 0 0	$0 \cdots 0$ $0 \cdots 0$ $a_{33} \cdots 0$ \cdots $0 \cdots a_{nn}$ $0 \cdots 0$ $0 \cdots 0$	$ \begin{array}{c} p_1 \xi_1 \\ 1 + p_1^2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ \underline{p_2\xi_2} \\ 1+p_2^2 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ \frac{p_3\xi_3}{1+p_3^2} \frac{1-a_{33}}{a_{33}} \\ \vdots \\ 0 \\ 0 \\ 0 \\ 1 \\ \vdots \end{array} $	$ \begin{array}{c} \cdots 0 \\ \cdots 0 \\ \cdots 0 \\ \vdots \\ \frac{p_n \xi_n}{1 + p_n^2} \frac{1 - a_{nn}}{a_{nn}} \\ \cdots 0 \\ \cdots 0 \\ \cdots 0 \\ \vdots \end{array} $
0	0	0 0	0	0	0	1

From the form F_{isom} we obtain that it has the eigenvalue 1 with multiplicity

Therefore we have proved the following theorem.

n.

Theorem 3.3. The homogeneous bounded domain in \mathbb{C}^n $n \geq 6$ described by the theorem 3.2 does not admit any k-symmetric structure.

References

- E. Cartan, "Sur les domains bornes homogeneous de l'espace de n variables complexes," Abh, Math. Sem. Hamburg Univ. 11(1936), 116-162
- [2] J. Hano, "On Kählerian homogeneous of unimodular," Am. J. Math. 78(1957), 885-900.
- [3] S. Kaneyuki, "Homogeneous Bounded Domains and Siegel Domains," Springer-Verlag, New York, (1971).
- [4] J. Koszul, "Sur la forme hermitienne cononique des espaces homogenes complexes," Can. J. Math. 7(1955) 562-576.
- [5] A. Ledger, M. Obata, "Affine and Riemannian s-manifolds," J. Differ. 2(1968), 451-459.
- [6] Y. Motsushima, "Sur les espaces homogenes Kähleriens d un group de Lie reductif," Nagoya Math. J. 11(1957) 56-70.
- [7] J. Pyateskij-Shapiro, "On a problem proposed by E. Cartan," Dokl. Akad. Nauk SSSR 12491959) 272-273.
- [8] J. Pyateskij-Shapiro, "Automorphic function and the geometry of classical domains," Gordon & Breach, New York (1969).
- [9] Gr. Tsagas, A. Ledger, "Riemannian s-manifolds," J. Diff. Geom. Vol. 12, No. 3, (1977), pp. 333-343.
- [10] Gr. Tsagas, G. Dimou, "New representation of non-symmetric homogeneous bounded domain in C⁴ and C⁵." Journ. of International Mathematics and Mathematical Science 1990. Vol. 5, No. 4, p.p. 653-671

Division of Mathematics, Department of Mathematics and Physics, Faculty of Technology, University of Thessaloniki, Thessaloniki, GREECE.