RINGS WITH (x, R, x) AND $(N+N R, R)$

 IN THE LEFT NUCLEUS

 IN THE LEFT NUCLEUS}

CHEN-TE YEN

Abstract

Let R be a nonassociative ring, N the left nucleus. Assume that N is a nonzero Lie ideal of R. It is shown that if R is a prime ring which satisfies $(x, R, x) \subset N$ and $(N R, R) \subset N$ then R is either associative or commutative.

1. Introduction

Kleinfeld [1] weakened Thedy's hypotheses [2] to obtain the following result: If R is a prime nonassociative ring which satisfies $(x, R, x) \subset N$ and $(R, R) \subset$ N, then R is either associative or commutative. In [4], we weaken Kleinfeld's hypotheses to obtain the same result. In this note, we weaken Kleinfeld's second hypothesis to obtain this result.

2. Main result

Let R be a nonassociative ring. We adopt the usual notation for associators and commutators: $(x, y, z)=(x y) z-x(y z),(x, y)=x y-y x$. We shall denote the left nucleus by N. Thus N consists of all elements n such that $(n, R, R)=0$, where we assume that R is a ring in which (I) $(x, R, x) \subset N$ and (II) $(N+$ $N R, R) \subset N$. Using (II), we obtain

Received September 24, 1991.
1980 Mathematics Subject Classification (1985 Revision). Primary 17 A30.
Key words and phrases. Nonassociative ring, semiprime ring, prime ring.

$$
\begin{equation*}
(R N, R) \subset((R, N)+N R, R) \subset N \tag{1}
\end{equation*}
$$

A linearization of (I) yields

$$
\begin{equation*}
(x, y, z)+(z, y, x) \in N \tag{2}
\end{equation*}
$$

In every ring one may verify the identity

$$
\begin{equation*}
(w x, y, z)-(w, x y, z)+(w, x, y z)=w(x, y, z)+(w, x, y) z \tag{3}
\end{equation*}
$$

Definition. Let $J(x, y, z)=(x, y, z)+(y, z, x)+(z, x, y)$.
In every ring we have the identity

$$
\begin{equation*}
(x y, z)+(y z, x)+(z x, y)=J(x, y, z) \tag{4}
\end{equation*}
$$

Consequently, using (II) and (1) we have

$$
\begin{equation*}
J(x, y, z) \in N \quad \text { if one of } x, y \text { and } z \text { is in } N \tag{5}
\end{equation*}
$$

Moreover, in every ring we have the identity

$$
\begin{equation*}
(x y, z)=x(y, z)+(x, z) y+J(x, y, z)-(x, z, y)-(y, z, x) \tag{6}
\end{equation*}
$$

Then combining (6), (2), (5) and (II) we obtain

$$
\begin{equation*}
x(y, z)+(x, z) y \in N \text { for all } x \text { in } N \tag{7}
\end{equation*}
$$

Suppose that $n \in N$. Then with $w=n$ in (3) we have $(n x, y, z)=n(x, y, z)$. Combining this with (II) yields

$$
\begin{equation*}
(n x, y, z)=n(x, y, z)=(x n, y, z) \text { for all } n \text { in } N \tag{8}
\end{equation*}
$$

As a consequence of (8), (7), (1) and (II), we have that N is an associative subring of R, and thus

$$
\begin{equation*}
(N, R)(N R) \subset N \quad \text { and } \quad(N, R)(R N) \subset N \tag{9}
\end{equation*}
$$

Definition. Let $T=\{t \in N: t(R, R, R)=0\}$.
Using (9), (8) and (II), we have that $((N, R)(N R))(R, R, R)=$ $(((N, R)(N R)) R, R, R)=((N, R)((N R) R), R, R)=\left((N, R)\left(N R^{2}\right), R, R\right)=0$. Hence we obtain

$$
\begin{equation*}
(N, R)(N R) \subset T \tag{10}
\end{equation*}
$$

Lemma 1. T is an ideal of R and $T(R, R, R)=0$.
Proof. Substitute t for n in (8). Then $(t x, y, z)=t(x, y, z)=(x t, y, z)=0$. Thus $t R \subset N$ and $R t \subset N$. First note that $t w \cdot(x, y, z)=t \cdot w(x, y, z)$. But (3) multiplied on the left by t yields $t \cdot w(w, y, z)=-t \cdot(w, x, y) z=-t(w, x, y) \cdot z=0$. Hence $t w \cdot(x, y, z)=0$. On the other hand, using $t \mathbb{R} \subset T,(8),($ II $),(1)$ and (2) we obtain $w t \cdot(x, y, z)=(w, t)(x, y, z)=((w, t) x, y, z)=((w t) x, y, z)-$ $(t(w x), y, z)=((w t, x), y, z)+(x(w t), y, z)=-((x, w, t), y, z)+((x w) t, y, z)=$ $-((x, w, t)+(t, w, x), y, z)+((x w, t), y, z)+(t(x w), y, z)=0$. At this point we have verified that T is an ideal of R. The rest is obvious. This completes the proof of the lemma.

Definition. Let I be the associator ideal of R.
I consists of the smallest ideal which contains all associators.
Note that I may be characterized as all finite sums of associators and right multiples of associators, as a consequence of (3).

Henceforth assume not only that R satisfies (I) and (II), but also that R is semiprime. By that is meant that the only ideal of R which squares to zero is the zero ideal. Using Lemma 1 and (3) we have that $T \cdot I=0$ and so $(T \cap I)^{2}=0$. Thus we obtain
(11) $T \cap I=0$.

Lemma 2. $(R, R, N)=0$.
Proof. Assume that $n \in N$. Using (2) we get $(x, y, n)=(x, y, n)+$ $(n, y, x) \in N$. Also (3) implies $z(x, y, n)=(z x, y, n)-(z, x y, n)+(z, x, y n)-$ $(z, x, y) n$. Hence using (8) and (2) we obtain $(x, y, n)(z, r, s)=(z(x, y, n), r, s)$ $=((z, x, y n), r, s)-((z, x, y) n, r, x)=-((y n, x, z), r, s)-n((z, x, y), r, s)=$ $-(n(y, x, z), r, s)-((z, x, y), r, s)=-n((y, x, z)+(z, x, y), r, s)=0$, so that $(x, y, n) \in T$. Since this element is also an associator, it obviously is also in I. Thus by (11), $(x, y, n)=0$, as desired.

Using Lemma 2 and (II) we obtain (12) $n \in N$ and $(n, R)=0$ imply $n(R, R) \subset(N R, R) \subset N$.

Recall that a ring is called prime if the product of any two nonzero ideals is nonzero. We have our

Main Theorem. If R is a prime nonassociative ring with $N \neq 0$ satisfying (I) and (II), then R is either associative or commutative.

Proof. Since $T \cdot I=0$, we have $I=0$ or $T=0$. If $I=0$, then R is associative. Assume that $T=0$. Using (10) and (II), we obtain $((N, R) N) R=$ $(N, R)(N R)=0$. Thus, $((N, R) N)(R, R, R)=0$ and so $(N, R) N \subset T$. Hence $(N, R) N=0$. So by (II), $(N, R)(N, R)=0$ and thus $(N, R)(R N)=0$. Using (II), we see that $R(N, R) \subset(R,(N, R))+(N, R) R \subset(N, R)+(N, R) R$ and so the ideal generated by (N, R) is $(N, R)+(N, R) R$ by Lemma 2. Hence, it is easy to show that $((N, R)+(N, R) R)^{2}=0$. This implies $(N, R)+(N, R) R=0$ by primeness of R. So, $(N, R)=0$. By Lemma $2,(N, R, R)=(R, R, N)=0$. Thus $N R$ is a nonzero ideal of R. Let $K=\{x \in R: N x=0\}$. Then K is an ideal of R and $N K=0$. So, $(N R) K=N(R K) \subset N K=0$. Hence $K=0$ by primeness of R. Using (8) and (12), we obtain $N((R, R), R, R)=(N(R, R), R, R)=0$. Thus $((R, R), R, R) \subset K$ and so $((R, R), R, R)=0$. Hence $(R, R) \subset N$. It follows from this and (I) that R satisfies Kleinfeld's hypotheses [1] and thus the conclusion is valid. This completes the proof of the Main Theorem.

Thedy's example [3] shows that Kleinfeld's hypothesis $(R, R) \subset N$ can not
be replaced by the weaker condition $(N, R) \subset N$. It is interesting to ask whether this hypothesis can be replaced by $((R, R), R, R) \subset N$.

Note added in \mathbb{P} roof. Using the result of [4], we can improve the Main Theorem as follows: If R is a prime ring with $N \neq 0$ satisfying $(x, y, z)+(z, y, x) \in$ N and $(N+N R, R) \subset N$, then R is either associative or commutative.

References

[1] Erwin Kleinfeld, "Rings with (x, y, x) and commutators in the left nucleus," Comm. in Algebra, 16(1988), 2023-2029.
[2] Armin Thedy, "On rings with commutators in the nuclei," Math. Z., 119(1971), 213-218.
[3] Armin Thedy, "On rings satisfying $((a, b, c), d)=0$," Proc. Amer. Math. Soc., 29(1971), 250-254.
[4] C. T. Yen, "Rings with $(x, y, z)+(z, y, x)$ and $\left(N+R^{2}, R\right)$ in the left nucleus," unpublished manuscript.

Department of Mathematics, Chung Yuan University, Chung Li, Taiwan 320, Republic of China.

