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RINGS WITH (z,R,z) AND (N + NR, R)
IN THE LEFT NUCLEUS

CHEN-TE YEN

Abstract. Let R be a nonassociative ring, N the left nucleus. Assume
that IV is a nonzero Lie ideal of R. It is shown that if R is a prime
ring which satisfies (z,R,z) C N and (NR,R) C N then R is either
associative or commutative.

1. Introduction

Kleinfeld [1] weakened Thedy’s hypotheses [2] to obtain the following result:
If R is a prime nonassociative ring which satisfies (z,R,z) C N and (R,R) C
N, then R is either associative or commutative. In [4], we weaken Kleinfeld’s
hypotheses to obtain the same result. In this note, we weaken Kleinfeld’s second

hypothesis to obtain this result.

2. Main result

Let R be a nonassociative ring. We adopt the usual notation for associators
and commutators: (z,y,z) = (zy)z — z(y2), (z,y) = zy — yz. We shall denote
the left nucleus by N. Thus IV consists of all elements n such that (n, R, R) = 0,
where we assume that R is a ring in which (I) (z,R,z) C N and (II) (N +
NR,R) C N. Using (II), we obtain
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(RN,R) C (R,N)+ NR,R) C N. (1)

A linearization of (I) yields

(z? y’z) + (Z’ y’z) E N' (2)

In every ring one may verify the identity

(wz,y,2) — (w,zy,2) + (w,z,y2) = w(z,y,2)+ (w, z,9)z. (3)

Definition. Let J(z,y,2) = (z,9,2) + (v,2,2) + (2,2,7).
In every ring we have the identity

(29, 2) + (yz,2) + (22,y) = J(z,y, 2). (4)

Consequently, using (II) and (1) we have

J(z,y,2) € N ifoneof z,y and 2z isin N. | (5)

Moreover, in every ring we have the identity

(:cy,.z) = x(y7z) + (QI,Z)y T J(xsyv Z) - (Z,Z, y) - (ya z)x)‘ (6)

Then combining (6), (2), (5) and (II) we obtain

2(y,2) + (z,2)ye€ N forall z in N. (7)

Suppose that » € N. Then with w = n in (3) we have (nz,y,2) = iz, 9, 2):
Combining this with (II) yields

(nz,y,2) = n(z,y,2) = (zn,y,z) forall n in N. (8)

As a consequence of (8), (7), (1) and (IT), we have that NV is an associative

subring of R, and thus
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(N,R)(NR)CN and (N,R)(RN)CN. (9)

Definition. Let T = {t € N : t(R, R, R) = 0}.
Using (9), (8) and (II), we have that ((N,R)(NR))(R,R,R) =
(((N’ R)(NR))R7R7 R) - ((N’ R)((NR)R) , R, R) = ((N’ R)(NRz)’ R, R) = 0.

Hence we obtain

(N,R)(NR) C T. (10)

Lemma 1. T is an ideal of R and T(R,R,R) = 0.

Proof. Substitute ¢ for n in (8). Then (tz,y,2) = #(z,y,2) = (zt,y, 2) = 0.
Thus ¢R C N and Rt C N. First note that tw - (z,y,2) = t - w(z,y,2). But (3)
multiplied on the left by ¢ yields t-w(w,y, z) = —t-(w,z,y)z = —t(w, z,y)-z = 0.
Hence tw - (2,y,2) = 0. On the other hand, using tR C T, (8), (II), (1) and
(2) we obtain wt - (z,y,2) = (w,t)(z,y,2) = (w,t)z,y,2) = ((wt)z,y,2) —
(Hwe),3,2) = ((wh,2),1,2) + (2(wt), 1,2) = —((2,,2),5,2) + (20)t,5,2) =
—((z,w,t) + (t,w,z),y,2) + ((zw,1),y,2) + (t(zw),y,2) = 0.At this point we
have verified that T is an ideal of R. The rest is obvious. This completes the

proof of the lemma.

Definition. Let I be the associator ideal of R.

I conmsists of the smallest ideal which contains all associators.

Note that I may be characterized as all finite sums of associators and right
multiples of associators, as a consequence of (3).

Henceforth assume not only that R satisfies (I) and (II), but also that R is
semiprime. By that is meant that the only ideal of R which squares to zero is the
zero ideal. Using Lemma 1 and (3) we have that T-I = 0 and so (T N I)? = 0.

Thus we obtain
(11) I'nNi=4.
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Lemma 2. (R,R,N) = 0.

Proof. Assume that n € N. Using (2) we get (z;usm) = (z,4,0) +
(n,y,z) € N. Also (3) implies z(z,y,n) = (2z,y,n) — (z,2y,n) + (z,z,yn) —
(z,,y)n. Hence using (8) and (2) we obtain (z, y, n)(z,7,8) = (2(z,y,n),r,s)
= ((z,z,yn),7,3) — ((2,2,y)n,r,2) = ~((yn,z,2),7,8) — n((2,2,y),r,8) =
~(n(y,2,2),7,9) —((2,2,9),7,8) = -n((y,z,2) + (2,2,y),7,8) = 0, so that
(z,y,n) € T. Since this element is also an associator, it obviously is also in
I. Thus by (11), (z,y,n) = 0, as desired.

Using Lemma 2 and (II) we obtain
(12) n € N and (n,R) = 0 imply n(R,R) C (NR, R)CN.

Recall that a ring is called prime if the product of any two nonzero ideals

is nonzero. We have our

Main Theorem. If R is a prime nonassociative ring with N # 0 satisfying

(I) and (II), then R is either associative or commutative.

Proof. Since T-I =0, wehave = 0or T = 0. If [ = 0, then R is
associative. Assume that 7' = 0. Using (10) and (IT), we obtain ((V,R)N)R =
(N,R)(NR) = 0. Thus, (N,R)N)(R,R,R) = 0 and so (N,R)N C T. Hence
(NV,R)N = 0. So by (II), (N,R)(N,R) = 0 and thus (N,R)(RN) = 0. Using
(II), we see that R(N,R) C (R,(N,R)) + (N, R)R C (N,R) + (N,R)R and so
the ideal generated by (N, R) is (N, R)+ (N, R)R by Lemma 2. Hence, it is easy
to show that ((V, R) + (¥, R)R)? = 0. This implies (N,R)+ (N,R)R = 0 by
primeness of R. So, (N, R) = 0. By Lemma 2, (N,R,R) = (R,R,N) = 0. Thus
NRisanonzeroidealof R. Let K = {z € R: Nz = 0}. Then K is an ideal of R
and NK = 0. So, (NR)K = N(RK)C NK = 0. Hence K = 0 by primeness of
R. Using (8) and (12), we obtain N((R,R),R,R) = (N(R,R),R,R) = 0. Thus
((R,R),R,R) C K and so ((R,R),R,R) = 0. Hence (R,R) C N. It follows from
this and (I) that R satisfies Kleinfeld’s hypotheses [1] and thus the conclusion is
valid. This completes the proof of the Main Theorem.

Thedy’s example [3] shows that Kleinfeld’s hypothesis (R,R) C N can not
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be replaced by the weaker condition (N, R) C N. It is interesting to ask whether
this hypothesis can be replaced by ((R,R),R,R) C N.

Note added in Proof. Using the result of [4], we can improve the Main
Theorem as follows: If R is a prime ring with N # 0 satisfying (z, v, z2)+(z,y,z) €
N and (N 4+ NR,R) C N, then R is either associative or commutative.
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