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ON COMMUTATIVITY OF ONE-SIDED s-UNITAL RINGS

H. A.S. ABUJABAL, M. A. KHAN AND M. S. SAMMAN

Abstract. In the present paper, we study the commutativity of one
sided s-unital rings satisfying conditions of the form [z"y+z"y™z®,z] =
BT y”‘zz‘, z),or [yz" £z"y™z%, 2] =0=[y™2" % z”y’"2 £t
z] for each =,y € R, where m = m(y) > 1 is an integer depending on
vy and n, r and s are fixed non-negative integers. Other commutativity
theorems are also obtained. Our results generalize some of the well-known
commutativity theorems for rings.

Throughout the present paper, R will represent an associative ring (not
necessarily with unity 1). Let Z(R) denotes the center of R, N(R) the set of all
nilpotent elements of R, N'(R) the set of all zero-divisors of R and C(R) the
commutator ideal of R. By (GF(q))2 we mean the ring of 2 X 2 matrices over the
Galois field GF'(g) with ¢ elements. As usual Z[t] is the totality of polynomials in
¢t with coefficients in Z, the ring of integers, and for each z,y € R, [z,y] = zy—yz.

A ring R is called left (resp. right) s-unital if z € Rz (resp. z € zR) for
every z € R. Further, R is called s-unital if z € Rz NzR for all z € R. If R is
s-unital (resp. left s-unital or right s-unital), then for any finite subset F' of R
there exists an element e € R such that ez = ze = z (resp. ez = z or ze = z)
for all z € F. Such an element e will be called a pseudo (resp. pseudo left or
pseudo right) identity of F in R (see [16, 20, 21]).

In [9] it was studied the following ring properties:
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(P1): For each z,y in R, [z,2"y — 2"y™z*] = 0 where r > Lin2lm>»l sl
are fixed non-negative integers.
(P1)* : For each z,y in R, [z,yz" — z"y"z’l=0wherer>1,n>1, m>1,s>1
are fixed non-negative integers. .
(P,) : For each y in R, there exists integer m = m(y) > 1 such that [z,zy —
z"y"z’] = 0 = [z,zy™ - z"y’"zx’] for all z in R, where n, s are fixed
integers.

(F)" : For each y in R, there exists integer m = m(y) > 1 such that [z,yz —
z"y"z*] = 0 = [z,y™z — z"ymzz’] for all z in R, where n, s are fixed

integers.

Indeed it was proved the following results:

Theorem A;. If R is a ring with unity 1 satisfies either of the properties

(P1) or (P1)*, then R is commutative.

Theorem A;. Let R be a ring with unity 1 satisfying either of the properties
(P2) or (P2)*. Then R is commutative.

Further, in [9] the above results were extended to a class of rings called

one-sided s-unital rings. Actually it was proved the following;:

Theorem A3. Let R be a left s-unital ring satisfying (Py). Then R is

commutative.

Theorem Ay. Let R be a right s-unital ring satisfying (P;)*. Then R is

commutative.

The aim of the present paper is to generalize the above mentioned results
and the results proved in [1]-[10]. Also, correct some of the results in [5]. In fact

we prove the following;:

Theorem 1. Let m = m(y) > 1 be an integer depending on y and n, r and

s be fized non-negative integers. If R is a left s-unital ring which satisfies the
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polynomial identity
[z"y £ z"y™2z®,2z] =0 forallz,y € R, (1)

[2"y™ £ 2"y™ z°,2] =0 forallz,y € R, (1)
then K is commutative.

Theorem 2. Let m = m(y) > 1 be an integer depending on y and n, r and
s be fized non-negative integers. If R is a right s-unital ring which satisfies the

polynomial identity
[yz" £ 2"y™2®,2] =0 forallz,y € R, (2)

"% £+ z”ymzx’,m] =0 forallz,y € R, (2")
then R is commutative.

In preparation for the proof of our results, we need the following well-known

results:

Lemma 1 ([15, Lemma 3]). Let R be a ring such that [z,[z,y]] = 0 for all

z,y € R. Then [z™,y] = mz™ [z, y] for any positive integer m.

Lemma 2 [18, Lemma 1]. Let R be a ring with unity 1. If for each z,y € R,
there exists an integer k = k(z,y) > 1 such that z*[z,y] = 0 or [z,y]z* = 0,
then [z,y] = 0.

Lemma 3 ([17, Lemma 3]). Let R be a ring with unity 1. If (1—y™)z = 0,

then (1 — y™™)z = 0 for any positive integer m.

Lemma 4 ([13, Theorem]). Let f be a polynomial in n non-commuting inde-
terminales 1, T,..., Tn with integer coefficients. Then the following statements
are equivalent:

(1) For any ring R satisfying f = 0, C(R) is a nil ideal.
(2) For every prime p, (GF(p)); fails to satisfy f = 0.
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(3) Every semi-prime ring satisfying f = 0 is commutative.

Lemma 5 ([23, Lemma 1]). Let R be a ring with unity 1, and let I§(z) = z”
for all z € R. Define If(z) inductively by I](z) = I]_,(z + 1) — If_,(z) for all
positive integers k. Then for all z € R, we have IT_,(z) = (r — 1)r!/2 + rlz,
I7(z) = rl and I7(z) = 0 for all j > 7.

Lemma 6 ([22 , Lemma]). Let R be a left (resp. right) s-unital ring. If for
each pair of elements z and y in R, there ezists a positive integer k = k(z,y) and
an element e = e(z,y) of R such that z¥e = z* and y*e = y* (resp. ex* = z*

and ey® = y* ), then R is s-unital.

Next, we consigder the following ring property:
(H) For each z, y in R there exists f(t) € t*Z[t] such that [z — f(z),y] = 0.

- Theorem H ([11, Theorem)). Every ring satisfying (H) is commutative.

In order to prove Theorem 1, we establish two lemmas.

Lemma 7. Let m = m(z,y) > 1, n = n(z,y), r = r(z,y) and s =
s(z,y) be non-negative integers and let R be a left s-unital ring satisfying [z7y +

z"y™z®,z] = 0 for all z,y € R. Then R is an s-unital ring.

Proof. If z,y € R, then there exists e = ¢(z,y) € R such that ez = z and
ey = y. Further, there exist integers m = m(z,e) > 1, n = n(z,e), r = r(z,e),
and s = s(z,e) > 0 such that z"[z,e] = +z"[z,e™]z*. So z™tle — z7ezx =
F(z"Hez?® — z"ez*t1). Thus z™+tle = 2™, Also, if m; = m(y,e) > 1, n; =
n(y,e), 1 = r(y,e) and s; = s(y,e) > 0, then we get y™+'e = y™1+1, Thus
gTinitle = gril(gnitle) = grim+2 apg yrHnt2e = yrnid2, Therefore, R is
s-unital by Lemma 6. If s = 0, then 2™y — 2"yz = +(z**+1y™ — z"y™z). So
ety — e"ye = L(e"t1y™ — e"y™e) and thus y = ye + (y™ — y™e) = yle £
(y™~ ' — y™le)) € yR. Therefore, R is s-unital.

Lemma 8. Let m = m(z,y) > 1, n = n(z,y), r = r(z,y) and s = s(z,y)

be non-negative integers. If R satisfies [z"y £ 2"y™z%, 2] = 0 for all z,y € R,
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then C(R) C N(R). Further, if R has unity 1, then C(R) C Z(R).

Proof. By the hypothesis, we have

z"[z,y] = £z"™[z,y™]z’ for all z,y € R. (3)
10 0 1. F P i
Let 2 = e;; = 0 0 and y = €2 = o ol ™ (GF(p)); for any prime p.

Then z and y fail to satisfy (3). By Lemma 4, C(R) C N(R).
If my = m(z, y)>1,m= n(z,y), 11 = r(z,y), and s; = s(z,y), then
z"[z,y] = 2" [z,y™]z** for all z,y € R,

or
z"[z,y] = 2™ [y™,z]z* for all z,y € R.

Now, let my = m(z,y™) > 1, n; = n(z,y™), r; = r(z,y™), and s, =

s(z,y™). Then
a:""""[z,y] - xrz(zn1[z,ym1]xsl)

- $ﬂ1+n2 [:E, ymlmz]z81+82-’

or
&,y = 5" (5™, 7o)
- zn1+ﬂ:[ym1m2’x]$31+az.
Let ¢ be any positive integer. By repeated use of the above process, we
obtain

gritrate+ry [x’y] - zn1+n2+"-+ﬂt[z,y‘mlm2"'ml]z"1+’2+"’+"' for all z,y € R,
(4)

or

w,.1+r2+...+rt [x,y] - zn1+n3+...+n,[ym1m2.--mf,z]xa1+82+-..+8t for all z,y € R.

(4)
If u € N(R), then by (4) and (4)', for any z € R and any positive integer ¢,

we have

gritratetn [:c,u] = pratnzt-tny [x,umlmZ"'mt]x31+32+"'+31,
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or

gTitratetn [z, u] = gnitnzt-+ny [uml Mo« My , z]x31+32+'"+31 .

But u™:™2™ = ( for sufficiently large t. Therefore, z™+72++7[z 4] = 0 and

by Lemma 2, [z,u] = 0. Hence N(R) C Z(R). So

C(R) C N(R) € Z(R). (5)

Remark 1. Since we know that C(R) C Z(R), if R has a unity 1. Thus
[z,[z,y] = 0 for all z,y € R, and hence we shall apply the conclusion of Lemma

1 without explicit mention for any ring R satisfying the hypothesis of Lemma 8.

Lemma 9. Let m = m(y) > 1 be an integer depending on y and n, r
and s be fized non-negative integers. If R is a ring with unity 1 satisfies [z7y +

e y™et ] = 0= [g"y™ & x"ymzx’,z] forall z,y € R, then R is commutative.

Proof. f r = n + s, then z"[z,y] = *2"**[z,y™] = +z"[z,y™]. Thus
z"([z,y] ¥ [z,¥™]) = 0 and by Lemma 2 [z,y F y™] = 0. Therefore, R is commu-
tative by Theorem H.

Let 7 > n + s. Suppose that ¢, = p’*! — p"*+*+1 for a prime p. Then by (3)

we have
qz'[z,y] =p"Ha"[z,y] - p e[z, y)
= (pz)"[(pz),y] F (pz)"[(pz),y™](pz)* = 0.
Similarly, if n+s > r, then for g, = p"***1—p™+1 we get g2"[z,y] = 0. Suppose

¢ = q1 or g;. Then ¢[z,y] = 0 by Lemma 2. So [z,y7] = qy?~}[z,y] = 0 for all
z,y € R. Therefore,

y? € Z(R) for all y € R. (6)

Further using (1) and (1'), together with Lemma 1, and Lemma 8 several
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times, we see that

(1= y™ )z, y™e" = 27[z,y™] — 3D [, y™ a7
= 2"[z,y™] — my™~Ly(m=V’(z, 42"
= z"[z,y™] — my™™ Dz [z, 4]
= z"[z,y™] F my™ (™ Vz" [z, y™]e?
= 2"[z,y™] F [z,y™ Ja"+*
= z"[z,y™] F 2"[z,y™ Jo*

= 0.

This implies that (1 — y("“l)z)[z,ym]x’ = 0, that is, (1 - y(m‘l)z)[x,ym]
g™t +e = 0 So (1 — y(™~1?)[z,y]a?" = 0. Using Lemma 2, we get (1 — y(m=1)?%)
[z,y] = 0. But since y? € Z(R), for all y € R, that gives [z,y — yam=1)"+1] =
(1- y9("‘“1)2)[:c,y] = 0 and therefore, R is commutative by Theorem H.

Proof of Theorem 1. If R is left s-unital satisfies (1), then R is s-unital
by Lemma 7. In view of Proposition 1 of [12], we may assume R has unity 1.

Therefore, R is commutative by Lemma 9.

Corollary 1. Let m > 1, n, r and s be fized non-negative integers. If R
is a left s-unital ring satisfies "y + z2"y™z°®,z] = 0 for all z,y € R, then R is

commutative.

In preparation for proving Theorem 2, we prove the following lemmas:

Lemma 10. Let m = m(z,y) > 1, n = n(z,y), r = r(z,y) and s =
s(z,y) be non-negative integers, and let R be a right s-unital ring. If R satisfies
[yz™ £ z"y™y*,z] = 0 for all z,y € R, then R is s-unital.

Proof. If z,y € R, then there exists e = ¢(z,y) € R such that ze = z and
ye = y. Further, there exist non-negative integers m = m(z,e) > 1, n = n(z, e) >
0,7 =r(z,e),and s = s(z, e) such that 2™+ = ez™*1. Also, if m; = m(y,e) > 1,

n1 = n(y,e) > 0,1 =1(y,e) and s; = s(y, €), then we get y™+1 = ey™+1, Thus
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ex™ ¥ = pTHM42 apd ey™t1+2 = ym+71+2 Therefore, R is s-unital by Lemma
6. If n = n(z,y) = 0, then y = (eF(ey™ ' —y™ 1))y € Ry, for m = m(e,y) > 1.
Thus R is s-unital.

Lemma 11. Let m = m(z,y) > 1, n = n(z,y), r = r(z,y) and s = s(z,y)
be non-negative integers. If R satisfies [yz™ + z"y™z°,z] = 0 for all z,y € R,
then C(R) C N(R). Further, if R has unity 1, then C(R) C Z(R).

Proof. By our hypothesis, we obtain

[z,y]z" = £2™[z,y™]z* for all z,y € R. (11)
0 0 1]. 5
fz=e34= 0 1 and y = ej3 = o oli® (GF(p)); for any prime p,

then = and y fail to satisfy (11). Therefore, C(R) C N(R) by Lemma 4.
Following the proof of Lemma 8, we notice that for any positive integer k,
(11) implies that

ritrateedn _ anatngtetng mima-mi]S1+82+-+ s
[z,y]z =z [z,y ]z forall z,y € R,

(12)

or

[x,y]zT1+T2+"'+Tk = gmatnatetng [,ymnm---mk,$]z81+82+---+8k forall z,y € R
3 ;

(12)’
Also we can prove that N(R) C Z(R). Therefore,

C(R) C N(R) C Z(R). (13)
Proof of Theorem 2. In view of Lemma 10, R is s-unital. Hence we can

assume that R has unity 1 as suggested by Proposition 1 of [12]. By (13), (2)
and (2') are equivalent to

z"[z,y] = £z"[z,y™]z* forall z,y € R,

z"[z,y™] = :}:x"[z,ymz]z’ for all z,y € R.
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Therefore, R is commutative by Lemma 9.

Corollary 2. Let m > 1, n, r and s be fized non-negative iniegers. If R is
a right s-unital ring which satisfies the polynomial identity [yz™ + z"y™z*,z] =

0 for all z,y € R, then R is commutative.

Remark 2. Let r =n =0 (resp. r =8 =0) in (1) (resp. (2)). Then
[z,9] = £[y™,2]2° for all z,y € R (14)

(resp. .
[e,9] = +2"[y™,3] for all 2,y € R (15)).

Ifm>1ors>1in(14) (tesp. m > 1 or n > 1 in (15)), then R is a
(Z,B)-ring in the sense of Streb ([19]), hence R is commutative even if R is not

assumed to be a left (resp. right) s-unital ring (ring with unity 1 (cf. Lemma

9)).
pample 1. 1 2= { (3 8), (3 3). (3 9). )}

subring of (GF(2));. It is easy to check that R is a right s-unital ring satisfying
the polynomial identity [z"y £ z"y™z°,z] = 0 for each z,y € R, where 7 > 1,
n>1, m=m(y) > 1, and s > 1 are integers. Also, R is not a left s-unital ring.

However, R is a non-commutative ring.

_J (o o0 1 o 0 1 11
Example 2. Let R = { (0 0), (1 0), (0 1), (1 1)} be a
subring of (GF(2)),. It is easy to check that R is a left s-unital ring satisfying
the polynomial identity [yz” + z"y™z®,z] = 0 for all z,y € R, where r > 1,

n>1,m=m(y) >1,and t > 1 are integers. Also, R is not a right s-unital

ring. However, R is a non-commutative ring.

Lemma 12. Let m = m(z,y) > 1, r = r(z,y) and s = (z,y) be non-
negative integers. If R is a right s-unital ring satisfies [:t"y + y™z*,z] for all
T,y € R, then R is s-unital.
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Proof. Since R is right s-unital, then for any z,y € R there exists an
element e = e(z,y) € R such that ze = z and ye = y. Let m = m(z,e) > 1,
r = r(z,e) > 1, s = s(z,e) > 0, m' = m(y,e) > 1, ' = r(y,e) > 1, and
s' = s(y,e) > 0. Then e™™ gs+s'+2 = go+s'+2 apq emm'ysta'+2 — ysta'+2
By Lemma 6, R is s-unital. If r = r(z,e) = 0, then [e,y] = [e,y™]e® for
s = s(e,y) 2 0, and m = m(e,y) > 1. So y = (e F (ey™ ! — y™ 1))y € Ry.

Therefore, R is an s-unital ring.

Theorem 3. Let m = m(y) > 1 and r, s be non-negative integers. If R is a
right s-unital ring satisfies [z"y+y™z®,z] =0 = [x"ym:tymzx“’,x] forallz,y €
R, then R is commutative.

Proof of Theorem 3. By Lemma 12, R is an s-unital ring. Hence, we can
assume that R has unity 1 (see [12, Proposition 1]). Therefore, R is commutative

by Lemma 9.

Lemma 13. Let m = m(z,y) > 1, r = r(z,y) and n = (z,y) be non-
negative integers. If R is a left s-unital ring satisfies [yz™ + z"y™,z] for all

z,y € R, then R is s-unital.

Proof. Let R be a left s-unital ring. Then for any z,y € R there exists an
element e = e(z,y) € R such that ez = z and ey = y. Let m = m(z,e) > 1,
r=r(z,e) > 1, n = n(z,e) > 0, m = m(y,e) > 1, v = 7(y,e) > 1, and
n' = n(y,e) > 0. Then z™+"'+2 = grin'+2emm’ ,pq yntn'+2 — ynin'+2gmm’
By Lemma 6, R is s-unital. If 7 = r(r,e) = 0, then [e,y] = +e"[e,y™], for
n = n(e,y) 2 0, and m = m(e,y) > 1. Thus y = y(e £ (™! — y™~Le)) € yR.

Therefore, R is an s-unital ring.

Theorem 4. Let m = m(y) > 1 and r, s be non-negative integers. If R is a
left s-unital ring satisfies [yz™ £ z"y™,z] = 0 = [y™z" + z”ymz,x] forall z,y €

R, then R is commutative.

Proof of Theorem 4. By Lemma 13, R is an s-unital ring. Hence, we can

assume that R has unity 1 by Proposition 1 of [12]. Therefore, R is commutative
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by Lemma 9.

Corollary 3 ([10, Theorem 4]. Let R be a ring with unity 1, and letn > 1
be a fized integer, and suppose that for each y € R, there exists an integer

m = m(y) > 1 such that [z,zy—z"y™] = 0 for allz € R. Then R is commutative.

Remark 3. The example of Grassman algebra rules out the possibility that

m = 1 in Lemma 9 and therefore, Theorems 1-4.

Theorem 5. Let r be a fized non-negative integer. If R is a left (resp.

right) s-unital ring satisfies
z"[z,y] =0 forallz,y € R (16)

(resp.
[z,y]z" = 0 for all z,y € R, (17))

then R is commutative.

Proof. Let z,y € R. Then there exists e = e(z,y) € R (resp. f =
f(z,y) € R) such that ez = z and ey = y (resp. zf = z and yf = y). Thus
y = ye (tesp. y = fy). Similarly, z = ze (resp. z = fz). Therefore, R is
s-unital. By Proposition 1 of [12], we may assume that R has uﬁit;y 1. Then
z7[z,y] = 0 = (2 + 1)"[z,y (resp. [z,y]z" = 0 = (z + 1)"[z,y]) for all z,y € R.

By Lemma 2, [z,y] = 0 and thus R is commutative.

Remark 4. In case 7 > 0 Theorem 3 need not be true for right (resp. left)

s-unital ring. Indeed, we have the following:

Example 3. Let K be any field. Then the non-commutative ring R =

(g g) (resp. R* = (g ﬁ,)) has a right (resp. left) identity element and

satisfies z[z,y] = 0 (resp. [z,y]z = 0) for all z,y € R. Also R is not s-unital

ring.

Example 4. If we drop the restriction that R with unity 1 in Lemma 9,
then the ring R may be badly non-commutative. Indeed, we let Dy be the ring
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of all k£ X k matrices over a division ring D, and let
A ={(aij) €Dk | a;5=0,52>1i}.

Then Ay is a non-commutative nilpotent ring of index k, for any positive integer
k > 2. Clearly, A3 satisfies (1) and (2).

Example 5. Let F be a field. Define an algebra R = A over F with a basis
{f1, f2, f3} where fi f, = f, and all other products are zero. Then A is nilpotent

of index 3 satisfies the identities (1) and (2). R is not commutative.

In the remaining case we suppose that m = 1 in (1) and (2).

Theorem 6. Let n, r and s be fized non-negative integers, and let R be an

s-unital ring satisfying
z"[z,y] = +2"[z,y]2* for all z,y € R. (18)

Then R is commutative in any of the following:
(¢) R satisfies [z,y] = —[z,9y], and R is 2-torsion free.
()0=s=n<r.
(45) 0 < s < 7, n = 0 and R is r!-torsion free.
(w) 0<n <7, s=0 and R is r'-torsion free.

(v)r=0andn>0o0rs>0.

Proof. According to [12, Proposition 1], we may assume that R has unity

(i) By hypothesis, 2[z,y] = 0. Therefore, R is commutative, since R is 2-

torsion free.

(ii) The identity (18) becomes z"[z,y] = +[z,y] for all z,y € R. Therefore
R is commutative by [6, Theorem).
(iii) Let I§(z) = z” and I§(z) = z°. Then the polynomial identity (18) gives

xr[x, y] = :h[z7 y]zs,



COMMUTATIVITY OF ONE-SIDED s-UNITAL RINGS 265

and hence
I§(z)[z,y] = £[z,y]I5(z) forall z,y € R.

Replace z by z+1 in the last identity to get I§(z+1)[z,y] = £z, y]I§(z+1). By
Lemma 5, we have I (z)[z,y] = %[y, z]I7(z). Again, replace z by z+1 and apply
Lemma 5 to obtain I5(z)[z,y] = £[z,y]I5(z). Now iterating the last identity r
times, we finally get

I7(2)[z,y] = £[=z,y]I;(z) forallz,y€ R. (19)

Since by Lemma 5, I7(z) = r! and I3(z) = 0 for r > s, the identity (19) reduces
to r![z,y] = 0. As every commutator in R is r!-torsion free, we get [z, y] = 0 for
all z,y € K. Therefore R is commutative.

(iv) Similar to the proof of case (iii).

(v) Without loss of generality suppose that n > 0. Then we have
[z,y] = £a"[z,y]z® forallz,y € R, (20)
and thus, R is commutative by [19, Hauptsatz].

Remark 5. In Theorem 4 (i), (ii) and (v), R is not necessarily to be an

s-unital ring (ring with unity 1).

Theorem 7. Let 7, n and s be fized non-negative integers, and let R be an

s-unital ring satisfying
[z,y]z" = £z"[z,y]z® for all z,y € R. (21)

Then R is commutative in any of the following:
()0=s=n<mr
(i7) 0 < s < r, n =0 and R is rl-torsion free.
(141) 0 < n < 7, s =0 and R is r!-torsion free.

(t2v) r=0andn >0 ors>0.

Theorem 8. Let r, n and s be fized non-negative integers such that r #
n + s. Suppose thai R is an s-unital ring satisfying the polynomial identity (18).
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Further, if every commutator in R is | p™! — p™*+*+1 |_torsion free for an integer

p > 1, then R is commutative.

Proof. According to Proposition 1 of [12], we can assume that R has unity
1. Thus

(p2)"[(p2),y] = £(pz)"[(pz),yl(pz)° for all z,y € R. (22)

By using (18) and (22), we obtain

| p™ —p™+o*1 | 27[z,9] = 0 forall z,y € R. (23)
By Lemma 2 and the hypothesis, (23) yields [z, y] = 0 for all z,y € R. Therefore

R is commutative.

Theorem 9. Let r, n and s be fized non-negative integers such that r #
n + s. Suppose that R is an s-unital ring satisfying the polynomial identity (21).
Further, if every commutator in R is | pt1 — pntstl |_torsion free for an integer

p > 1, then R is commutative.

Next, we suppose that r > 0,7 > 0 and s > 0 in (18 ) and (21). Indeed we

prove the following:

Theorem 10. Let r, n and s be fized positive integers and let R be an
s-unital ring satisfying the polynomial identity (18). If, further, N(R) C Z(R),
then R is commutative provided that r # n + s and every commutator in R is 7!

resp. (n + s)!-torsion free for r > n+ s, resp. r < n + s.

Proof. It is easy to see that C(R) C Z(R). Thus 2" [z,y] = *le, yla™** for
all z,y € R. Therefore, R is commutative by Theorem 4 (iii).

Theorem 11. Let r, n and s be fized positive integers and let R be an
s-unital ring satisfying the polynomial identity (21). If, further, N(R) C Z(R),
then R is commutative provided that r # n+ s and every commutator in R is !

(resp. (n + s)!)-torsion free forr > n + s (resp. T < n + s).
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