ON COMMUTATIVITY OF ONE-SIDED s-UNITAL RINGS

H. A. S. ABUJABAL, M. A. KHAN AND M. S. SAMMAN

Abstract

In the present paper, we study the commutativity of one sided s-unital rings satisfying conditions of the form $\left[x^{r} y \pm x^{n} y^{m} x^{s}, x\right]=$ $0=\left[x^{r} y^{m n} \pm x^{n} y^{m^{2}} x^{s}, x\right]$, or $\left[y x^{r} \pm x^{n} y^{m} x^{s}, x\right]=0=\left[y^{m} x^{r} \pm x^{n} y^{m^{2}} x^{a}\right.$, $x]$ for each $x, y \in R$, where $m=m(y)>1$ is an integer depending on y and n, r and s are fixed non-negative integers. Other commutativity theorems are also obtained. Our results generalize some of the well-known commutativity theorems for rings.

Throughout the present paper, R will represent an associative ring (not necessarily with unity 1). Let $Z(R)$ denotes the center of $R, N(R)$ the set of all nilpotent elements of $R, N^{\prime}(R)$ the set of all zero-divisors of R and $C(R)$ the commutator ideal of R. By $(G F(q))_{2}$ we mean the ring of 2×2 matrices over the Galois field $G F(q)$ with q elements. As usual $\mathbb{Z}[t]$ is the totality of polynomials in t with coefficients in \mathbb{Z}, the ring of integers, and for each $x, y \in R,[x, y]=x y-y x$.

A ring R is called left (resp. right) s-unital if $x \in R x$ (resp. $x \in x R$) for every $x \in R$. Further, R is called s-unital if $x \in R x \cap x R$ for all $x \in R$. If R is s-unital (resp. left s-unital or right s-unital), then for any finite subset F of \mathbb{R} there exists an element $e \in R$ such that $e x=x e=x$ (resp. $e x=x$ or $x e=x$) for all $x \in F$. Such an element e will be called a pseudo (resp. pseudo left or pseudo right) identity of F in \mathbb{R} (see $[16,20,21]$).

In [9] it was studied the following ring properties:

Received Octorber 5, 1991; revised November 6, 1991.
Key words and phrases. Commutativity, s-unital rings, semi-prime rings.
1990 AMS Subject classification. 16 U80.
$\left(P_{1}\right):$ For each x, y in $R,\left[x, x^{r} y-x^{n} y^{m} x^{s}\right]=0$ where $r \geq 1, n \geq 1, m>1, s \geq 1$ are fixed non-negative integers.
$\left(P_{1}\right)^{*}:$ For each x, y in $R,\left[x, y x^{r}-x^{n} y^{m} x^{s}\right]=0$ where $r \geq 1, n \geq 1, m>1, s \geq 1$ are fixed non-negative integers.
$\left(P_{2}\right):$ For each y in R, there exists integer $m=m(y)>1$ such that $[x, x y-$ $\left.x^{n} y^{m} x^{s}\right]=0=\left[x, x y^{m}-x^{n} y^{m^{2}} x^{s}\right]$ for all x in R, where n, s are fixed integers.
$\left(P_{2}\right)^{*}:$ For each y in R, there exists integer $m=m(y)>1$ such that $[x, y x-$ $\left.x^{n} y^{m} x^{s}\right]=0=\left[x, y^{m} x-x^{n} y^{m^{2}} x^{s}\right]$ for all x in R, where n, s are fixed integers.

Indeed it was proved the following results:
Theorem A_{1}. If R is a ring with unity 1 satisfies either of the properties $\left(P_{1}\right)$ or $\left(P_{1}\right)^{*}$, then R is commutative.

Theorem A_{2}. Let R be a ring with unity 1 satisfying either of the properties $\left(P_{2}\right)$ or $\left(P_{2}\right)^{*}$. Then R is commutative.

Further, in [9] the above results were extended to a class of rings called one-sided s-unital rings. Actually it was proved the following:

Theorem A_{3}. Let R be a left s-unital ring satisfying $\left(P_{2}\right)$. Then R is commutative.

Theorem A_{4}. Let R be a right s-unital ring satisfying $\left(P_{2}\right)^{*}$. Then R is commutative.

The aim of the present paper is to generalize the above mentioned results and the results proved in [1]-[10]. Also, correct some of the results in [5]. In fact we prove the following:

Theorem 1. Let $m=m(y)>1$ be an integer depending on y and n, r and s be fixed non-negative integers. If R is a left s-unital ring which satisfies the
polynomial identity

$$
\begin{gather*}
{\left[x^{r} y \pm x^{n} y^{m} x^{s}, x\right]=0 \text { for all } x, y \in R} \tag{1}\\
{\left[x^{r} y^{m} \pm x^{n} y^{m^{2}} x^{s}, x\right]=0 \text { for all } x, y \in R}
\end{gather*}
$$

then R is commutative.

Theorem 2. Let $m=m(y)>1$ be an integer depending on y and n, r and s be fixed non-negative integers. If R is a right s-unital ring which satisfies the polynomial identity

$$
\begin{gather*}
{\left[y x^{r} \pm x^{n} y^{m} x^{s}, x\right]=0 \text { for all } x, y \in R} \tag{2}\\
{\left[y^{m} x^{r} \pm x^{n} y^{m^{2}} x^{s}, x\right]=0 \text { for all } x, y \in R}
\end{gather*}
$$

then R is commutative.
In preparation for the proof of our results, we need the following well-known results:

Lemma 1 ([15, Lemma 3]). Let R be a ring such that $[x,[x, y]]=0$ for all $x, y \in R$. Then $\left[x^{m}, y\right]=m x^{m-1}[x, y]$ for any positive integer m.

Lemma $2[18, \operatorname{Lemma} 1]$. Let R be a ring with unity 1. If for each $x, y \in R$, there exists an integer $k=k(x, y) \geq 1$ such that $x^{k}[x, y]=0$ or $[x, y] x^{k}=0$, then $[x, y]=0$.

Lemma 3 ([17, Lemma 3]). Let R be a ring with unity 1. If $\left(1-y^{n}\right) x=0$, then $\left(1-y^{n m}\right) x=0$ for any positive integer m.

Lemma 4 ([13, Theorem]). Let f be a polynomial in non-commuting indeterminates $x_{1}, x_{2}, \ldots, x_{n}$ with integer coefficients. Then the following statements are equivalent:
(1) For any ring R satisfying $f=0, C(R)$ is a nil ideal.
(2) For every prime $p,(G F(p))_{2}$ fails to satisfy $f=0$.
(3) Every semi-prime ring satisfying $f=0$ is commutative.

Lemma 5 ([23, Lemma 1]). Let R be a ring with unity 1, and let $I_{0}^{r}(x)=x^{r}$ for all $x \in R$. Define $I_{k}^{r}(x)$ inductively by $I_{k}^{r}(x)=I_{k-1}^{r}(x+1)-I_{k-1}^{r}(x)$ for all positive integers k. Then for all $x \in R$, we have $I_{r-1}^{r}(x)=(r-1) r!/ 2+r!x$, $I_{r}^{r}(x)=r!$ and $I_{j}^{\tau}(x)=0$ for all $j>r$.

Lemma 6 ([22, Lemma]). Let R be a left (resp. right) s-unital ring. If for each pair of elements x and y in R, there exists a positive integer $k=k(x, y)$ and an element $e=e(x, y)$ of R such that $x^{k} e=x^{k}$ and $y^{k} e=y^{k}$ (resp. ex $x^{k}=x^{k}$ and $e y^{k}=y^{k}$), then R is s-unital.

Next, we consider the following ring property:
(H) For each x, y in R there exists $f(t) \in t^{2} \mathbb{Z}[t]$ such that $[x-f(x), y]=0$.

Theorem H ([11, Theorem]). Every ring satisfying (H) is commutative.
In order to prove Theorem 1, we establish two lemmas.
Lemma 7. Let $m=m(x, y)>1, n=n(x, y), r=r(x, y)$ and $s=$ $s(x, y)$ be non-negative integers and let R be a left s-unital ring satisfying $\left[x^{r} y \pm\right.$ $\left.x^{n} y^{m} x^{s}, x\right]=0$ for all $x, y \in \mathbb{R}$. Then R is an s-unital ring.

Proof. If $x, y \in R$, then there exists $e=e(x, y) \in R$ such that $e x=x$ and ey $=y$. Further, there exist integers $m=m(x, e)>1, n=n(x, e), r=r(x, e)$, and $s=s(x, e)>0$ such that $x^{r}[x, e]= \pm x^{n}\left[x, e^{m}\right] x^{s}$. So $x^{r+1} e-x^{r} e x=$ $\pm\left(x^{n+1} e x^{s}-x^{n} e x^{s+1}\right)$. Thus $x^{r+1} e=x^{r+1}$. Also, if $m_{1}=m(y, e)>1, n_{1}=$ $n(y, e), r_{1}=r(y, e)$ and $s_{1}=s(y, e)>0$, then we get $y^{r_{1}+1} e=y^{r_{1}+1}$. Thus $x^{r+r_{1}+2} e=x^{r+1}\left(x^{r_{1}+1} e\right)=x^{r+r_{1}+2}$ and $y^{r+r_{1}+2} e=y^{r+r_{1}+2}$. Therefore, R is s-unital by Lemma 6. If $s=0$, then $x^{r+1} y-x^{r} y x= \pm\left(x^{n+1} y^{m}-x^{n} y^{m} x\right)$. So $e^{r+1} y-e^{r} y e= \pm\left(e^{n+1} y^{m}-e^{n} y^{m} e\right)$ and thus $y=y e \pm\left(y^{m}-y^{m} e\right)=y(e \pm$ $\left.\left(y^{m-1}-y^{m-1} e\right)\right) \in y R$. Therefore, R is s-unital.

Lemma 8. Let $m=m(x, y)>1, n=n(x, y), r=r(x, y)$ and $s=s(x, y)$ be non-negative integers. If R satisfies $\left[x^{r} y \pm x^{n} y^{m} x^{s}, x\right]=0$ for all $x, y \in R$,
then $C(R) \subseteq N(R)$. Further, if R has unity 1 , then $C(R) \subseteq Z(R)$.
Proof. By the hypothesis, we have

$$
\begin{equation*}
x^{r}[x, y]= \pm x^{n}\left[x, y^{m}\right] x^{s} \text { for all } x, y \in R . \tag{3}
\end{equation*}
$$

Let $x=e_{11}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $y=e_{12}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ in $(G F(p))_{2}$ for any prime p. Then x and y fail to satisfy (3). By Lemma $4, C(R) \subseteq N(\mathbb{R})$.

$$
\begin{gathered}
\text { If } m_{1}=m(x, y)>1, n_{1}=n(x, y), r_{1}=r(x, y), \text { and } s_{1}=s(x, y) \text {, then } \\
\qquad x_{1}^{r_{1}}[x, y]=x^{n_{1}}\left[x, y^{m_{1}}\right] x^{s_{1}} \text { for all } x, y \in \mathbb{R},
\end{gathered}
$$

or

$$
x^{r_{1}}[x, y]=x^{n_{1}}\left[y^{m_{1}}, x\right] x^{s_{1}} \text { for all } x, y \in R .
$$

Now, let $m_{2}=m\left(x, y^{m_{1}}\right)>1, n_{2}=n\left(x, y^{m_{1}}\right), r_{2}=r\left(x, y^{m_{1}}\right)$, and $s_{2}=$ $s\left(x, y^{m_{1}}\right)$. Then

$$
\begin{aligned}
x^{r_{1}+r_{2}}[x, y] & =x^{r_{2}}\left(x^{n_{1}}\left[x, y^{m_{1}}\right] x^{s_{1}}\right) \\
& =x^{n_{1}+n_{2}}\left[x, y^{m_{1} m_{2}}\right] x^{s_{1}+s_{2}}
\end{aligned}
$$

or

$$
\begin{aligned}
x^{r_{1}+r_{2}}[x, y] & =x^{r_{2}}\left(x^{n_{1}}\left[y^{m_{1}}, x\right] x^{s_{1}}\right) . \\
& =x^{n_{1}+n_{2}}\left[y^{m_{1} m_{2}}, x\right] x^{s_{1}+s_{2}} .
\end{aligned}
$$

Let t be any positive integer. By repeated use of the above process, we obtain

$$
\begin{equation*}
x^{r_{1}+r_{2}+\cdots+r_{8}}[x, y]=x^{n_{1}+n_{2}+\cdots+n_{4}}\left[x, y^{m_{1} m_{2} \cdots m_{4}}\right] x^{s_{1}+s_{2}+\cdots+s_{4}} \text { for all } x, y \in R, \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
x^{r_{1}+r_{2}+\cdots+r_{4}}[x, y]=x^{n_{1}+n_{2}+\cdots+n_{4}}\left[y^{m_{1} m_{2} \cdots m_{t}}, x\right] x^{s_{1}+s_{2}+\cdots+s_{4}} \text { for all } x, y \in \mathbb{R} . \tag{4}
\end{equation*}
$$

If $u \in N(\mathbb{R})$, then by (4) and (4)', for any $x \in \mathbb{R}$ and any positive integer t, we have

$$
x^{r_{1}+r_{2}+\cdots+r_{4}}[x, u]=x^{n_{1}+n_{2}+\cdots+n_{4}}\left[x, u^{m_{1} m_{2} \cdots m_{4}}\right] x^{s_{1}+s_{2}+\cdots+s_{1}},
$$

or

$$
x^{r_{1}+r_{2}+\cdots+r_{t}}[x, u]=x^{n_{1}+n_{2}+\cdots+n_{t}}\left[u^{m_{1} m_{2} \cdots m_{t}}, x\right] x^{s_{1}+s_{2}+\cdots+s_{t}}
$$

But $u^{m_{1} m_{2} \cdots m_{t}}=0$ for sufficiently large t. Therefore, $x^{r_{1}+r_{2}+\cdots+r_{t}}[x, u]=0$ and by Lemma $2,[x, u]=0$. Hence $N(R) \subseteq Z(R)$. So

$$
\begin{equation*}
C(R) \subseteq N(R) \subseteq Z(R) . \tag{5}
\end{equation*}
$$

Remark 1. Since we know that $C(R) \subseteq Z(R)$, if R has a unity 1. Thus $[x,[x, y]=0$ for all $x, y \in R$, and hence we shall apply the conclusion of Lemma 1 without explicit mention for any ring R satisfying the hypothesis of Lemma 8.

Lemma 9. Let $m=m(y)>1$ be an integer depending on y and n, r and s be fixed non-negative integers. If R is a ring with unity 1 satisfies $\left[x^{r} y \pm\right.$ $\left.x^{n} y^{m} x^{s}, x\right]=0=\left[x^{r} y^{m} \pm x^{n} y^{m^{2}} x^{s}, x\right]$ for all $x, y \in R$, then R is commutative.

Proof. If $r=n+s$, then $x^{r}[x, y]= \pm x^{n+s}\left[x, y^{m}\right]= \pm x^{r}\left[x, y^{m}\right]$. Thus $x^{r}\left([x, y] \mp\left[x, y^{m}\right]\right)=0$ and by Lemma $2\left[x, y \mp y^{m}\right]=0$. Therefore, R is commutative by Theorem H.

Let $r>n+s$. Suppose that $q_{1}=p^{r+1}-p^{n+s+1}$ for a prime p. Then by (3) we have

$$
\begin{aligned}
q_{1} x^{r}[x, y] & =p^{r+1} x^{r}[x, y]-p^{n+s+1} x^{r}[x, y] \\
& =(p x)^{r}[(p x), y] \mp(p x)^{n}\left[(p x), y^{m}\right](p x)^{s}=0
\end{aligned}
$$

Similarly, if $n+s>r$, then for $q_{2}=p^{n+s+1}-p^{r+1}$, we get $q_{2} x^{r}[x, y]=0$. Suppose $q=q_{1}$ or q_{2}. Then $q[x, y]=0$ by Lemma 2. So $\left[x, y^{q}\right]=q y^{q-1}[x, y]=0$ for all $x, y \in R$. Therefore,

$$
\begin{equation*}
y^{q} \in Z(R) \text { for all } y \in R \tag{6}
\end{equation*}
$$

Further using (1) and (1^{\prime}), together with Lemma 1, and Lemma 8 several
times, we see that

$$
\begin{aligned}
\left(1-y^{(m-1)^{2}}\right)\left[x, y^{m}\right] x^{r} & =x^{r}\left[x, y^{m}\right]-y^{(m-1)^{2}}\left[x, y^{m}\right] x^{r} \\
& =x^{r}\left[x, y^{m}\right]-m y^{m-1} y^{(m-1)^{2}}[x, y] x^{r} \\
& =x^{r}\left[x, y^{m}\right]-m y^{m(m-1)} x^{r}[x, y] \\
& =x^{r}\left[x, y^{m}\right] \mp m y^{m(m-1)} x^{n}\left[x, y^{m}\right] x^{s} \\
& =x^{r}\left[x, y^{m}\right] \mp\left[x, y^{m^{2}}\right] x^{n+s} \\
& =x^{r}\left[x, y^{m}\right] \mp x^{n}\left[x, y^{m^{2}}\right] x^{s} \\
& =0
\end{aligned}
$$

This implies that $\left(1-y^{(m-1)^{2}}\right)\left[x, y^{m}\right] x^{r}=0$, that is, $\left(1-y^{(m-1)^{2}}\right)\left[x, y^{m}\right]$ $x^{r+n+s}=0$ So $\left(1-y^{(m-1)^{2}}\right)[x, y] x^{2 r}=0$. Using Lemma 2, we get $\left(1-y^{(m-1)^{2}}\right)$ $[x, y]=0$. But since $y^{q} \in Z(R)$, for all $y \in R$, that gives $\left[x, y-y^{q(m-1)^{2}+1}\right]=$ $\left(1-y^{q(m-1)^{2}}\right)[x, y]=0$ and therefore, R is commutative by Theorem H.

Proof of Theorem $\mathbb{1}$. If R is left s-unital satisfies (1), then R is s-unital by Lemma 7. In view of Proposition 1 of [12], we may assume R has unity 1. Therefore, R is commutative by Lemma 9 .

Corollary 1. Let $m>1, n, r$ and s be fixed non-negative integers. If \mathbb{R} is a left s-unital ring satisfies $\left[x^{r} y \pm x^{n} y^{m} x^{s}, x\right]=0$ for all $x, y \in \mathbb{R}$, then \mathbb{R} is commutative.

In preparation for proving Theorem 2, we prove the following lemmas:
Lemma 10. Let $m=m(x, y)>1, n=n(x, y), r=r(x, y)$ and $s=$ $s(x, y)$ be non-negative integers, and let R be a right s-unital ring. If R satisfies $\left[y x^{r} \pm x^{n} y^{m} y^{s}, x\right]=0$ for all $x, y \in R$, then R is s-unital.

Proof. If $x, y \in R$, then there exists $e=e(x, y) \in R$ such that $x e=x$ and $y e=y$. Further, there exist non-negative integers $m=m(x, e)>1, n=n(x, e)>$ $0, r=r(x, e)$, and $s=s(x, e)$ such that $x^{r+1}=e x^{r+1}$. Also, if $m_{1}=m(y, e)>1$, $n_{1}=n(y, e)>0, r_{1}=r(y, e)$ and $s_{1}=s(y, e)$, then we get $y^{r_{1}+1}=e y^{r_{1}+1}$. Thus
$e x^{r+r_{1}+2}=x^{r+r_{1}+2}$ and $e y^{r+r_{1}+2}=y^{r+r_{1}+2}$. Therefore, R is s-unital by Lemma 6. If $n=n(x, y)=0$, then $y=\left(e \mp\left(e y^{m-1}-y^{m-1}\right)\right) y \in R y$, for $m=m(e, y)>1$. Thus R is s-unital.

Lemma 11. Let $m=m(x, y)>1, n=n(x, y), r=r(x, y)$ and $s=s(x, y)$ be non-negative integers. If \mathbb{R} satisfies $\left[y x^{r} \pm x^{n} y^{m} x^{s}, x\right]=0$ for all $x, y \in \mathbb{R}$, then $C(\mathbb{R}) \subseteq N(\mathbb{R})$. Further, if \mathbb{R} has unity 1 , then $C(\mathbb{R}) \subseteq Z(\mathbb{R})$.

Proof. By our hypothesis, we obtain

$$
\begin{equation*}
[x, y] x^{r}= \pm x^{n}\left[x, y^{m}\right] x^{s} \text { for all } x, y \in \mathbb{R} \tag{11}
\end{equation*}
$$

If $x=e_{22}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ and $y=e_{12}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ in $(G F(p))_{2}$ for any prime p, then x and y fail to satisfy (11). Therefore, $C(\mathbb{R}) \subseteq N(\mathbb{R})$ by Lemma 4.

Following the proof of Lemma 8, we notice that for any positive integer k, (11) implies that

$$
\begin{equation*}
[x, y] x^{r_{1}+r_{2}+\cdots+r_{k}}=x^{n_{1}+n_{2}+\cdots+n_{k}}\left[x, y^{m_{1} m_{2} \cdots m_{k}}\right] x^{s_{1}+s_{2}+\cdots+s_{k}} \text { for all } x, y \in R \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
[x, y] x^{\tau_{1}+\tau_{2}+\cdots+r_{k}}=x^{n_{1}+n_{2}+\cdots+n_{k}}\left[y^{m_{1} m_{2} \cdots m_{k}}, x\right] x^{s_{1}+s_{2}+\cdots+s_{k}} \text { for all } x, y \in \mathbb{R} \tag{12}
\end{equation*}
$$

Also we can prove that $N(\mathbb{R}) \subseteq Z(R)$. Therefore,

$$
\begin{equation*}
C(R) \subseteq N(R) \subseteq Z(R) \tag{13}
\end{equation*}
$$

Proof of Theorem 2. In view of Lemma $10, R$ is s-unital. Hence we can assume that R has unity 1 as suggested by Proposition 1 of [12]. By (13), (2) and (2^{\prime}) are equivalent to

$$
\begin{aligned}
x^{r}[x, y] & = \pm x^{n}\left[x, y^{m}\right] x^{s} \text { for all } x, y \in R \\
x^{r}\left[x, y^{m}\right] & = \pm x^{n}\left[x, y^{m^{2}}\right] x^{s} \text { for all } x, y \in R
\end{aligned}
$$

Therefore, \mathbb{R} is commutative by Lemma 9 .
Corollary 2. Let $m>1, n, r$ and s be fixed non-negative integers. If \mathbb{R} is a. right s-unital ring which satisfies the polynomial identity $\left[y x^{r} \pm x^{n} y^{m} x^{s}, x\right]=$ 0 for all $x, y \in R$, then R is commutative.

Remark 2. Let $r=n=0$ (resp. $r=s=0$) in (1) (resp. (2)). Then

$$
\begin{equation*}
[x, y]= \pm\left[y^{m}, x\right] x^{s} \text { for all } x, y \in \mathbb{R} \tag{14}
\end{equation*}
$$

(resp.

$$
\begin{equation*}
[x, y]= \pm x^{n}\left[y^{m}, x\right] \text { for all } x, y \in \mathbb{R} \tag{15}
\end{equation*}
$$

If $m>1$ or $s \geq 1$ in (14) (resp. $m>1$ or $n \geq 1$ in (15)), then \mathbb{R} is a (Z $\mathbb{Z}, \bar{\beta}$)-ring in the sense of Streb ([19]), hence \boldsymbol{R} is commutative even if \boldsymbol{R} is not assumed to be a left (resp. right) s-unitall ring (ring with unity 1 (cf. Lemma $9)$).

Example 1. Let $R=\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\right\}$ be a subring of $(G F(2))_{2}$. It is easy to check that R is a right s-unital ring satisfying the polynomial identity $\left[x^{r} y \pm x^{n} y^{m} x^{s}, x\right]=0$ for each $x, y \in \mathbb{R}$, where $r>1$, $n>1, m=m(y)>1$, and $s>1$ are integers. Also, R is not a left s-unital ring. However, R is a non-commutative ring.

Example 2. Let $\mathbb{R}=\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\right\}$ be a subring of $(G F(2))_{2}$. It is easy to check that R is a left s-unital ring satisfying the polynomial identity $\left[y x^{r} \pm x^{n} y^{m} x^{s}, x\right]=0$ for all $x, y \in R$, where $r>1$, $n>1, m=m(y)>1$, and $t>1$ are integers. Also, R is not a right s-unital ring. However, R is a non-commutative ring.

Lemma 12. Let $m=m(x, y)>1, r=r(x, y)$ and $s=(x, y)$ be nonnegative integers. If R is a right s-unital ring satisfies $\left[x^{r} y \pm y^{m} x^{s}, x\right]$ for all $x, y \in R$, then R is s-unital.

Proof. Since R is right s-unital, then for any $x, y \in R$ there exists an element $e=e(x, y) \in R$ such that $x e=x$ and $y e=y$. Let $m=m(x, e)>1$, $r=r(x, e) \geq 1, s=s(x, e) \geq 0, m^{\prime}=m(y, e)>1, r^{\prime}=r(y, e) \geq 1$, and $s^{t}=s(y, e) \geq 0$. Then $e^{m m^{\prime}} x^{s+s^{\prime}+2}=x^{s+s^{\prime}+2}$, and $e^{m m^{\prime}} y^{s+s^{\prime}+2}=y^{s+s^{\prime}+2}$. By Lemma 6, R is s-unital. If $r=r(x, e)=0$, then $[e, y]=\left[e, y^{m}\right] e^{s}$ for $s=s(e, y) \geq 0$, and $m=m(e, y)>1$. So $y=\left(e \mp\left(e y^{m-1}-y^{m-1}\right)\right) y \in R y$. Therefore, R is an s-unital ring.

Theorem 3. Let $m=m(y)>1$ and r, s be non-negative integers. If R is a right s-unital ring satisfies $\left[x^{r} y \pm y^{m} x^{s}, x\right]=0=\left[x^{r} y^{m} \pm y^{m^{2}} x^{s}, x\right]$ for all $x, y \in$ R, then R is commutative.

Proof of Theorem 3. By Lemma 12, R is an s-unital ring. Hence, we can assume that R has unity 1 (see [12, Proposition 1]). Therefore, R is commutative by Lemma 9 .

Lemma 13. Let $m=m(x, y)>1, r=r(x, y)$ and $n=(x, y)$ be nonnegative integers. If R is a left s-unital ring satisfies $\left[y x^{r} \pm x^{n} y^{m}, x\right]$ for all $x, y \in R$, then R is s-unital.

Proof. Let R be a left s-unital ring. Then for any $x, y \in R$ there exists an element $e=e(x, y) \in R$ such that $e x=x$ and $e y=y$. Let $m=m(x, e)>1$, $r=r(x, e) \geq 1, n=n(x, e) \geq 0, m^{\prime}=m(y, e)>1, r^{\prime}=r(y, e) \geq 1$, and $n^{\prime}=n(y, e) \geq 0$. Then $x^{n+n^{\prime}+2}=x^{n+n^{\prime}+2} e^{m m^{\prime}}$, and $y^{n+n^{\prime}+2}=y^{n+n^{\prime}+2} e^{m m^{\prime}}$. By Lemma $6, R$ is s-unital. If $r=r(r, e)=0$, then $[e, y]= \pm e^{n}\left[e, y^{m}\right]$, for $n=n(e, y) \geq 0$, and $m=m(e, y)>1$. Thus $y=y\left(e \pm\left(y^{m-1}-y^{m-1} e\right)\right) \in y R$. Therefore, R is an s-unital ring.

Theorem 4. Let $m=m(y)>1$ and r, s be non-negative integers. If R is a left s-unital ring satisfies $\left[y x^{r} \pm x^{n} y^{m}, x\right]=0=\left[y^{m} x^{r} \pm x^{n} y^{m^{2}}, x\right]$ for all $x, y \in$ R, then R is commutative.

Proof of Theorem 4. By Lemma $13, R$ is an s-unital ring. Hence, we can assume that R has unity 1 by Proposition 1 of [12]. Therefore, R is commutative
by Lemma 9.
Corollary 3 ([10, Theorem 4]. Let R be a ring with unity 1 , and let $n \geq 1$ be a fixed integer, and suppose that for each $y \in R$, there exists an integer $m=m(y)>1$ such that $\left[x, x y-x^{n} y^{m}\right]=0$ for all $x \in R$. Then R is commutative.

Remark 3. The example of Grassman algebra rules out the possibility that $m=1$ in Lemma 9 and therefore, Theorems 1-4.

Theorem 3. Let r be a fixed non-negative integer. If R is a left (resp. right) s-unital ring satisfies

$$
\begin{equation*}
x^{r}[x, y]=0 \text { for all } x, y \in R \tag{16}
\end{equation*}
$$

(resp.

$$
\begin{equation*}
[x, y] x^{r}=0 \text { for all } x, y \in R \tag{17}
\end{equation*}
$$

then R is commutative.
Proof. Let $x, y \in R$. Then there exists $e=e(x, y) \in R$ (resp. $f=$ $f(x, y) \in R$) such that $e x=x$ and $e y=y$ (resp. $x f=x$ and $y f=y$). Thus $y=y e($ resp. $y=f y$). Similarly, $x=x e$ (resp. $x=f x$). Therefore, R is s-unital. By Proposition 1 of [12], we may assume that R has unity 1. Then $x^{r}[x, y]=0=(x+1)^{r}\left[x, y\right.$ (resp. $[x, y] x^{r}=0=(x+1)^{n}[x, y]$) for all $x, y \in R$. By Lemma 2, $[x, y]=0$ and thus R is commutative.

Remark 4. In case $r>0$ Theorem 3 need not be true for right (resp. left) s-unital ring. Indeed, we have the following:

Example 3. Let K be any field. Then the non-commutative ring $R=$ $\left(\begin{array}{ll}K & 0 \\ K & 0\end{array}\right)\left(\right.$ resp. $\left.R^{*}=\left(\begin{array}{ll}0 & K \\ 0 & K\end{array}\right)\right)$ has a right (resp. left) identity element and satisfies $x[x, y]=0$ (resp. $[x, y] x=0$) for all $x, y \in R$. Also R is not s-unital ring.

Example 4. If we drop the restriction that R with unity 1 in Lemma 9 , then the ring R may be badly non-commutative. Indeed, we let D_{k} be the ring
of all $k \times k$ matrices over a division ring D, and let

$$
A_{k}=\left\{\left(a_{i j}\right) \in D_{k} \mid a_{i j}=0, j \geq i\right\}
$$

Then A_{k} is a non-commutative nilpotent ring of index k, for any positive integer $k>2$. Clearly, A_{3} satisfies (1) and (2).

Example 5. Let F be a field. Define an algebra $R=A$ over F with a basis $\left\{f_{1}, f_{2}, f_{3}\right\}$ where $f_{1} f_{2}=f_{2}$ and all other products are zero. Then A is nilpotent of index 3 satisfies the identities (1) and (2). \mathbb{R} is not commutative.

In the remaining case we suppose that $m=1$ in (1) and (2).
Theorem 6. Let n, r and s be fixed non-negative integers, and let R be an s-unital ring satisfying

$$
\begin{equation*}
x^{r}[x, y]= \pm x^{n}[x, y] x^{s} \text { for all } x, y \in \mathbb{R} \tag{18}
\end{equation*}
$$

Then R is commutative in any of the following:
(i) R satisfies $[x, y]=-[x, y]$, and R is 2-torsion free.
(ii) $0=s=n<r$.
(iii) $0<s<r, n=0$ and R is r !-torsion free.
(iv) $0<n<r, s=0$ and R is r !-torsion free.
(v) $r=0$ and $n>0$ or $s>0$.

Proof. According to [12, Proposition 1], we may assume that \mathbb{R} has unity 1.
(i) By hypothesis, $2[x, y]=0$. Therefore, \mathbb{R} is commutative, since R is 2 torsion free.
(ii) The identity (18) becomes $x^{r}[x, y]= \pm[x, y]$ for all $x, y \in \mathbb{R}$. Therefore R is commutative by [6, Theorem].
(iii) Let $I_{0}^{r}(x)=x^{r}$ and $I_{0}^{s}(x)=x^{s}$. Then the polynomial identity (18) gives

$$
x^{r}[x, y]= \pm[x, y] x^{s}
$$

and hence

$$
I_{0}^{r}(x)[x, y]= \pm[x, y] I_{0}^{s}(x) \text { for all } x, y \in \mathbb{R}
$$

Replace x by $x+1$ in the last identity to get $I_{0}^{r}(x+1)[x, y]= \pm[x, y] I_{0}^{s}(x+1)$. By Lemma 5 , we have $I_{1}^{T}(x)[x, y]= \pm[y, x] I_{1}^{s}(x)$. Again, replace x by $x+1$ and apply Lemma, 5 to obtain $I_{2}^{r}(x)[x, y]= \pm[x, y] I_{2}^{s}(x)$. Now iterating the last identity r times, we finally get

$$
\begin{equation*}
I_{r}^{r}(x)[x, y]= \pm[x, y] I_{r}^{s}(x) \text { for all } x, y \in \mathbb{R} \tag{19}
\end{equation*}
$$

Since by Lemma $5, I_{r}^{r}(x)=r!$ and $I_{r}^{s}(x)=0$ for $r>s$, the identity (19) reduces to $r![x, y]=0$. As every commutator in R is $r!$-torsion free, we get $[x, y]=0$ for all $x, y \in R$. Therefore R is commutative.
(iv) Similar to the proof of case (iii).
(v) Without loss of generality suppose that $n>0$. Then we have

$$
\begin{equation*}
[x, y]= \pm x^{n}[x, y] x^{s} \text { for all } x, y \in R \tag{20}
\end{equation*}
$$

and thus, R is commutative by [19, Hauptsatz].
Remark 5. In Theorem 4 (i), (ii) and (v), \mathbb{R} is not necessarily to be an s-unital ring (ring with unity 1).

Theorem 7. Let r, n and s be fixed non-negative integers, and let R be an s-unital ring satisfying

$$
\begin{equation*}
[x, y] x^{r}= \pm x^{n}[x, y] x^{s} \quad \text { for all } x, y \in R \tag{21}
\end{equation*}
$$

Then R is commutative in any of the following:
(i) $0=s=n<r$.
(ii) $0<s<r, n=0$ and R is r !-torsion free.
(iii) $0<n<r, s=0$ and R is r !-torsion free.
(iv) $r=0$ and $n>0$ or $s>0$.

Theorem 8. Let r, n and s be fixed non-negative integers such that $r \neq$ $n+s$. Suppose that \mathbb{R} is an s-unital ring satisfying the polynomial identity (18).

Further, if every commutator in R is $\left|p^{r+1}-p^{n+s+1}\right|$-torsion free for an integer $p>1$, then R is commutative.

Proof. According to Proposition 1 of [12], we can assume that R has unity 1. Thus

$$
\begin{equation*}
(p x)^{r}[(p x), y]= \pm(p x)^{n}[(p x), y](p x)^{s} \text { for all } x, y \in \mathbb{R} \tag{22}
\end{equation*}
$$

By using (18) and (22), we obtain

$$
\begin{equation*}
\left|p^{r+1}-p^{n+s+1}\right| x^{r}[x, y]=0 \text { for all } x, y \in R \tag{23}
\end{equation*}
$$

By Lemma 2 and the hypothesis, (23) yields $[x, y]=0$ for all $x, y \in R$. Therefore R is commutative.

Theorem 9. Let r, n and s be fixed non-negative integers such that $r \neq$ $n+s$. Suppose that R is an s-unital ring satisfying the polynomial identity (21). Further, if every commutator in R is $\left|p^{r+1}-p^{n+s+1}\right|$-torsion free for an integer $p>1$, then R is commutative.

Next, we suppose that $r>0, n>0$ and $s>0$ in (18) and (21). Indeed we prove the following:

Theorem 10. Let r, n and s be fixed positive integers and let R be an s-unital ring satisfying the polynomial identity (18). If, further, $N(R) \subseteq Z(R)$, then R is commutative provided that $r \neq n+s$ and every commutator in R is r ! resp. $(n+s)$!-torsion free for $r>n+s$, resp. $r<n+s$.

Proof. It is easy to see that $C(R) \subseteq Z(R)$. Thus $x^{r}[x, y]= \pm[x, y] x^{n+s}$ for all $x, y \in R$. Therefore, R is commutative by Theorem 4 (iii).

Theorem 11. Let r, n and s be fixed positive integers and let R be an s-unital ring satisfying the polynomial identity (21). If, further, $N(R) \subseteq Z(R)$, then R is commutative provided that $r \neq n+s$ and every commutator in R is r ! (resp. $(n+s)$!)-torsion free for $r>n+s($ resp. $r<n+s)$.

Acknowledgment. The authors are indebted to the referee for the improvement of the final form of the paper.

References

[1] H. A. S. Abujabal, "Commutativity of one-sided s-unital rings," Resultate Math., 18 (1990), 189-196.
[2] H. A. S. Abujabal, "A commutativity theorem for left s-unital rings," Internat. J. Math. \& Math. Sci., 13 (1990), 769-774.
[3] H. A. S. Abujabal, "Some commutativity results for rings," :Beiträge Algebra Geom., 32 (1991), 141-151.
[4] H. A. S. Abujabal, "Some commutativity properties for rings," Univ u. Novom Sadu $Z b$. Rad. Prirod.-Mat. Fak. Ser. Mat., 21/22 (to appear).
[5] H. A. S. Abujabal, "Some commutativity results for one-sided s-unital rings," Bull. Soc. Math. Belg. Sér. B, 43 (1991), 123-133.
[6] H. A. S. Abujabal and M. S. Khan, "On commutativity theorems for rings," Internat. J. Math. \& Math. Sci., 13 (1990), 87-92.
[7] H. A. S. Abujabal and M. S. Khan, "A commutativity result for rings," Bull. Inst. Math. Acad. Sinica, 18 (1990), 333-337.
[8] H. A. S. Abujabal and M. A. Khan, "Commutativity of one-sided s-unital rings," Internat. J. Math. \& Math. Sci., (to appear).
[9] M. Ashraf, M. A. Quadri and A. Ali, "On commutativity of one-sided s-unital rings," Rad. Mat., 6 (1990), 111-117.
[10] H. E. Bell, M. A. Quadri and M. Ashraf, "Commutativity of rings with some commutator constraints," Rad. Mat., 5 (1989), 223-230.
[11] I. N. Herstein, "Two remarks on commutativity of rings," Canad. J. Math., 75 (1955), 411-412.
[12] Y. Hirano, Y. Kobayashi and H. Tominaga, "Some polynomial identities and commutativity of s-unital rings," Math. J. Okayama Univ., 24 (1982), 7-13.
[13] T. P. Kezlan, "A note on commutativity of semiprime PI-rings," Math. Japon., 27 (1982), 267-268.
[14] T. P. Kezlan, "On identities which are equivalent with commutativity," Math. Japon., 29 (1984), 135-139.
[15] W. K. Nicholson and A. Yaqub, "A commutativity theorem for rings and groups," Canad. Math. Bull., 22 (1979), 419-423.
[16] I. Mogami and M. Hongan, "Note on commutativity of rings," Math. J. Okayama Univ., 20 (1) (1978/79), 21-24.
[17] M. A. Quadri and M. A. Khan, "A commutativity theorem for left s-unital rings," Bull. Inst. Math. Acad. Sinica, 15 (1987), 301-305.
[18] M. A. Quadri, M. Ashraf, and A. Ali, "On a commutativity Theorem of Herstein," Rad. Mat., 5 (1989), 207-211.
[19] W. Streb, "Über einen Satz von Herstein und Nakayama," Rend. Sem. Mat. Univ. Padova, 64 (1981), 159-171.
[20] H. Tominaga, "On s-unital rings," Math. J. Okayama Univ., 18 (2) (1975/76), 117-134.
[21] .H. Tominaga, "On s-unital rings II," Math. J. Okayama Univ., 19 (2) (1976/77), 171-182.
[22] H. Tominaga and A. Yaqub, "A commutativity theorem for one-sided s-unital rings," Math. J. Okayama Univ., 26 (1984), 125-128.
[23] J. Tong, "On the commutativity of a ring with identity, " Canad. Math. Bull., 27 (1984), 456-460.

Department of Mathematics, Faculty of Science, King Abdul Aziz University, P. O. Box 31464, Jeddah 21497, Saudi Arabia.

