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APPLICATIONS OF THE KKM-PRINCIPLE TO PROLLA
TYPE THEOREMS

S. SESSA AND S. P. SINGH

Abstract. We prove some theroems of Prolla type [13] using a well
known KKM-principle of Ky Fan [6], so generalizing several results known
in the literature.

The following theorem due to Prolla [13] was proved using tools from ap-

proximation theory and the Bohnenblust and Karlin theorem [2]:

Theorem 1. Let X be a nonempty compact convezr subset of a normed
linear space E and g : X — X be a continuous almost affine onto map. Then

for each continuous map f: X — E, there ezists a point zg € X such that
lgzo — fzoll = inf{lle — fzoll : 2 € X}. (1)

Let X be nonempty convex subset of a normed linear space £ and g : X —

E. We recall that g is almost affine on X if

lgOhz) + (1= Nz2) = yll < A llgz =yl + (1 = A) - [lg=z2 = yl

for all z1,z2 € X, A€ [0,1] and y € E.
The following result, due to Ky Fan [6], extends known results on the KKM-

principle.

Theorem 2. Let Y be a nonempty convez subset of a Hausdorff topological

vector space E and X be a nonempty subset of Y. For each z € X, let Fz be a
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relatively closed subset of Y such that F is a KKM-map. If there is a nonempty
subset Xo of X such that the intersection B = NzeX, Fz is compact and Xg 18

contained in a compact convez subset S of Y, then Nzex Fz # ¢.

Remark 1. As noted by Lin [11], the set B is necessarily nonempty.
A very good source of reference on KKM-Principle is due to Granas [7] where
several applications are given. The following result due to Allen [1] follows from

Theorem 2 as a Corollary.

Theorem 3. Let X be a nonempty convez subset of a Hausdorff topological
vector space. Let ® : X xX — R bea real valued function satisfying the following
properties:

(i) For each fized z € X, ®(z,y) is a lower semicontinuous function of y on

X,

(ii) For each fired y € X, ®(z,y) is a quasiconcave function of z on X,
(iii) @(z,z) <0 forallz € X,
(iv) X has a nonempty compact convexr subset Xo such that the set B = {y €

X : ®(z,y) <0 for all z € Xo} is compact.

Then there ezists some yo € X such that ®(z,y0) < 0 for all z € X.

We recall that a real function f on a convex set X is quasiconcave if the
{z € X : f(z) >t} is convex for all t € R and it is lower semicontinuous if the
set {z € X : f(z) <t} is closed in X for all t € R.

Remark 2. As noted by Shih and Tan [14], the coercive condition (iv)
is a unification of the two coercive conditions given by Allen [1] and Brezis,
Nirenberg and Stampacchia [3]. It is easily seen that (ii) and (iii) imply that B
is nonempty. '

We prove the following;:

Theorem 4. Let X be a nonempty compact convez of a normed linear space

E and let g : X — E be a continuous map such that

(a) g(X) is convez and g~'(y) is convez for every y € 9(X).
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Then for each. continuous map f: X — E, either there exists some g € X

such that gzo = fze or for any y € g9(X):

0 < |lgzo — fzoll £ lly = faoll-

Remark 3. We note that the almost affine map g : X — X of Theorem 1
satisfies condition (). Indeed, let y € g(X) = X and 21,22 € g '(y). Then we
have for each X € [0,1]:

lgOzs + (1 = Nz2) = yll <A -llgzs =yl + (1= A) - llgz2 — vl =0,

ie. A\z1+ (1 —A)z2 € g7 (y). Hence g~ 1(y) is convex for any y € g(X). This
implies that Theorem 1 follows from Theorem 4.

We need the following theorem, which was established by Komiya [10] com-
bining Lemma 1 of Ha [8] and Prop. 2 of Browder [4]:

Theorem 5. Let A be a nonempty conver subset of a Hausdorff linear
topological space E and let B be a nonempty compact convez subset of a Hausdorff
linear topological space F'. Let S : A — 2B be an upper semicontinuous set-valued
mapping such that S(a) is a nonempty closed convez subset of B for each a € A
and T : B — 24 be a set-valued mapping such that T(b) is a nonempty convez
subset of A and T'(a) = {b € B : a € T(b)} is open in B for each a € A.
Then there ezist a point ag € A and a point by € B such that ag € T'(bo) and
bo € S(ap).

We recall that a set-valued mapping 5 : A — 2B is upper semicontinuous if

S71(C)={a€ A:5(a)NC # ¢} is closed in A for every closed subset C of B.

Proof of theorem 4. Assuming the negation of the second alternative, we
have (b) for each z € X such that ||gz - fz|| > 0, there exists a point y € g(X)
such that

lgz = fzll > lly = fz||-

Let gz # fz for any z € X. Define a set-valued mapping 7' : X — 29(X) by
setting T(z) = {y € g(X) : llgz — fzll > {ly — f||} for any z € X.
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Since g(X) is convex and (b) holds, T(z) is a nonempty convex subset of
g(X). Further, X\T '(y) = {z € X : llgz — fz|| < |ly— fel|} is closed in X since
f and g are continuous, so T-(y) is open in X for any y € g(X). Now, define a
set-valued mapping S : g(X) — 92X by setting S(y) = g~ '(y) foreach y € g(X).
Since g is closed and S7'(C) = g(C) for any closed subset C' of X, we have that
$ is an upper semicontinuous mapping such that, by (a), S(y) is a nonempty
closed convex subset of X for each y € g(X). Using Theorem 5 with A = g(X)
and B = X, there exists two points yo € g(X) and zo € X such that yo € Tzo
and zo € g~ 1(y0). This implies that ||gzo — fzol| > llvo — Fzoll = llgzo — fzoll,

a contradiction.

Remark 4. It is clear that the above proof can be adopted to prove the
more general Theorem 3 of Ha [9], of which Theorem 4 is a special case.
Now we prove some results where the compactness on the referential set X

is relaxed. In the sequel, w stands for the weak topology.

Theorem 6. Let X be a nonempty convez subset of a normed linear space
E. Let f : (X,w) — (E,| ||) be a sequentially strongly continuous map and
g:(X,w) — (E,w) be a sequentially weakly continuous map such that
(a1) g7 *([y, 2]) is convez for y,z € g9(X).
(b1) Moreover, let Xo be a nonempty weakly compact convez subset of X such
that the set B = {y € X :|lgy — Jyll < llgz - fyl| for all z € Xo} is weakly

compact. Then there exisls a point o € B such that

lgzo — froll = inf{llgz — faoll : = € X}. (2)
If g(X) = X, then (1) is satisfied.
Proof. Define a set-valued mapping F : X — 2% by setting F(z) = {y €
X :llgy — fyll € llgz — fyl|} for each z € X. Fz is weakly closed. Indeed, let

{yo} be in Fz converging weakly to y. Then gya — fYo — gy — fy weakly and
gz — fys — gz — fy strongly. Now,

lgy — fyll < liminf lgye — fyoll < liminf llgz — fyall = llgz = foll



SOME THEOREMS OF PROLLA TYPE 283

i.e. y € Fz. We show that Fis a KKM-map, i.e. the convex hull co Sy i vy
£, } of every finite subset {z1,%2,...,2n} of X is contained in the corresponding
')

union |J Fz;:. Indeed, let z € co{z1,...,2n} and assume that z ¢ Fz; for any
i=1

i=1,...,n. Then z; ¢ F71(2), i.e. z; € X\F'(2)={z€X:|gz- fzll >
llgz — lel} forany i = 1,...,n. As proved in Theorem 1 of Lin [12], X'\ F~(z)
is convex. Indeed, let 21,29 € X \ F71(2) and let g2, = w1, g22 = uq. Since
g~ ([u1,us]) is convex by (a1), we have Az + (1= Az € g7 ([ur,uz]) for A €
[0,1). Thus g(Azy + (1= A)z2) € € [uy,us], i.e. for any X € [0,1] there exists hy €
[0,1] such that g(Az1 +(1—A)z2) = haua + (1—hA)ug = hag(z1)+(1- - hy)g(22).
Then

lg(Az1 + (1= Nz2) = fzll = ha-llgzr — f2ll + (1 - ha) - llgzz — 21l < llgz — £]I

Plids snenms et he $ (1=K € X Fl42) for A € [0,3], L X'\ F~{z)
is convex. Then co {z1,...,2n} C X \ F7}(2),ie. 2 ¢ F~1(z), a contradiction
to the fact z € F(z), i.e. © € F~'(z) for each z € X. Since (by) holds, all
the hypothesis of Theorem 2 (with X =Y and 5 = Xo) are satisfied in (E, w).
Then Ngex F(z) # ¢ and a point zo of this intersection, contained in B, verifies

our conclusion.

Remark 5. Condition (a;) is the same condition (c') used by Ha [9] and
Lin [12].

Corollary 1. Let X be a nonempty weakly compact conver subset of a
normed linear space E. Let f,g satisfy conditions of Theorem 6 including (ay).

Then there ezists a point o € X satisfying (2).

Proof. It suffices to observe that condition (1) of Theorem 6 is fulfilled in

this case by taking any nonempty weakly closed convex subset X (in particular,
X itself) of X.

Corollary 2. Let X be a nonemply compact convez subset of a normed
linear space E, let f,g : X — E be continuous and g satisfies condition (ai)-

Then there ezists a point xo € X such that (2) holds.
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Proof. In this case, (X,w) = (X,]| ||) since (X,]| ||) is strongly compact
and (X, w) is separated. Consequently, the concepts of continuity and sequential
continuity coincide since X is metrizable. Thus the thesis follows from Corollary

: 1

Remark 6. Corollary 2 is also a corollary of Theorem 3 of Ha [9] (with
condition (a;)) by taking E = F as normed linear space. Corollary 2 is also a
corollary of Theorem 2 of Lin [12] by assuming E = F'. Note that Lin [12] derived
his Theorem 1 (which is Theorem 3 of Ha [9] under condition (a;)) directly by
the famous Lemma 1 of Fan [5] and his Theorem 2 from his Lemma [11], which
includes Lemma 1 of Fan [5]. Following the lines of proof of Theorem 6, it is

easy to derive Theorem 2 of Lin [12] directly from Theorem 2.

Remark 7. As pointed out by Lin [11], [12], condition (by) of Theorem 6
can be replaced by the following condition [6, Theorem 7], [15]:

(b1) Let X¢o be a nonemply weakly compact convex subset of X and K be a
nonempty weakly compact subset of X such that for every y € X \ K, there
exists a point z € X for which [lgy — fy|l > |lgz = fyl||. The conclusion of

Theorem 6 will be: there exists a point zy € K such that (2) holds.

We state and prove the following using Theorem 3.

Theorem 7. Let X be a nonempty convez subset of a normed linear space
E, f:(X,w)— (E|| ) be sequentially strongly continuous and g : (X, w) —
(E,w) be sequentially weakly continuous and almost affine on X. Moreover,
condition (by) holds. Then there exists a point zo € B such that (2) holds. If
g(X) = X, then (1) is satisfied.

Proof. Define ® : X x X — R by ®(z,y) = llgy — fyll = llgz — fyl| for
all z,y € X. For each z € X, then ®(z,y) is a weakly lower semicontinuous
function of y on X(cfr. proof of Theorem 6). For any y € X and t € R, let
Ciy) ={z € X : ®(z,y) > t}. We show that this set is convex. If 2;,22 € Ci(y)
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and X € [0,1], we have

®(Azy + (1 = A)z2,9)
= gy = fyll = llg(Az1 + (1 = A)z2 — fyll
> llgy = full = A-llgz1 — full = (1 = ) - llgz2 = fyl|
> llgy = Full + At = llgy — Fyll) + (1 = M)t = llgy — fyl)
= t7

since g is almost affine. All the conditions of Theorem 3 are satisfied and the

thesis follows.

Remark 8. Of course, condition (b;) can be replaced in Theorem 7 by

condition (b)).

Corollary 3. Let X be a nonempty weakly compact conver of a normed
linear space E. Let f,g be as in Theorem 7 and g(X) = X. Then there ezxists a
point zo € X satisfying (1).

Remark 9. Theorem 1 is clearly a consequence of Corollary 3. If g is the
identity function of X, Theorem 6 or Theorem 7 give Theorem 3 of Singh, Sehgal

and Smithson [15].

Remark 10. It is evident that Theorem 6 and Theorem 7 can be established
in the more general context of a locally convex Hausdorff topological vector space
E. In this case,las observed by Lin [12], conditions (by) and (b7) are replaced
respectively by the following:

(¢c;) For any continuous seminorm p on E, there exists a nonempty weakly
compact convex subset Xo(p) of X such that the set B(p) = {y € X :
p(gy — fy) < p(gz — fy) forall z € Xo(p)} is weakly compact.

(c}) For any continuous seminorm p on E, there exists a nonempty weakly com-
pact convex subset Xo(p) of X and a nonempty weakly compact subset K (p)

such that for every y € X \ K(p), there exists a point = € Xo(p) for which
p(gy — fy) < p(gz - fy)-
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Of course, in Theorem 7 one defines that g is almost affine on X for any
continuous seminorm p, A € [0,1], 21,72 € X,y € E,itis p(g(Az1+(1—A)z2) —
v) < Ap(gz1 — v) + (1 — Mp(gz2 — )

In this case, the proof of Theorem 6 and 7 is deduced via the Hahn-Banach
theorem (cfr. proof of Lemma 1 of [15]) and the conclusion will be:

Fither there exists a point zo € X such that gzo = fzo or there exists a
continuous seminorm p on F and a point zo € B(p) (resp. o € K(p)), if (1)
(resp. (c})) is assumed, such that 0 < p(gzo — fzo) < p(y— fzo) for ally € g(X).

In this way, of course, for g = identity function on X, one deduces Theorem

1 of [15].
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