APPLICATIONS OF THE KKM-PRINCIPLE TO PROLLA TYPE THEOREMS

S. SESSA AND S. P. SINGH

Abstract. We prove some theroems of Prolla type [13] using a well known KKM-principle of Ky Fan [6], so generalizing several results known in the literature.

The following theorem due to Prolla [13] was proved using tools from approximation theory and the Bohnenblust and Karlin theorem [2]:

Theorem 1. Let X be a nonempty compact convex subset of a normed linear space E and $g: X \to X$ be a continuous almost affine onto map. Then for each continuous map $f: X \to E$, there exists a point $x_0 \in X$ such that

$$||gx_0 - fx_0|| = \inf\{||x - fx_0|| : x \in X\}.$$
 (1)

Let X be nonempty convex subset of a normed linear space E and $g: X \to E$. We recall that g is almost affine on X if

$$||g(\lambda x_1) + (1 - \lambda)x_2) - y|| \le \lambda \cdot ||gx_1 - y|| + (1 - \lambda) \cdot ||gx_2 - y||$$

for all $x_1, x_2 \in X$, $\lambda \in [0, 1]$ and $y \in E$.

The following result, due to Ky Fan [6], extends known results on the KKMprinciple.

Theorem 2. Let Y be a nonempty convex subset of a Hausdorff topological vector space E and X be a nonempty subset of Y. For each $x \in X$, let Fx be a

Received May 1, 1990.

relatively closed subset of Y such that F is a KKM-map. If there is a nonempty subset X_0 of X such that the intersection $B = \bigcap_{x \in X_0} Fx$ is compact and X_0 is contained in a compact convex subset S of Y, then $\bigcap_{x \in X} Fx \neq \phi$.

Remark 1. As noted by Lin [11], the set B is necessarily nonempty.

A very good source of reference on KKM-Principle is due to Granas [7] where several applications are given. The following result due to Allen [1] follows from Theorem 2 as a Corollary.

Theorem 3. Let X be a nonempty convex subset of a Hausdorff topological vector space. Let $\Phi : X \times X \rightarrow R$ be a real valued function satisfying the following properties:

- (i) For each fixed $x \in X$, $\Phi(x, y)$ is a lower semicontinuous function of y on X,
- (ii) For each fixed $y \in X$, $\Phi(x, y)$ is a quasiconcave function of x on X,
- (iii) $\Phi(x,x) \leq 0$ for all $x \in X$,
- (iv) X has a nonempty compact convex subset X₀ such that the set B = {y ∈ X : Φ(x, y) ≤ 0 for all x ∈ X₀} is compact.
 Then there exists some y₀ ∈ X such that Φ(x, y₀) ≤ 0 for all x ∈ X.

We recall that a real function f on a convex set X is quasiconcave if the $\{x \in X : f(x) > t\}$ is convex for all $t \in R$ and it is lower semicontinuous if the set $\{x \in X : f(x) \le t\}$ is closed in X for all $t \in R$.

Remark 2. As noted by Shih and Tan [14], the coercive condition (iv) is a unification of the two coercive conditions given by Allen [1] and Brezis, Nirenberg and Stampacchia [3]. It is easily seen that (ii) and (iii) imply that B is nonempty.

We prove the following:

Theorem 4. Let X be a nonempty compact convex of a normed linear space E and let $g: X \to E$ be a continuous map such that

(a) g(X) is convex and $g^{-1}(y)$ is convex for every $y \in g(X)$.

Then for each continuous map $f: X \to E$, either there exists some $x_0 \in X$ such that $gx_0 = fx_0$ or for any $y \in g(X)$:

$$0 < ||gx_0 - fx_0|| \leq ||y - fx_0||.$$

Remark 3. We note that the almost affine map $g: X \to X$ of Theorem 1 satisfies condition (a). Indeed, let $y \in g(X) = X$ and $x_1, x_2 \in g^{-1}(y)$. Then we have for each $\lambda \in [0, 1]$:

$$||g(\lambda x_1 + (1 - \lambda)x_2) - y|| \le \lambda \cdot ||gx_1 - y|| + (1 - \lambda) \cdot ||gx_2 - y|| = 0,$$

i.e. $\lambda x_1 + (1 - \lambda) x_2 \in g^{-1}(y)$. Hence $g^{-1}(y)$ is convex for any $y \in g(X)$. This implies that Theorem 1 follows from Theorem 4.

We need the following theorem, which was established by Komiya [10] combining Lemma 1 of Ha [8] and Prop. 2 of Browder [4]:

Theorem 5. Let A be a nonempty convex subset of a Hausdorff linear topological space E and let B be a nonempty compact convex subset of a Hausdorff linear topological space F. Let $S : A \to 2^B$ be an upper semicontinuous set-valued mapping such that S(a) is a nonempty closed convex subset of B for each $a \in A$ and $T : B \to 2^A$ be a set-valued mapping such that T(b) is a nonempty convex subset of A and $T^{-1}(a) = \{b \in B : a \in T(b)\}$ is open in B for each $a \in A$. Then there exist a point $a_0 \in A$ and a point $b_0 \in B$ such that $a_0 \in T(b_0)$ and $b_0 \in S(a_0)$.

We recall that a set-valued mapping $S: A \to 2^B$ is upper semicontinuous if $S^{-1}(C) = \{a \in A : S(a) \cap C \neq \phi\}$ is closed in A for every closed subset C of B.

Proof of theorem 4. Assuming the negation of the second alternative, we have (b) for each $x \in X$ such that ||gx - fx|| > 0, there exists a point $y \in g(X)$ such that

$$||gx - fx|| > ||y - fx||.$$

Let $gx \neq fx$ for any $x \in X$. Define a set-valued mapping $T: X \to 2^{g(X)}$ by setting $T(x) = \{y \in g(X) : ||gx - fx|| > ||y - fx||\}$ for any $x \in X$. Since g(X) is convex and (b) holds, T(x) is a nonempty convex subset of g(X). Further, $X \setminus T^{-1}(y) = \{x \in X : ||gx - fx|| \le ||y - fx||\}$ is closed in X since f and g are continuous, so $T^{-1}(y)$ is open in X for any $y \in g(X)$. Now, define a set-valued mapping $S : g(X) \to 2^X$ by setting $S(y) = g^{-1}(y)$ for each $y \in g(X)$. Since g is closed and $S^{-1}(C) = g(C)$ for any closed subset C of X, we have that S is an upper semicontinuous mapping such that, by (a), S(y) is a nonempty closed convex subset of X for each $y \in g(X)$. Using Theorem 5 with A = g(X) and B = X, there exists two points $y_0 \in g(X)$ and $x_0 \in X$ such that $y_0 \in Tx_0$ and $x_0 \in g^{-1}(y_0)$. This implies that $||gx_0 - fx_0|| > ||y_0 - fx_0|| = ||gx_0 - fx_0||$, a contradiction.

Remark 4. It is clear that the above proof can be adopted to prove the more general Theorem 3 of Ha [9], of which Theorem 4 is a special case.

Now we prove some results where the compactness on the referential set X is relaxed. In the sequel, w stands for the weak topology.

Theorem 6. Let X be a nonempty convex subset of a normed linear space E. Let $f : (X, w) \to (E, || ||)$ be a sequentially strongly continuous map and $g : (X, w) \to (E, w)$ be a sequentially weakly continuous map such that $(a_1) g^{-1}([y, z])$ is convex for $y, z \in g(X)$.

(b1) Moreover, let X_0 be a nonempty weakly compact convex subset of X such that the set $B = \{y \in X : ||gy - fy|| \le ||gx - fy||$ for all $x \in X_0\}$ is weakly compact. Then there exists a point $x_0 \in B$ such that

$$||gx_0 - fx_0|| = \inf\{||gx - fx_0|| : x \in X\}.$$
 (2)

If g(X) = X, then (1) is satisfied.

Proof. Define a set-valued mapping $F: X \to 2^X$ by setting $F(x) = \{y \in X : ||gy - fy|| \le ||gx - fy||\}$ for each $x \in X$. Fx is weakly closed. Indeed, let $\{y_{\alpha}\}$ be in Fx converging weakly to y. Then $gy_{\alpha} - fy_{\alpha} \to gy - fy$ weakly and $gx - fy_{\alpha} \to gx - fy$ strongly. Now,

 $||gy - fy|| \le \liminf_{\alpha} ||gy_{\alpha} - fy_{\alpha}|| \le \liminf_{\alpha} ||gx - fy_{\alpha}|| = ||gx - fy||,$

i.e. $y \in Fx$. We show that F is a KKM-map, i.e. the convex hull co $\{x_1, x_2, \ldots, x_n\}$ of every finite subset $\{x_1, x_2, \ldots, x_n\}$ of X is contained in the corresponding union $\bigcup_{i=1}^n Fx_i$. Indeed, let $z \in co\{x_1, \ldots, x_n\}$ and assume that $z \notin Fx_i$ for any $i = 1, \ldots, n$. Then $x_i \notin F^{-1}(z)$, i.e. $x_i \in X \setminus F^{-1}(z) = \{x \in X : ||gz - fz|| > ||gx - fz||\}$ for any $i = 1, \ldots, n$. As proved in Theorem 1 of Lin [12], $X \setminus F^{-1}(z)$ is convex. Indeed, let $z_1, z_2 \in X \setminus F^{-1}(z)$ and let $gz_1 = u_1, gz_2 = u_2$. Since $g^{-1}([u_1, u_2])$ is convex by (a_1) , we have $\lambda z_1 + (1 - \lambda)z_2 \in g^{-1}([u_1, u_2])$ for $\lambda \in [0, 1]$. Thus $g(\lambda z_1 + (1 - \lambda)z_2) \in [u_1, u_2]$, i.e. for any $\lambda \in [0, 1]$ there exists $h_\lambda \in [0, 1]$ such that $g(\lambda z_1 + (1 - \lambda)z_2) = h_\lambda u_1 + (1 - h\lambda)u_2 = h_\lambda g(z_1) + (1 - h_\lambda)g(z_2)$. Then

$$||g(\lambda z_1 + (1-\lambda)z_2) - fz|| = h_{\lambda} \cdot ||gz_1 - fz|| + (1-h_{\lambda}) \cdot ||gz_2 - fz|| < ||gz - fz||.$$

This means that $\lambda z_1 + (1 - \lambda)z_2 \in X \setminus F^{-1}(z)$ for $\lambda \in [0, 1]$, i.e. $X \setminus F^{-1}(z)$ is convex. Then co $\{x_1, \ldots, x_n\} \subset X \setminus F^{-1}(z)$, i.e. $z \notin F^{-1}(z)$, a contradiction to the fact $x \in F(x)$, i.e. $x \in F^{-1}(x)$ for each $x \in X$. Since (b_1) holds, all the hypothesis of Theorem 2 (with X = Y and $S = X_0$) are satisfied in (E, w). Then $\bigcap_{x \in X} F(x) \neq \phi$ and a point x_0 of this intersection, contained in B, verifies our conclusion.

Remark 5. Condition (a_1) is the same condition (c') used by Ha [9] and Lin [12].

Corollary 1. Let X be a nonempty weakly compact convex subset of a normed linear space E. Let f, g satisfy conditions of Theorem 6 including (a_1) . Then there exists a point $x_0 \in X$ satisfying (2).

Proof. It suffices to observe that condition (b_1) of Theorem 6 is fulfilled in this case by taking any nonempty weakly closed convex subset X_0 (in particular, X itself) of X.

Corollary 2. Let X be a nonempty compact convex subset of a normed linear space E, let $f,g: X \to E$ be continuous and g satisfies condition (a_1) . Then there exists a point $x_0 \in X$ such that (2) holds.

Proof. In this case, $(X, w) \equiv (X, || ||)$ since (X, || ||) is strongly compact and (X, w) is separated. Consequently, the concepts of continuity and sequential continuity coincide since X is metrizable. Thus the thesis follows from Corollary 1.

Remark 6. Corollary 2 is also a corollary of Theorem 3 of Ha [9] (with condition (a_1)) by taking E = F as normed linear space. Corollary 2 is also a corollary of Theorem 2 of Lin [12] by assuming E = F. Note that Lin [12] derived his Theorem 1 (which is Theorem 3 of Ha [9] under condition (a_1)) directly by the famous Lemma 1 of Fan [5] and his Theorem 2 from his Lemma [11], which includes Lemma 1 of Fan [5]. Following the lines of proof of Theorem 6, it is easy to derive Theorem 2 of Lin [12] directly from Theorem 2.

Remark 7. As pointed out by Lin [11], [12], condition (b_1) of Theorem 6 can be replaced by the following condition [6, Theorem 7], [15]:

 (b'_1) Let X_0 be a nonempty weakly compact convex subset of X and K be a nonempty weakly compact subset of X such that for every $y \in X \setminus K$, there exists a point $x \in X_0$ for which ||gy - fy|| > ||gx - fy||. The conclusion of Theorem 6 will be: there exists a point $x_0 \in K$ such that (2) holds.

We state and prove the following using Theorem 3.

Theorem 7. Let X be a nonempty convex subset of a normed linear space $E, f: (X, w) \rightarrow (E, || ||)$ be sequentially strongly continuous and $g: (X, w) \rightarrow (E, w)$ be sequentially weakly continuous and almost affine on X. Moreover, condition (b_1) holds. Then there exists a point $x_0 \in B$ such that (2) holds. If g(X) = X, then (1) is satisfied.

Proof. Define $\Phi : X \times X \to R$ by $\Phi(x,y) = ||gy - fy|| - ||gx - fy||$ for all $x, y \in X$. For each $x \in X$, then $\Phi(x, y)$ is a weakly lower semicontinuous function of y on X(cfr. proof of Theorem 6). For any $y \in X$ and $t \in R$, let $C_t(y) = \{x \in X : \Phi(x,y) > t\}$. We show that this set is convex. If $x_1, x_2 \in C_t(y)$

284

and $\lambda \in [0, 1]$, we have

$$\begin{split} \Phi(\lambda x_1 + (1 - \lambda)x_2, y) \\ &= ||gy - fy|| - ||g(\lambda x_1 + (1 - \lambda)x_2 - fy|| \\ &\geq ||gy - fy|| - \lambda \cdot ||gx_1 - fy|| - (1 - \lambda) \cdot ||gx_2 - fy|| \\ &> ||gy - fy|| + \lambda(t - ||gy - fy||) + (1 - \lambda)(t - ||gy - fy||) \\ &= t, \end{split}$$

since g is almost affine. All the conditions of Theorem 3 are satisfied and the thesis follows.

Remark 8. Of course, condition (b_1) can be replaced in Theorem 7 by condition (b'_1) .

Corollary 3. Let X be a nonempty weakly compact convex of a normed linear space E. Let f,g be as in Theorem 7 and g(X) = X. Then there exists a point $x_0 \in X$ satisfying (1).

Remark 9. Theorem 1 is clearly a consequence of Corollary 3. If g is the identity function of X, Theorem 6 or Theorem 7 give Theorem 3 of Singh, Sehgal and Smithson [15].

Remark 10. It is evident that Theorem 6 and Theorem 7 can be established in the more general context of a locally convex Hausdorff topological vector space E. In this case, as observed by Lin [12], conditions (b_1) and (b'_1) are replaced respectively by the following:

- (c₁) For any continuous seminorm p on E, there exists a nonempty weakly compact convex subset $X_0(p)$ of X such that the set $B(p) = \{y \in X :$ $p(gy - fy) \le p(gx - fy)$ for all $x \in X_0(p)\}$ is weakly compact.
- (c'_1) For any continuous seminorm p on E, there exists a nonempty weakly compact convex subset $X_0(p)$ of X and a nonempty weakly compact subset K(p)such that for every $y \in X \setminus K(p)$, there exists a point $x \in X_0(p)$ for which $p(gy - fy) \leq p(gx - fy)$.

Of course, in Theorem 7 one defines that g is almost affine on X for any continuous seminorm $p, \lambda \in [0,1], x_1, x_2 \in X, y \in E$, it is $p(g(\lambda x_1 + (1-\lambda)x_2) - y) \leq \lambda p(gx_1 - y) + (1-\lambda)p(gx_2 - y)$.

In this case, the proof of Theorem 6 and 7 is deduced via the Hahn-Banach theorem (cfr. proof of Lemma 1 of [15]) and the conclusion will be:

Either there exists a point $x_0 \in X$ such that $gx_0 = fx_0$ or there exists a continuous seminorm p on F and a point $x_0 \in B(p)$ (resp. $x_0 \in K(p)$), if (c_1) (resp. (c'_1)) is assumed, such that $0 < p(gx_0 - fx_0) \le p(y - fx_0)$ for all $y \in g(X)$.

In this way, of course, for g = identity function on X, one deduces Theorem 1 of [15].

Acknowledgement

Thanks are due to Profs. Lin and Tan for providing with reprints of their papers.

References

- G. Allen, "Variational inequalities, Complementarity problems and duality theorems", J. Math. Anal. Appl., 58 (1977) 1-10.
- [2] H. F. Bohnenblust and S. Karlin, "On a theorem of Ville, in: Contributions to the Theory of Games", H. W. Kuhn and A. W. Tucker, Eds., Vol. 1, Ann. Math. Studies 24, Princeton Univ. Press (1950), 155-160.
- [3] H. Brezis, L. Nirenberg and G. Stampacchia, "A remark on Ky Fan's minimax principle", Boll. Un. Mat. Ital., 6 (1972), 293-300.
- [4] F. Browder, "Coincidence theorems, minimax theorems and variational inequalities", Contemporary Math., 26 (1984), 67-80.
- [5] K. Fan, "Extensions of two fixed point theorems of F. E. Browder", Math. Z., 112 (1969), 234-240.
- [6] K. Fan, "Some properties of convex sets related to fixed point theorems", Math. Ann., 266 (1984), 519-537.
- [7] A. Granas, "KKM-maps and their applications to nonlinear problems", The Scottish Book, Ed. R. D. Mauldin, Birkhauser, (1982), 45-61.
- [8] C. W. Ha, "Minimax and fixed point theorems", Math. Ann., 248 (1980), 73-77.
- [9] C. W. Ha, "Extensions of two fixed point theorems of Ky Fan", Math. Z., 190 (1985), 13-16.
- [10] H. Komiya, "Coincidence theorem and saddle point theorem", Proc. Amer. Math. Soc., 96 (1986), 599-602.

- [11] T. C. Lin, "Convex sets, fixed points, variational and minimax inequalities", Bull. Austral. Math. Soc., 34 (1986), 107-117.
- [12] T. C. Lin, "Coincidence and fixed points", to appear.
- [13] J. B. Prolla, "Fixed point theorems for set-valued mappings and existence of best approximants", Numer Funct. Anal. and Optimiz., 5 (1982-83), 449-455.
- [14] M. H. Shih and K. K. Tan, "Covering theorems of convex sets to fixed point theorems, in: Nonlinear and Convex Analysis (Bor-Luh Lin and S. Simons, Eds.) Lecture Notes in Pure and Appl. Math. 107, Marcel Dekker (1987), 235-244.
- [15] V. M. Sehgal, S. P. Singh and R. E. Smithson, "Nearest points and some fixed point theorems for weakly compact sets", J. Math. Anal. Appl., 128 (1987), 108-111.

Università di Napoli, Facoltà di Architettura, Istituto Matematico, Via Monteoliveto, 3, 80134 Napoli, ITALY.

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NFLD, CANADA A1C 5S7.