TAMKANG JOURNAL OF MATHEMATICS
Volume 23, Number 4, Winter 1992

COINCIDENCE THEOREMS AND MATCHING THEOREMS

HWEIL-MEI KO AND KOK-KEONG TAN(*)

Abstract. Two coincidence theorems of Ky Fan are first slightly gen-
eralized. As applications, new matching theorems are obtained, one
of which has several equivalent forms, including the classical Knaster-
Kuratowski-Mazurkiewicz theorem.

1. Introduction

For a non-empty set X, we shall denote by 2% the collection of all non-
empty subsets of X. If X is a topological space and A C X, we shall denote by
A the closure of A and by 9A the boundary of A. If E is a topological vector
space, we shall denote by E' the vector space of all continuous linear functionals
on E and by (w,z) for w € E' and ¢ € E the pairing between E’ and E.
If A C E, co(A) (respectively, co(A)) denotes the convex (respectively, closed
convex) hull of A. Suppose X C E is non-empty; then a map f: X +28 s
said to be upper hemi-continuous ([1, p.68]; see also (2, p.133]) if for each ¢ € E'

and for each real number A, the set {# € X : sup Re(¢,u) < A} is open in X.
u€ f(z) '
We note that every upper semi-continuous map is upper hemi-continuous and

the sum of two upper hemi-continuous maps is again upper hemi-continuous.
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For relations among upper semi-continuity, upper demi-continuity [4] and upper
hemi-continuity, we refer to Shih-Tan [11, Propositions 1 and 2 and Examples 1
and 2].

In this paper, we first slightly generalize coincidence theorems of Fan [5,
Theorems 9 and 10] and a fixed point theorem of Shin-Tan [11, Theorem 4].
As applications, new matching theorems are obtained, some of which generalize
those of Fan [5, Theorems 2 and 11]. Finally, from one of our matching theorems,
we deduce several equivalent results, one of which is equivalent to the classical

Knaster-Kuratowski-Mazurkiewicz theorem [9].

2. Coincidence Theorems

First we shall state without proof the following result which can be proved
by slightly modifying the proofs of Theorem 9 of Fan in [5] and Lemma 1.2 of
Ko-Tan in [10]:

Theorem 1. Let X be a paracompact convez set in a locally conver Haus-
dorff topological vector space E, Xo be a non-empty compact convez subset of
X and K be a non-empty compact subset of X. Let f,g : X — 2F be upper
hemi-continuous such that

(a) For each = € X, f(z) and g(z) are closed convez, at least one of which
ts compact.

(b) For any z € K X and ¢ € E' with Red(z) < Red(y) for ally € X,
there ezist u € f(z) and v € g(z) such that Reg(u) > Red(v).

(c) For anyz € X \ K and ¢ € E' with Re¢(z) < Reg(y) for all y € Xo,
there ezist u € f(z) and v € g(z) such that Reg(u) > Red(v).

Then there exists a point & € X such that f(2) [ g(Z) # ¢-

The following result is a consequence of Theorem 1 and is a generalization
of Theorem 10 of Fan in [5] and Theorem 4 of Shih-Tan in [11]:

Theorem 2. Let X be a paracompact convez set in a locally conver Haus-
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dorff topological vector space E, Xo be a non-empty compact ‘convezr subset of
X and K be a non-empty compact subset of X. Let f,g : X — 2F be upper
hemi-continuous such that

(a) For each = € X, f(z) and g(z) are closed convez at least one of which

is compact.

(b) For each z € K 10X, f(z) — g(z) meets U MX — 2).
A>0

(c) For each z € X \ K, f(z) — g(z) meets U MXo — z).
A>0
Then there exists a point # € X such that f()(g(&) # ¢-

Proof. Let z € K (10X and ¢ € E' be such that

Reg(z) < Reg(y) forall ye€ X. (1)

As f(z) — g(z) meets |J MX —2z),let u€ f(z), v € g(z), (Aa)aer be a net in
A>0

(0,00) and (Z)aer be a net in X such that Aa(Zoy — ) — u — v; it follows that

Aad(Ta = 2) = d(Aal(za —2)) = d(u—v) = $(u) - d(v).

By (1), for each a € T, Red(z) < Red(zq), so that Reg(u) > Red(v). Thus the
condition (b) in Theorem 1 is satisfied.
Next let z € X \ K and ¢ € E' be such that

Red(z) < Rep(y) forall y € Xo. (2)

As f(z) — g(z) meets |J MXo—2),let v € f(z), v € g(2), (Aa)aer be a net
in (0,00) and (Zq)aer /\b>e0a. net in Xo such that Ay (24 — 2) — u — v; it follows
from (2) that Reg(u) > Reg(v). Thus the condition (c) in Theorem 1 is also
satisfied.
Therefore by Theorem 1, there exists # € X such that f(2)(g(Z) # ¢
We note that Theorem 2 remains valid if in the union |J in both conditions

A>0
(b) and (c) “A > 07 is replaced by “A < 0”.
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When g(z) = 2 for all 2 € X, the coincidence Theorem 2 becomes the fol-
lowing very general fixed point theorem which generalizes a fixed point theroem
of Halpern [7, Theorem 2] which in turn generalizes Fan-Glicksberg’s infinite

dimensional generalization [3,6] of the Kakutani fixed point theorem [8]:

Theorem 3. Let X be a paracompact convez set in a locally conver Haus-
dorff topological vector space E, Xo be a non-empty compact conver subset of
X and K be a non-empty compact subset of X. Let f : X — 2F be an upper
hemi-continuous map such that

(a) For each z € X, f(z) is closed and convez.

(b) For each z € K N9X, f(z)Nz+ U AMX —2)] # ¢.

AS0

(c) Foreachz € X \ K, f(z)Nlz+ U MXo — 2)] # ¢.
A>0

Then tiere exists a point & € X such that & € f(2).

As is noted earlier, Theorem 3 remains valid if in the union |J in both
A>0
conditions (b) and (c) “A > 07 is replaced by “A < 0” and the result so formulated

generalizes Theorem 3 in [7].

3. Matching Theorems

As an application of Theorem 2, we have the following matching theorem

for closed coverings of a convex set:

Theorem 4. Lel X be a paracompact convex subset of a locally convex
Hausdorff topological vector space I, Xy be a non-empty compact convex subset
of X and K be a non-empty compact subset of X. Let {A; :1 €1} and {Bj:j €
J} be two locally finite families of closed subsets of X such that

L) = L jB = B

i€l JEJ

Let {C; : i € I} and {D; : j € J} be two families of non-empty subsets of E

such that any finite union of the C;’s is conlained in a compact convex subset of
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E. Let s : X — 2F be upper hemi-continuous such that each s(z) is a compact
convez set. Suppose that for each point x € (K (0X) (X \K), there ezisti € |

and 7 € J sucht that

(i) T € A; ﬂBj,
UX-2), ifzeKnoX,
A>0

U(Xo—-2), ifzeeX\K.
A>0
Then there exist two non-empty finite sets lo C | and Jo C J and a point £ € X

such that
(a) e (N 4)NC N Bj)

i€lo j€do
(b) @o(|{C;: : i € lo}) + s(&) meets To(U{D; : j € Jo})-

(i) eo(C; + s(z)) — co(D;) meet

Proof. For each z € X, let
l(z) = {iel:ze€ A;},J(z) = {jeJ:z€ Bj}

then [(z) and J(z) are non-empty and finite as (J4; = | B; = X and
i€l j€d
{A;:i€l} and {Bj:j € J} are locally finite. Define f,g,h : X — 2F by

f(2) = @(UIC: + s(z) i € I(z)}),
g9(z) =eo(U{D;:j € J(z)}),
h(z) = @(U{C: :i € I(z)}).

By hypotheses, for each ¢ € X, h(z) and s(z) are compact convex so that
f(z) = h(z) + s(z) is also compact convex. Since {4; : ¢ € {} is a locally finite

family of closed subsets of X, for cach € X, the set U(z) = X\ | Aiisan
igl(x)
open neighborhood of 2 in X; note then whenever y € U(z), y ¢ A; for each

i € I(z) so that I(y) C I(z) and therefore h(y) C h(z). This shows that h is upper
semi-continuous and hence f = h+ s is upper hemi-continuous. Similarly we can
show that g is upper semi-continuous (and hence upper hemi-continuous) on X.
Thus the condition (a) of Theorem 2 is satisfied. By (i) and (ii), the conditions

(b) and (c) of Theorem 2 are also satisfied. By Theorem 2, there exists Z € X



302 HWEI-MEIKO AND KOK-KEONG TAN(*)

such that f(£)(Ng(£) # ¢. Let lo = I(Z) and Jo = J(Z), then /o and Jo are

non-empty and finite and the conclusions of the theorem hold.

The proof of the above theorem is a modification of Theorem 11 of Fan in
[5] and of Theorem 1 of Shih-Tan in [11]. Theorem 4 generalizes Theorem 11 and
hence also Theorem 12 of Fan in [5]. The following result is an easy consequence
of Theroem 4:

Theorem 5. Let X be a paracompact convezr subset of a locally convez
Hausdorff topological vector space E, Xo be a non-empty compact convez subset
of X and K be a non-empty compact subset of X. Let {A;:i€l}and {Bj:j €
J} be two locally finite families of closed subsets of X such that

Ua = UBi = X.

i€l j€J
Let {C; :i €1} and {D; : j € J} be two families of non-empty subsets of E
such that any finite union of Ci’s is contained in a compact convez subset of E.
Suppose that for each point z € (K N 0X)U(X \ I), there existi€landjeJ
such that |

(i) T E AinBj,

s+ U MX —-z), ifze KN0X,
A>0 ’

2+ |J MXo - 2), ifze X\ K.
A>0

Then there ezist non-empty finite sets lo C 1 and Jo C J such that

(ii) 2o(C;) — co(Dj) meets

(N adn(() BN (@ ) -w(|J Ds) # ¢

1€l J€Jo 1€lo Jj€Jo

Proof. Let s : X — 2Z be defined by s(z) = —z for all z € X. Then all
hypotheses of Theorem 4 are satisfied so that there exist non-empty finite sets

lo cland Jy C J and a point & € X such that
@)z e (N 4)NCN Bj),
i€l J€Jo

() @(U C:) - )N@( U Dy) # ¢

i€l J€Jo
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it follows that

ze(ﬂA)n(ﬂB)n(co (| ¢:) -z | Di))-

i€lg Jj€Jo 1€lo 1€Jo

As an application of Theorem 5, we have

Theorem 6. Let Y be a non-empty convez set in a Hausdorff topological
vector space E, Y1,...,Yn be points inY, 215000 Zm be points in E, A1,...,An,

By,...,Bm be closed subsets of Y such that U A = U B; =Y. Suppose when-
=1 i=1

ever1 <41 < ... <t Snwithl < k < n and whenever x € co{Uiyy- -1 Yir }s
there exists j € {1,...,m} such that x € B;j and x + z; € co{¥iy»- - , Vi, }- Then
ihere exist two non-empty subfamilies G of {1,... ,n} and H of {1,... ,m} such
that

(AN ([ Bs)Nleofy: i € G)) —(eolzj: J € RN # ¢

i€G JEH

Proof. Let X = Xo = K = co{yl,...,yn}, P fdyens bty F = {lyess s}

and }
C; ={w}, Ai = AinX for each i €1,

Dy = {7z} B; = B;nX for cach j€EJ,
We shall show that for each 2 € 80X, there exist ¢ € [ and j € J such that
(1) S A ﬂE’j’

(i)yg—zj€x+ U MX —=).
A>1

Indeed, let z € 8X; without loss of generality we may assume that z = Z arYk
k=1

where 1 < s < mnand ax > 0 for each k = 1,...,s with Z ar = 1. Thus by
=

hypothesis, there exist ¢ € l aud j € J such that z € A ﬂBj and z + 2; €
co{yr,.--,Ys}. Let & +z; = Z bryx where by > 0 for each k = 1,...,8 and

S by = 1. Asax > 0 for all £ = 1,...,s, we can choose A > 1 such that
=7

N ~bp = 0forallhe="11,..:,% AS Y (MNag—bi) = MY ar)— (X be) =A-1,
k=1 k=1 k=1
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S
A : 1 Z()‘ak — br)yx is in X. It follows that
T k=1

Se| =

1 $ S
(i —2;—2)+2z2 = 'X(:lji o Zbkyk) 3 (Z akYr)
k=1 k=1

& S Aap — b X
A_lkzl( ar — br)yx] €

sothat y; —z; €z + A(X —2) Cz + Uy MX — 7).

Since X is a compact convex set in a Euclidean space, Theorem 5 implies

=’i‘[1"yi+(1\—1)

there exists two non-empty subfamilies G of {1,...,n} and H of {1,...,m} such

that
(AN () Bi)n (cofyi i€ G} —cofz;: j € HY) # &;

i€g JEH
(AN ([ Bi)N(co{yi:i€ G} —co{zj:j€H})# ¢
1€g JEH

This completes the proof.

4. Equivalent forms of the Classical Knaster-Kuratowski-

Mazurkiewicz Theorem

By taking z; = 0 and B; = Y for all j = 1,...,m in Theorem 6, we have
the following very general matching theorem due to Fan [5, Theorem 2] where

he has given two basically different proofs:

Theorem TA. Let Y be a non-empty convez set in a Hausdor[f topological

vector space E, y1,...,yn be points inY, Ay,..., A, be closed subsets of Y such
n

that |J A; =Y. Then there caists a non-empty subset {i1,...,1x} of {1,...,n}

=1
such that

() As;)Neofys; 5= 1,...,k} # ¢.
=1

Now we shall state the following Theorems 7B, 7C, 7D and 7E which are

all equivalent to Theorem 7A:
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Theorem 7B. Let Y be a non-empty convez set in a Hausdorff topological
vector space E, vy ...,yn be pointsinY and By, ..., By be open subsets of Y such
that U B; = Y. Then there exists a non-empty subset {ii,...,8k} of {1,...,n}

such that

([ Bi;) N (eofys; 25 = 1,...,k}) # ¢

Theorem 7TC. Let Y be a non-empty convez set in a Hausdorff topological
vector space E, y1,...,Yn be points in Y and Ay,...,An be closed subsets of Y

n
such that co{y; : i € [} C U Ai for each subset of {1,...,n}. Then () Ai # ¢.
i€l i=1

Theorem 7D. Let Y be a non-empty convez set in a Hausdorff topological

vector space E, y1,...,Yn be points in'Y and Bi,...,Bn be open subsets of Y
n

such that co{y; 11 € [} C U Bi for each subset | of {1,...,n}. Then [\ Bi # ¢.
i€l =1

Theorem TE. Let Y be a non-empty convex set in a Hausdorff topological
vector space E, {y; : i € I} be a family of points in Y which is contained in a
compact conver subset of Y and {0; : i € I} be a family of open subsets of Y
such that |J O; = Y. Then there exists a non-empty finite subset lo of | such

i€l
that

([ 0) N (cofyi i € lo}) # ¢
i€lo
We first remark that Theorem 7A and Theorem 7B (respectively, Theorem
7C and Theorem 7D) are dual statements of cach other in the sense that the
words “closed” and “open” are interchangeable. IHowever, a dual statement of
Theorem 7E does not hold even if the set ¥ is compact as the following simple

example illustrates:

Example. Let Y =1 = [0,1]. Tor each ¢ € I with ¢ # %, %, %, let
A; = {1—i}andlet Ay = {+}; Ay = 7 Ag = {1}. Then {A;:1€l}isa
family of closed subsets of Y’ such that

(a) UAi=Y

1€l
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(b) i & A; for each 7 € [;
(c) AiNAj=¢ifi # 7.

Thus there does not exist a non-empty finite subset /o of / such that

([ Ai)n (cofi:i€lo}) # ¢

1€lg

We next remark that Thoerem 7C is equivalent to the classical Knaster-
Kuratowski-Mazurkiewicz theorem [9] while Theorem 7D is equivalent to Corol-
lary 1 in [12]. However the formulations of Theorems 7B and 7E appear to be
new. Thus once we have established the equivalence of Theorems 7A, 7B, 7C,
7D and 7E, our matching Theorem 6 and hence also Theorems 4 and 5, are all
generalizations of the classical Knaster-Kuratowski-Mazurkiewicz theorem.

It is easy to see that Theorems 7B and 7L imply each other. Before we
proceed to establish the equivalence of Theorems 7A, 7B, 7C and 7D, we observe
that by replacing A;’s and Bj’s by A; (co{y1,...,yn} and B;[)co{y1,... W)
respectively, we may assume without loss of generality that ¥ o= oo Wiges 15 Und
and is therefore also compact in some Euclidean space. We shall only prove that
Theorem 7A < Theorem 7B and Theorem 7B ¢ Theorem 7C; the proof of
Theorem 7A < Theorem 7D follows a similar argument as that of Theorem 7B

& Theorem 7C and is thus omitted.

Proof of Theorem 7TA = Theorem 7B:
Foreach z € Y,let H, = (\{Bi:i=1,...,n and z € B;j}; then H, is an
open neighborhood of z in Y so that there exists an open neighborhood U, of

zinY such that U, Cc U, C H,. Since Y = |J{U, : z € Y} and Y is compact

(remember, we have assumed Y = co{yi,...,yn}, see remark above.) there exist
Z1,...,2m in Y such that ¥ = J{U., : j = 1,...,m}. Foreachi=1,...,n,
define

A = U(Uz, rf=liesm and Hy T B;},

then A; is a closed subset of Y and A; C B;. Clearly Y = UL;A;. Hence by



COINCIDENCE THEOREMS AND MATCHING THEOREMS 307

Theorem TA, there exists a non-empty subset {31,---,ik} of {1,...,n} such that

k
(ﬂAij)nco{yij 1] = 1,"-7k} ?£¢1
j=1

but then

k
(ﬂ Bz‘,-)nco{yi,- .7 = 179k} # ¢
i=1
Proof of Theorem 7B = Theorem TA:

Fix any positive integer m. For each ¢ =1,...,n, let
1
Bim) = {y€Y :dist(y, 4) < .-},

(remember we have assumed Y = co{y1,...,Yn} so that Y is contained in some

Fuclidean space.) then B;(m) is an open subset of Y and A; C B;(m). Since
U A; =Y, we have |J Bi(m) = Y. Hence by Theorem 7B, there exists a
=1 i=1

non-empty subset I, of {1,...,n} such that

([ Bi(m))Necofyi : i € lm} # ¢-

i€lm
Since the collection of all non-empty subsets of {1,...,n} is finite, there is a
sequence (m;)32; with m; — 0o as j — o0 and there is a non-empty subset lo
of {1,...,n} such that Im; = lo for all j =1,2,.... Foreach j = 1,2,..., choose
any z; in () Bi(m;))N(co {yi : i € lp}). Since (z;)52; is a sequence in the
i€lo
compact set co{y; : i € lo}, there is a subsequence (z;)$2, such that z;; — 2
for some £ € co{y; : 1 € lo}. Fix i € lp. Since
dist(z, A;) < dist(it,l'[j) + dist(w,j, A;)
1
< dist(%,z;) + —
mi,

J

— 0 as J — o0,

we see that 2 € A; as A; is closed. Therefore Z € (| A; so that
1€lo

() Ai) N (co{yi =i € lo}) # &.

1€lo
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Proof of Theorem 7B = Theorem TCh
Suppose ﬂA ¢; then Y = Y\ﬂA U(Y\A) Let B; =Y \ A4;

=1
for each 2 =1,...,n, then each B; is opcn m Y. By Theorem 7B, there exists a

non-empty subset {¢1,...,4x} of {1,...,n} such that

k

(ﬂ Bi,‘)nco{yin""yik} ?é(f)

j=1

k k
Thus (¥ \ L} Az Y oLligswer Ui b} & @ 86 that cofls -V € 'Ul A
=1 J=

which is a contradiction. Therefore we must have

ﬂ Ai # ¢.
=1

Proof of Theorem 7C = Theorem 7B:

Suppose the contrary that for any non-empty subset [ of {1,...,n}, () B;)
i€l
(co{y; : 2 € 1}) = ¢. Foreachi = 1,...,n,let A; = Y \ B;, then 4; is a

closed subset of Y. But then co{y; : ¢ € I} C |J A; for each non-empty subset
1€l

I of {1,...,n}, so that by Theorem 7C, ﬂ A; # ¢. Tt follows that U By £¥
i=1

which is a contradiction. Therefore thelc G.\lStS a non-empty subset {71,...,%x}

of {1,...,n} such that

k
(ﬂ Bi,’)ﬂ(co{yij ./ = ],...,/C}) 7£¢

Jj=1
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