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A CONVOLUTION APPROACH TO CERTAIN SUBCLASSES
OF STARLIKE FUNCTIONS

T. RAM REDDY, O. P. JUNEJA AND K. SATHYANARAYANA

Abstract. The class Ry(A,B) for -1 < B< A< 1land~y > (A-1)/(1 - B)
consisting of normalised analytic functions in the open unit disc is defined with the
help of Convolution technique. It consists of univalent starlike functions for v > 0.
We establish containment property, integral transforms and a sufficient condition
for an analytic function to be in R+(A,B). Using the concept of dual spaces we
find a convolution condition for a function in this class.

1. Introduction

Let H denote the class of functions f(z) = z+4as22 +... that are analytic in the unit
disc E = {z/|z| < 1}. Let S denote the subclass of H consisting of univalent functions.
Let S and Kp (0 < B < 1) denote the classes of functions that are starlike of order
B and convex of order S respectively, So = S and Ko = K are wellknown classes of
starlike (with respect to origin) and convex functions respectively. The Convolution or
Hadamard product of two power series f(z) = S panz™ and g(z) = Y oo bn”™ s
defined as the power series (f g)(2) = Y _neo @nbnz™.

Let A, B and v be arbitrary fixed real numbers such that -1 < B < A <1 and
v > (A—=1)/(1— B), we say that a function f in H isin the class R, (A, B) if it satisfies

the condition _
(D f{=)) 1+ Az

D f(z2) 1+ Bz’

z€FE. (1.1)

where’ denotes the differentiation with respect to z, < denotes the subordination and
DVf(z) = z/(1 — 2)7** * f(z). Let Bo denote the class of analytic functions w(z) in E
such that w(0) = 0 and |w(z)| < |z|. From the subordination principle, the equation
(1.1) becomes,

2(DVf(2)) _ 14+ Aw(z)

D) - 1+Bu) for some w(z) € Bo. (1.2)
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It can be seen that
ADS(2)) = (v+ DD f(z) — yD" £(2). (13)
From this, the equation (1.2) is equivalent to

Dlf(z)y % 1 14+ Aw(2)
DYf(z)  y+1 ~v+4+1 1+ Buw(z)

We observe that if a function f(z) is in R, (A, B) then it satisfies

z2(D7f(2))) 1-—AB A-B
| D f(z) "1—32| 1~ B2

forz€ E, B # —1.

== (DVf(z), _ 1—4
z 2 = A
D7 (2) I» 5 forze E, B=-1.

The class R,(A, B) has been introduced and studied by the first author [4]. It can be
easily seen that Ro(A,B) = S*(A, B) and R;(A, B) = K(A, B) which are respectively
the subclasses of starlike and convex functions considered by Janowski [3].

It is observed that for particular choices of the parameters involved in R,(A, B) we
get the following classes: For 0 < @ < land 0 < # < 1, Ri_24(1 — 28,-1) (= R(a,p)
in the notation of [9]) has been introduced and studied by Sheil-Small, Silverman and
Silvia [9] and for any a(0 < a < 1) and vy = n € Ny (a non-negative integer) we have
R.(1 = 2¢,,—1) = R,() which was studied recently by Ahuja and Silverman [1].

In the present paper we shall establish the containment property Ry+1(A,B) C
R,(A,B)for -1< B<A<1land+y > (A-1)/(1- B) and hence R,(A, B) consists of
univalent functions for atleast ¥ > 0. We also study some other aspects such as integral
transforms, sufficient condition and convolution properties of functions belonging to the
class Ry(A,B). These results generalize and improves the recent results of Ahuja and
Silverman [1], Sheil-Small, Silverman and Silvia [9] and Ram Singh and Sunder Singh

[5).

Re{

2. Containment Properties
The following theorem gives the characterization of the class R, (4, B).

Theorem 2.1. ]?/y_f.‘](/'l,B) C R,(A,B) holds for -1 < B < A< 1 and v >
(A-1)/(1 - B).

Proof. Suppose f(z) is in 2,41(A, B), then we have

2 DYHf(2)) 1= ABI oA B
Dv¥if(z)  1-B2!~1-B?

forz€ E, B # —1. (2.1)
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z(D"* f(z)) = 1-

CEdh > 5 meenn- a2

Define a function w(z) such that

z2(Df(2)) _ 1+ A w(z)

DYf(z) — 14 B w(z) (2.3)
The function w(z) = [-z—(—lgyy—ff((f))l —1][A - Big;f-f——((j))—)’-]"l with w(0) =0, w(z) # 1 is

either meromorphic or regular in E. It is sufficient to show that |w(z)| < 1 for z € E.
Using the identity (1.3), the equation (2.3) reduces to

D¥f(z) g 1 1+ Aw(2) (2.4)
DYf(z) ~ y+1 y+11+Bw(z) '
Differentiating (2.4) logarithmically and using (2.3) and (1.3) we obtain
(DM f(2)) 14 4 wiz) (A — B)z w'(z)
Dv#if(z) 1+ Bw(z)  [(v+1)+ (A + Br)w()][1+ B w(z)]
Case (i). If B # —1, then we have from (2.5),

2(DTH f(2)) 1-=AB
D+l f(z) 1-B?

_A-B B+ w(2) (1 — Bz v'(2) (2.6)

T 1-B2 1+ Bw(z) [(v+1)+ (A+ By)w(z)])[l+ B w(z)]

Let z; with |z1] = 71 be the pole of w(z) in £ that is nearest to the origin. Hence w(z)
is regular in |z] < r1 < 1. By Jack’s lemma [2], we have for |z| < r < r; there is a point
2o such that

zow'(z) = kw(z), k21 (2.7)

At this point zg, using (2.7) the equation (2.6) reduces to

Zo(D’H'lf(Zo))l _ 1 - AB _ T(Zo) A-B

D7 f(z) T"B° = R(zg) 1-B% where (2.8)
T(z0) = d+ hw(zo) + gw*(20) (2.9)

and q
R(zg) = (7 + 1)+(d+g)w(:o)+;—%wg(zo) with (2.10)

d=B(y+1),h=(y+1)+B(A+ By)+ k(1 - B*)and g = A+ By.
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Now suppose that it was possible to have M (r,w) = Maz|w(z)| = 1,forsomer < r; < 1.
At the point 2o where this occured we would have |w(z)| = 1, then

|T(20)]? = d*+h®+¢* +2(d+ g)h Re w(z) + 2dg Re w?(20) (2.11)

and
RGzo)[? = (7 + 1074 (@ 0 + (S0 + 27+ 1) + 2]
x (d+ g)Re w(zo) + ngRe w?(20). (2.12)
From (2.11) and (2.12) we have
|T(20)|? = |R(20)|> = E +2F Re w(20) (2.13)
where

E=d+hr 4+ - [(v+1)*+(d+9) +( )]
=k(l—-Bz){k(l—Bz)+2{(fr+1)+B(A+Bv)}] and
:(d+g)h—[(7+1)+%(d+g)1 = B[(y+ 1)+ A+ Bylk(1 - B?).

Thus
|T(20)|® = |R(20)|> > 0 provided E & 2F > 0. - (2.14)

Now E+2F = k(1= B)[k(1 - B>)+2{(v+1)+ A+ By}(1+ B)] >0
since ¥ > (A —1)/(1 = B).
Also E — 2F—k(l—B)[k(l— H+2{(v+1)-(A+ By)}(1+ B)] >0,
since v > (A—-1)/(1 -

From (2.8) and (2.14) we have

20(DVHLf(2)) I—ABI A-B
DYHLf(2) 522 1B

which is a contradiction to (2.1). So we cannot have |rrlnauc |lw(z)] = 1. Thus |w(z)| # 1
z|<m

in |z| < r;. Since by our assumption w(z) is analytic in the disk |z| < r1, |w(2)| is
continuous there. Again since w(0) = 0 and |w(z)| # 1. hence w(z) cannot have a pole
at |z] = r;. As 7 is arbitrary. w(z) is analytic in E and |w(z)| < 1. Hence f(2) is in

R,(4, B).
Case (i1). If B = —1, then (2.5) reduces to

2(DT )Y _ 1+4 w(z) (A+1)zu'(2)
D) - T+ Bu(a) T (G D+ (A=) = w@)

(2.15)
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We claim again that |w(z)| < 1. Suppose if possible that there is a point zy in E such
that Irl%?xl |w(z)] = |w(z0)| = 1, then by Jack’s lemma (2], we have zow'(20) = kw(2),
zZ|S 120

k > 1. Hence at the point zp with w(zg) = ¢'® (0 € ® < 27) we have from (2.15)

2o( DY+ f(z0))
e{ D71 (z0) }
1+ A (14 A)ke'®
= e G T (A e - o)
_1-4 .1 (A=7)*+(A=7)(y+1)cosd
=3 tH 2+(7+1)2+(A—7)3+2(7+1)(A—7)COS<I>}

=(1-A)/2, since k>1landy>(A-1)/2.
which is again a contradiction to (2.2). Thus we must have |w(z)| < 1. Hence the

theorem is true for B = —1 also. This completes the proof.

3. Integral Transforms

In this section we consider certain Bernadi type of integral transforms in the flass

Ry(4,B).
Theorem 3.1. If g(z) is in Ry(A, B), ¥ > 0 and G(z) is defined by
1
G(z) = 1+ c)‘/0 u*~lg(uz)du, for ¢>(A-1)/(1- B) (3.1)

then G(z) is in R (A, B).
Proof. Suppose g(z) is in Ry(A, B), then we have

2(D7g(z))) 1-AB A-B

| Dg(2) —1__Br_,|<1__B2 if B# -1, forz€FE. (3.2)
e Re{w} >(1—-A)/2ifB=—1forz€E. (3.3)
Dvg(z)
From the definition of G(z), we have
2G/(2) + ¢G(z) = (1+c)gl=), (3.4)
Taking convolution on both sides of (3.4) with 1= Z)7+1 for v > 0, we get

2(D'G(z2)) +¢D"G(z) = (1+¢)D7g(z), (3.5)
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where we have made use of the fact that DY (zG'(z)) = 2(DYG(2))’. Thus

H(DG(=) DYy(2)
DVG(z) +c¢c = (1+4¢) D7G(2) (3.6)
since h(z) = %YEG%?: is analytic at z = 0, define a function w(z) such that
z(D'G(z)) _ 14+ A w(z)
D'G(z) = 14+ Buw(z) (8)
The function w(z) = [:7—(——]21—(;(2)—)/ - 1j[A - Bi(—lgl(z))-,-]_1 with w(0) = 0, w(z) # 11is

DYG(z) DYG(z)
either analytic or meromorphic in E. It is sufficient to show that |w(z)| < 1 for z € E.
From (3.6) and (3.7) we have

D7g(z) _ 1 [(1+c)+(A+Bc)w(z)
DG(z) l1+c¢ 1 + Bw(z)

] (3.8)

Differentiating (3.8) logarithmically, using (3.7) and (1.3) we have

z(D'g(2))! 14+ A w(z) (A - B)zuw'(z)
Dvg(z) — 1+ Bw(z) [(1+¢)+(A+ Be)w(2)][1+ B w(z)]

(3.9)

We observe that the right hand side of (3.9) is essentially same as that of (2.5) except
that v is replaced by ¢ in the second term. Thus proceeding exactly in similar manner
as in the proof of Theorem 2.1, analogous argument gives that |w(z)| < 1 for z € E.
Therefore G(z) € Ry(A, B).

When A =1, B = —1 and y¥ € Ny we obtain a result due to Ram Singh and Sunder
Singh [5].

Corollary 3.1(a). If g(z) is in Ry(1,—1), then the funciion G(z) defined by (3.1)
is also in Rp(1,-1).

Again putting A = 1-28(0 <8< 1), B=-1and v =1 - 2a in Theorem 3.1
we obtain the following corollary that seems to be a new result for the class Ryj_24(1 —

28, —1).

Corollary 3.1(b). Let g(z) be in Ry_2q(1 — 28,—1) then G(z) defined by (3.1) is
in Ri_2.(1—28,-1).

The Theorem 3.1 can be further strengthened if one takes ¥ and ¢ to be non negative
integers. Thus we obtain.

Theorem 3.2. If g(z) s i R, (A, B) and G(z) s defined by

y
G{z) = (77+1)/ u*~ly(uz)du, n=0,1,2,... (3.10)
0
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then G(2) is in Rn41(4, B).
Proof. From the definition of G(z) we have
nG(z) + zG'(z) = (n+ 1)g(2)

or
nD"G(z) + 2(D"G(z))" = (n+1)D"g(z)

Now using the identity (1.3) we have,
D"*t1G(z) = D"g(z). Similarly we have (3.11)
(n+1)D**g(2) = (n+2)D"*2G(2) — D*"*'G(2). (3.12)

From (3.11) and (3.12) we have
D*tlg(z)  (n+42)D**2G(z) — D"*1G(2)

= <4
Dy (2) (n T DDF1G(2) (343)
Since g(z) is in R,(A, B) we have
C Drtig(y) n 1 1+ Aw()
Bgls) = atl ! atl I+Bald) for some w(z) € Bq. (3.14)
From (3.13) and (3.14) we have
D"*2G(z)  n+1 1 14 Aw(z) (3.15)
Dn+1G(z)  n+42 n+2 1+ Bw(z) '
Thus it follows from (3.15) that G(z) is in Ra4+1(A, B).
Setting A = 1 — 2a and B = —1 we obtain the result due to Ahuja and Silverman

[1].
Corollary 3.2. If g(z) is in R,(«) then G(z) defined by (3.10) is in Ry yq1(a).

Remark. This Theorem has been proved in [8] by using different technique.

4. Sufficient Condition
We find a sufficient condition for a function f(z) in H to be in R, (A, B).

Theorem 4.1. For a function f(z) = 24 Y o0 anz™ in H such that if for some
real numbery > 0 and A,B with —-1< B< A<,

oo

> {(n+1)+|A— Bn|} C(7,n)|an| < A= B holds, (4.1)

=2
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then f(z) belongs to the class R, (A, B), where

II?:2(7_Fj).

— (4.2)

C(y,n) =

Proof. Suppose that (4.1) holds. Since DY f(2) = z+ Y v, C(v,n)anz"™, we have
forze E

|2(D"f(2)) - D" f(2)| - |AD" f(z) — Bz(D" f(2))'|
=Y (n=1)C(y,n)anz"| = [(A= B)z + Y (A~ Bn)C(y,n)an2"|
n=2

< Z(n —1)C(7, n)|an|r™ — {(A - B)r — Z |A — Bn|C(y,n)|an|}r
n=2 n=2

= {Z[(n — 1)+ |A - Bn|]C(y,n)|a,| — (A - B)} r <0 by (4.1).
n=2

Hence :t follows that,

2(DVf(2)) _ p2(DY f(Z))’ L
[_—_D’Yf(z) A~ B e e (4.3)

Let w(z) denote the term inside the modulus of (4.3) then w(0) = 0, w(z) is analytic in
|2] < 1 and |w(z)| < 1. Hence we have

(D)) _ 1+ A u()
D7 f(2) 14+ B w(z)

f(2) belongs to the class Ry (A, B).

which shows that

5. Convolution Properties and Convolution Condition of R,(A, B)

By making use of the concept of Ruscheweyh and Sheil-Small [7], we have shown in
[8] that is f and g are in R, (A, B) then so is f x g for ¥ > 1. In fact it can be seen that
if fisin K and g isin R (A, B) then f*gisin R,(A, B) for ¥ > 0.

To establish the convolution condition for R, (A, B) we use the concept of dual spaces
due to Ruscheweyh [6]. Given a normal family F C H, the dual of ', denoted by F* is

{feH/f«g#0forallge F, 0<|z|<1}.

(1+1)u=(A+B7) |
+ A h)

(1 —2z)r+2
10] they have been pointed out that S*(A, B) and K(A, B) are the duals of Fy(A, B) and

Letﬁ}(A,B) =

/|,u| =15 be any normal family in H. In [9 and
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F)(A, B) respectively. In this section we need to establish the condition for a function
to be in R,(A, B) interms of these dual spaces.

Theorem 5.1. A function f(z) in H is in the class R (A, B) (v > 0) if and only
if R,(A, B) is the dual of F,(A, B).

Proof. Suppose f(z) is in Ry(A, B) then D" f(z) is in S*(A, B).
z(D"f(z))
D7 f(2)

z(D" f(z)) L4+ Ax
D7 f(z) 7 1+ Bz

Since =1 at z = 0, therefore

for some z with |z|=1and z # 1 (5.1)
in 0 < |z|] < 1. From (5.1) and making use of the identity (1.3) we get
(1+ Bz){(y+ 1)D"*' f(2) —vD"f(2)} = (1 + Az)D" f(2) # 0 (5.2)
Using D" f(2) = z/(1 — 2)"*! % f(2) in (5.2) we have
flz+[{(v+ 1)(1_—)+— ~ “_ﬁm + Bz) — (1_—2);;1(1 + Az)] # 0

in 0 < |z] < 1, which on simplification reduces to

B - A+ {(y + 1) + (A + By)z}2?

since z # 1 and B — A is negative, putting 4 = —1/z, then the above condition reduces
to
z+{(r+Dp—(A+By)}(A-B)"*2°
f(z) = T #£0, 0<|7<1

which is the desired convolution condition. The converse part follows easily since all the
steps can be retraced back.

It can be easily seen that for different choices of the values A =1-26(0 < 8 < 1),
B = —1and v = 1 —2a we obtain a convolution condition for the class Ri—24(1—-2B,—1)
of Sheil-Small, Silverman and Silvia [9]. Alsofor A=1-2a¢ (0 < a< 1), B=-1
and ¥ € Ny we get the recent convolution condition for the class R,(a) of Ahuja and
Silverman [1].
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