TAMKANG JOURNAL OF MATHEMATICS
Volume 23, Number 4, Winter 1992

ON SOME INTEGRAL REPRESENTATIONAL FORMULAS
FOR SCHWARZIAN COEFFICIENTS WITH AN APPLICATION
TO NUMBER THEORY

STEPHEN M. ZEMYAN

Abstract. We develop integral representational formulas for all Sch-
warzian coefficients of single-slit mappings by utilizing Ldéwner’s Para-
metric Method. As an application, we evaluate a complicated number-
theoretic sum.

Let S denote the class of functions f(z) = z+a22z%+--- which are analytic
y

and univalent in the unit disk U = {z:]|z| < 1}.

The Schwarzian derivative of a function f(z) in S is defined by the relation

' 2
f'(z) 1(f"(z)
2 = | == ]| —=| == 1
b (f’(z) 2\ 72 .
and the Schwarzian coefficients of the function f(z) are the Taylor coefficients

in the series expansion

{fig)} = ¥ oud® (2)

n=0

The goal of this paper is to develop integral representational formulas for all

Schwarzian coefficients of single-slit mappings by utilizing Lowner’s parametric
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method, and to give a number-theoretjc application of these formulas. We follow

the development given in [8,p.156 — 164], aithough the notation varies slightly.

A function g(2,t) = e'z 4 agz? + --- is called a Léwner Chain if it is
analytic and univalent in U for each ¢ € [0,00), and if g(U, s) C 9(U,t) whenever
0 <s<t< +o00. Since the functions f(z,t) = e7'g(z,t) belong to S for each

t € [0,00), we shall refer to f(z,t) as a normalized Léwner Chain i 5.

For every f € S, there exists a Léwner Chain 9(z,t) such that f(z) =
9(2,0). The main result of the Lowner Theory states that the functions g(z,t)
are absolutely continuous in ¢. Furthermore, it also states that there exists a
function p(z,%) = 1+ p;(¢)z + - - - which is analytic in U and measurable in the

variable ¢ satisfying
Re p(z,t) > 0 (€ U,t€[0,00))
such that, for almost all ¢ € [0,00),
2:9(2,t) = zp(z,t)—q(z -
alg( o 1) 2( ’t)f)zg(' 1) (3)
We use the Lowner method to prove

Theorem 1. Let f(z,t) be a normalized Léwner Chain in S. Define

f(z')t) = f((at)
2= ¢

‘b(z,(,t) = log( ) (Z,C £ Uat & [0700)) (4)

Then @ satisfies the partial differential equation*

zp(z,t) — (p(¢, 1)
=i

for almost every t, where p(+,t) is the function of positive real part which appears

0o 0%
145 = 0 + OG5 + (5)

ot

in the Lowner equation (3).

* The author is currently preparing a monograph exploring the numerous consequences
of this equation for the Grunsky coefficients of a univalent function.
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Proof. Replace z with ¢ in (3) to obtain

52960 = ¢, 20(6,). (6)

Now, subtract (6) from (3) and multiply by e~ to obtain

7o) = 160 + 2 ((50) = (G,1)
= 2=, g ((2,0) = FG0)+ GRl6 D (S, = £(6,1).

To complete the proof, divide by f(z,t) — f(¢,t) and insert log(z — () where

necessary.

From (5), it is easy to obtain a Lowner-type equation for the Schwarzian

derivative of a normalized Lowner Chain in S.

Theorem 2. Let f(z,t) be a normalized Léwner chain in §. Then, the

function
I'(z,t) = 2*{f(z,1),2} = an(t)z”+2 (7)
n=0
satisfies
or or _ . : g B° \
5 = zp(z,t)—a—; + 22p'(2, )T (2,8) + 2 953 (zp(z,1)) (8)

for almost every t, where p(z,1) is determined Jrom the Léwner equation (3).
Proof. Differentiating (5) with respect to z and ¢, we obtain

D2¢t = p(2,1)(Pag + 2Pac) + p(C, 1) (o + C(P.cc)

zp(2,t) — (p(¢,t)
z2—( zc'

+ Zp,(Z,t)(I)zc 3 C])I(C,t)(I)zc + (

Recalling the fact that

N 878(5,0)
tzh = 6 3]—1}12 020(
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we let ( — z to complete the proof.

Corollary 2.1. Each Schwarzian coefficient s,(t) of the normalized Léwner
chain f(z,t) satisfies a first order recursive ordinary differential equation. Specif-

ically, for each n > 0,

$2(1) = (n+1)(n+2)(n 4 3)prya(t) + D (20 + 2 — k)sk(t)Pai(t)  (9)

k=0
for almost every t, where p,,(t) are coefficients in the series ezpansion of p(z,1).

Proof. Substitute the series representations for I' and p into (8) and equate

coeflicients.

Remark. A system of ordinary differential equations similar to (9) was
directly used by Fitzgerald and Pommerenke [13] in an alternate proof of de
Branges Theorem. In view of their work, it is natural to ask whether the system

(9) may be used successfully to establish inequalities of the form

N N
D anlsnl> <> Bo?
n=0 n=0

where a,,8, and o, are fixed positive constants. The author has met with
limited success in attempting to do so.

If N =0, their method quickly yields |so|? < 36. If N = 1, their method
may again be employed to show that |so|? + a|s;|*> < 36 for all a € [0,3/32],
which is not the best possible inequality. If N > 2, the algebraic forms of the

system prevents further progress.

We are now ready to show that the system of Corollary 2.1 may be re-
solved to obtain integral representations for all Schwarzian coefficients Sn(t) of

a normalized Lowner chain.

Theorem 3. Let f(z,t) be a normalized Léwner chain in S, and let
the Schwarzian coefficients of f(z,1) be defined by the relation {f(z,t),2} =
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w -
2. sn(t)z™ . Then, for alln = 0,1,2,..., each s,(t) admits the representatios.
n=0

n+1

sn(t) = ™ N (1)U (m;t) (10)

m=1

where the inner sum

Un(vt) = % Z (n%—I)G(nm,...,nl)F(p;nm,...,nl;t) (11)

Ta+2(m)

is taken over the set mp42(m) of all possible sums of the form n+2 = ny 4+ - +n,
composed of ezactly m positive integers, with ny > 2. Here, for positive integers

Ny, *, N, We have defined

G(nm,---ym) = [[(mr+ D m) (12)
=1 1=1

and

p) Ny "Lla ‘

/ / / liH Pu, l )e ety ]([{,1 l7n—1dtm ‘\,,;

where pn (t)(i = 1,...,m) are coefficients in the series expansion of p(z,1).

N

Proof. (Weak induction.) Let n = 0. A simple integratibn shows that the

differential equation

so(t) = 6pa(t) + 2s0(t)

has the solution

so(t) = —6e*'F(p;2;1).
On the other hand,
so(t) = —e*Uy(1;1)
= — 2 (2 - 1) G F(21)

= = 6¢* F(p;2;0),
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so that our claim is valid if n = 0.
Now, let » > 1, and assume that the claimed representation is valid for all
non-negative integers up to and including n — 1. Multiply (9) by e~(»+2)t 44

integrate the result from ¢ to oo to obtain

sn(t) = — e(nt2)t [(n + 1)(n + 2)(n + 3)/ Prya(s)e(PHR)s g
t
n—1 &0
5 2(277’ Tl ])/ Sj(S)Pn—j(jS)e_("H)Sds]
g=0 t

: |
= ~gletllF %7 5((n + 2)? — 1)G(n + 2)F(p;n + 2;1) (14)
Tn42(1)
J+1

+ 2(272 i B=g) Z("l)m /°° U;(m; s)pn_j(s)e_("_j)sdsJ
j=0 m=1 t

For each j and m, we set pyyy = N — ;. Then,

oo
/ Uj(m; 8)pn—;(s)e™ ("9
t

L. s
= Z -2‘(])1) e 1)G(TLTn,. s ,721)

mj+2(m)

w -
'/ F(p; nm,---,721;3)7),1_1-(3)@‘("-1)5([3
t

(P , i
— Z 5(1)% - 1)G(nm,...,711)I(]J;])m+1,pm,...,pl;t) (15)

Tj42(m)
where n; + ...+ np, = j 4+ 2 and ny + ... + Nm+1 = N + 2. Observe that
G(Pmt1s-..,11) = (2n4+2=35)G (Mg, . . . , 11 ). II'we now substitute (15) into (14),
interchange the order of summation, and shift indices, then our representational

formula becomes

n+1

Sn(t) -___e(n+2)t[( ] 1 t)+ Z( 1)m

m=2

( Z Z i(p'i’_— 1)G’(nm,...,nl)F(p;nm,...,nl;t))].

J=m=2 7 a(m—1)
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It remains to see that this double sum is actually equal to Un(m;t). This will
be clear if we realize that set Tnt2(m) of sums of the form nq +. ..+ Ny =n+2
may be partitioned into equivalence classes according to the value of n,,. If
np+...+%p1 =j3+2and nyy = n—j, thenny +... +n, = n + 2; and,
as j increases from (m — 2) to (n — 1), n,, decreases form n+ 2 —m to 1. If
Mm > n+2—m,then n; + ...+ np_y < m, with n; > 2 and n; > 1. Since
this is impossible, all values of n,, have been accounted for in this sum, and the

proof is complete.

Remark. If f maps U onto the complex plane less a Jordan arc, then p
takes the form [2, p. 93]

: 1+ k(t)= =
zZt) = ——— =1 253}z
P = T +m§ (t)

where k(%) is a continuous, complex-valued function on [0,00) with k()] = 1.
Both the equations (5), (8) and (9), and the representational formulas (11) and
(13) could easily be adjusted to reflect this choice for f(z). Thus,

b3 | — 2’”/ / / [Hk"‘(ti)e_”‘t‘Jdtl...dtm_ldtm.
t tm t2 ;=1

If, in particular, £(¢) = 1 on [0,00) and t = 0, then

gm
F(l;nm,...,nl;O) = Tm

T

. (16)
rI.;[l(i; ni)

We use this observation to provide a rather startling number-theoretic con-

sequence of Theorem 3.

Corollary 3.1. For positive integers ny,...,nn,, let

m

H(BiseneyBip) = H(Z”i)

r=1 =1

and
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GO 5003 ) =2 H(nr + Zn,)
y=i
For integers n > 0 and m > 1, define

(’IZ1, nm)
(nlv ,nm)

Un(m) =~ —(pl—l)H

Tut+2(m)

where the sum is taken over all possible sums of the formni +... +n, =n+2,

with ny > 2. If we set

n+1
Sa = D (=2)"Un(m),
m=1
then, for allk =0,1,2,3,...,
Soy = —-6(k+1) and Sager = 1. (17)

Proof. Since we expect very limited cancellation in the quotients G/H, it

is very surprising that the values S, are integers!

To prove this fact, we choose f(z) = = (14+2)%. On one hand, its Schwarzian
coefficients are given by (17). On the other hand, f(z) = f(z,t) = e~tg(z,t) for
all i € [0,00). Form (3), we deduce that p(z,t) = (14+2)/(1—-2) and that k(t) = 1

on [0,00). Now, merely compute s,(0) = S, using Theorem 3 and formula (16).

Remark. It is also possible to give representational formulas of this type
for the coefficients of single-slit mappings in ), the logarithmic coefficients of
f, the logarithmic coefficients of f', (f € § ), etc. along a normalized Lowner

chain. These formulas will have number-thcoretic corollaries as well.
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