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ON SOME INTEGRAL REPRESENTATIONAL FORMULAS
FOR SCHWARZIAN COEFFICIENTS WITH AN APPLICATION

TO NUMBER THEORY

STEPHEN M. ZEMYAN

Abstract. We develop integral representational formulas for all Sch­
warzian coefficients of single-slit mappings by utilizing Lowner's Para­
metric Method. As an application, we evaluate a complicated number­
theoretic sum.

Let S denote the class of functions J(z) = z 十 a2z2 十 ·•·which are analytic

and univalent in the unit disk U = {z: lzl < 1}.

The Schwarzian derivative of a function f(z) in Sis defined by the relation

{f,z} = (~:g;)'一曰訂 (1)

and the Schwarzian coefficients of the function f(z) are the Taylor coefficients
in th·e senes expans10n

{!, z} f SnZ巴
n=O

(2)

The goal of this paper is to develop integral representational formulas for all

Schwarzian coefficients of 磾gle-sli t rna.ppi ngs by utilizing Lowner's parametric
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method, and to give a number-theoretic application of these formulas. We follow
the development given in [8,p.156 - 164), aithough tl1e notat10n varies slightly.

A function g(z, t) = et z + a2z2 +· · ·is called a Lowner Chain if it is
analytic and univalent in U for each t E [O,oo), and jf g(U,s)~g(U,t) whenever

0 S s St< +oo. Since the functions f(z,t) = e-tg(z,t) belong to S for each
t E [O, oo), we shall refer to f(z, t) as a no1·malized Lowner Chain in S.

For every f E S th, ere exists a Lowner Chain g(z,t) such that J(z) =
g(z, 0). The main result of the Lowner Theory states that the functions g(z, t)
are absolutely continuous in t. Furthermore, it also states that there exists a
function p(z, t) = 1 + P1(t)z +· · ·which is analytic in U and measurable 1n the
variable t satisfying

Re p(z, t) > O (z E U,t E (O,oo))

such that, for almost all t E [O, oo),

/j [)
沅g(z, t) = zp(z, t)—g(z, t)

f}z

We use the Lowner method to prove

Theorem 1. Let f(z, t) be a normalized Lowner Chain in S. Define

(3)

祏 ，(,t) = Iog(t(z,t;=t(,t))

Then {P satisfies the partial differential equation*

(z, (E U, t E [0, oo)) (4)

8。 。<I>1+— fJ<I>= zp(z, t)—+(p((, t)—+ zp(z,t) - (p((, t)
8t 8z 8(z- ( (5)

for almost every t, where p(·, t) is the function of positive real part which appears
in the Lowner equation (3).

• The author is current! .Y preparing a monogrnph explorin, tl
of th· 6 , 1e numerous consequences

Is equation for the Gru 11sky coefficie11 t.s ol a u111v,tlent function.
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Proof. Replace z with (in (3) to obtain

(6)
{) {)
沅g(('t) = (p(('t)沅g((,t).

Now, subtract (6) from (3) and multiply by e-t to obtain

a
J(z, t) - f((, t) 十沅 (f(z, t) - f((, t))

。 。= zp(z, t)正 (f(z, t) - J((, t)) + (p((, t)-:--(f(z, t) - J((, t)).
iJ(

To complete the proof, divide by J(z, t) - J((, t) a.nd insert log(z - () where
necessary.

From (5), it is easy to obtain a Lowner- type equat10n for the Schwarzian
derivative of a normalized Lowner Chain in S.

Then, theLet J (z, t) be a normalized Lowner chain in S.2.Theorem
function

(7)
00I: sn(t)zn+2
n=O

汽J(z,t),z}f(z,t)

ar
zp(z,t)—+2zp'(z, t)I'仁 ，t) + z2

fJ3
8z 一' ' 一fJz3 (zp(z, t))

ar
一 ·一·
8t

satisfies

(8)

for almost every t, where p(z, ~) is determined from the L ..owner equation (3).

Proof. Different1atmg (.5) with respect to z and(, we obtain

= p(z, t)(<I>z(+ z<I>zcz) + p((, t)(<I>z(+ (<I>zcd

+ zp'(z, t)<I>,(+ (p'((, t)<I>,(+ (zp(z, 1; =一 ：p((,t)) 式

叭(t

6·1im
82<1>(z,()

<,-+z 8z8(
{J, z}

Recalling the fact that
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we let (--* z to complete the proof.

Corollary 2.1. Each Schwarzian coefficient sn(t) of the normalized Lowner
chain f(z, t) satisfies a first order recursive ordinary differential equation. Specif­
ically, for each n ;=:: 0,

n

s~(t) = (n + l)(n + 2)(n + 3)Pn+2(t) 十L(2n + 2 - k)sk(t)Pn-k(t) (9)
k=O

for almost every t, where Pm(t) ff·are coc. ·lczcnts zn ti·ie series expansion ofp(z, t).

Proof. Substitute tl·le series representations for rand pinto (8) and equate
coefficients.

Remark. A system of ordinary differential equations similar to (9) was
directly used by Fitzgerald and Pornmerenke [13) in an alternate proof of de
Branges Theorem. In view of their work, it is natural to ask whether the system
(9) may be used successfully to establish inequalities of the form

N N

芷 anls詛 5 芷 fJnCJ~
n=O n=O

where an,臨 and a-n are fixed positive constants. The author has met with
limited success in attempting to do so.

If N = 0, their method quickly yields js0j2 :s; 36. If N = l, their method
may again be employed to show that !so 12 + als112 :s; 36 for all a E [O, 3/32],
which is not the best possible inequality. If N 2:: 2, the algebraic forms of the
system prevents further progress.

We are now ready to show tha.t the system of Corollai·y 2.1 may be re­
solved to obtain integral represen ta.tions for all S 1c 1warz1an coefficients sn(t) of
a normalized Lowner chain.

Theorem 3. Let f(z, t) be a normalized Lowner chain in S, and let
the Shc warzzan coefficients of f(z,t) be defined by the relation {J(z,t),z}
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00

2 鈺 (t)zn . Then, for all n = 0, 1, 2, … ，each s11 (t) admits the representatio,·"
n=O

Sn(t)
n+l

e(n+2)t L (-l)m広 (m;t)
m=l

(10)

where the inner sum

1
広 (m;t) = 2~ 囯- l)G(nm, ... , n1)F(p; nm, … ，n1;t) (11)

元n+2(m)

is taken over the set 1rn+2(m) of all possible sums of the form n+2 = n1 +·. ·+nm
composed of exactly m positive intege1·s, with n1~2. !Jere, for positive integers
n1, · · ·, nm, we have defined

m r

G(nm, · · ·, n1) n伍，`十芝 叫
r=l t=l

(12)

and·

P(p; Um, · · ·,'fl 1 ; I)

1= 1:···L=囯7,,,, (l;)e-"''·J d/1 ...dt=-, dtlf, (13)

where Pn;(t)(i = 1, … ，m) are coefficients in the series expansion of p(z,寸

Proof. (Weak induction.) Let n = 0. A simple integration shows that thr
differential equation

sb(t) = 6p2(t) + 2so(t)

has the solution

so(t) = - 6e2tF(p;2;t).

On the other hand,

so(t) = - 严Uo(l;t)
1
2

- -e2t·(22 - 1)·G(2)F(p; 2; t)

- - Gc21 F(p; 2; I),
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so that our claim is valid if n = 0.

Now, let n 2: 1, and assume that the claimed representation is valid for all
non-negative rntegers up to and including n - l. Multiply (9) by e一 (n+2)t and
integrate the result from t to oo to obtain

sn(t) = - e(n+2)t [(n + l)(n + 2)(n + 3) 1·oo Pn+2(s)e-(n+2)sds
t

十団 (2n + 2 - j) 1= Sj(s)JJn-j(s)e-(n+2>•ds
j==O t

］

L 1
- e(n+2)t -((n + 2)2 - 1)G(n + 2)F(p; n + 2; t)

21l'n+2(l)
n-1 j+l

十~{2n + 2 - j)三 仁l)m『叻(m; s)JJn 一j(s)e 一 (n 一j), dsJ

(14)

For each j and m, we set JJm+l = N - j. Then,

「Uj(m; s)JJn 一j(s)e 一 (n-j)s ds
t

2 汩- l)G(nm, ... , n1)
71"j+2(rn)

/00o F(p; nm, ... , n1; s)JJ·,i-j(s)e 一 (n-j)sds
t

2 严- l)G'(nm,···,n1)F(p;JJm+I,Pm,···,Piit)
71"j+2{m)

(15)

where n1 + ... + nm = j + 2 a.nd n1 + ... 十 nm+1 = n + 2. Observe that
G(nm+I, · ·., ni) = (2n+ 2- j)G'(nm, ... , n1). H we now substitute (15) into (14)

，
interchange the order of summation, and shift indices tl, 1en our representat10nal
formula becomes

n+l
sn(t) = e(n+2)t[(-1)Un(l;t) 十严 (-l)m

m=2
n-1
（巴 2 汩- 1)G(nm, ... , n1)F(p; nm, ... , n1; t))].
j=m-2 1r;+2(m-1)
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It remams to see that this double sum 1s actually equal to Un(m; t). This will
b e clear 1f we realize that set 7rn+2 (m) of sums of the form n1 + ... + nm = n + 2
may be partitioned into equivalence classes according to the value of nm. If

n1 + ... + nm-1 = j + 2 and nm = n - j, then n1 + ... + nm = n + 2; and,
as J increases from (m - 2) to (n - l), nm decreases form n + 2 - m to 1. If
nm > n + 2 - m, then n1 + ... + n正 1 < m, with n1 2: 2 and ni 2: 1. Since
this is impossible, all values of nm have been accounted for in this sum, and the
proof is complete.

Remark. If J maps U onto the complex plane less a Jordan arc, then p
takes the form (2, p. 93]

p(z, t) z

z

、,＇,
、
丿

t

t
(
,
l

k

k

+
1
1

1

00

l 十芷 2km(t)zm
m=1

where k(t) is a continuous, complex-valued function on (0, oo) with jk(t)l = 1.
Both the equations (5), (8) and (9), and the representational formulas (11) and
(13) could easily be adjusted to reflect this choice for f(z). Thus,

F(k;nm,---,n1;t) = 2m ;: =上~...;: ,=訂矼(t,)e -n,''] dt1 ... dt正 1dtm.

If, in particular, k(t) = l on [O, oo) and t = O, then

F(l;nm,···,n1;0) = 2m
(16)m r

ITC I: ni)
r= 1 i= 1

We use this observation to provide a. ra.ther startling number-theoretic con­
sequence of Theorem 3.

Corollary 3 .1. For positive integers n1 , ... , nm, let

1n r

H(n1, ... , nm) = [I (L ni)
r=l i=l

and
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1n r

G(n1, ... , 1玩 ）= TI (nr + L ni).
r=l i=l

For integers n~0 and m~1, define

広 (m) = L ! (Pi _ 1) G(n1, ... , nm)
2

1Tn+2(m)
H(n1, ... , nm)

where the sum is taken over all possible sums of the farm n1 十 ．．．十 nm= n+2,
with n1~2. If we set

n+l

忥 ＝ 芝 (-2)m広 (m),
,m=l

then, for all k = 0, 1, 2, 3, ... ,

S2k = -G(k + 1) and S2k+1 0. (17)

Proof. Since we expect very limited cancella.tion in the quotients G/H, it

1s very surprising that the values 511 a.re integers!

To prove this fact, we choose f(z) = z / (.1 + z)2. On one hand, its Schwarzian
coefficient s are given by (17). On the other hand, f(z) = f(z,t) = e-tg(z,t) for

all t E [O, oo). Form (3), we deduce th乩 p(z,t)·= (l+z)/(1-z) and that k(t) = 1

on [O, oo). Now, merely compute sn(O) = Sn usmg Theorem 3 and formula (16).

Remark. It is also possible to give representational formulas of this type
for the coefficients of single-slit mappings in E, the logarithmic coefficients of

J, the logarithmic coefficients of f', (f E 5), etc. along a normalized Lowner
chain. These formulas will have number-theoretic corollaries as well.
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