ON REGULAR SEMI-OPEN SETS AND S*-CLOSED SPACES

S. F. TADROS AND A. B. KHALAF

Abstract. In this note, the "egular semi-open sets, introduced in [2], are further investigated. Using covers consisting of such sets, a new class of topological spaces, called the s*-closed spaces, is defined and studied.

1. Preliminaries

By a space (X,τ) we mean a topological space on which no separation axiom is assumed. We recall the following definitions, notational conventions and characterizations. The closure (interior) of a subset A of X is denoted by ClA (resp. IntA). A is called regular open (regular closed) iff A = IntClA (resp. A = ClIntA). The family of all regular open (regular closed) subsets of (X,τ) is denoted by $RO(X,\tau)$ (resp. $RC(X,\tau)$). A set A is said to be semi- (α -, pre-, β -) open subset of (X,τ) iff $A \subset ClIntA$ [6] (resp. $A \subset IntClIntA$ [9], $A \subset IntClA$ [8], $A \subset ClIntClA$ [1]). The complement of each semi-(resp. α -, pre-, β -) open set is called a semi- (resp. α -, pre-, β -) closed set. The family of all semi-open (α -open, pre-open, β -open, semi-closed, α -closed, pre-closed, β -closed) subsets of (X,τ) is denoted by $SO(X,\tau)$ (resp. $\alpha O(X,\tau)$, $PO(X,\tau)$, $\beta O(X,\tau)$, $SC(X,\tau)$, $\alpha C(X,\tau)$, $PC(X,\tau)$, $\beta C(X,\tau)$). The semi-closure (semi-interior) of a set A, denoted by sClA (resp. sIntA), is defined in a natural way [3], $A \in SC(X,\tau)$ iff sClA = A and $A \in SO(X,\tau)$ iff

Received September 30, 1991.

AMS (MOS) subject classifications (1970). Primary 54D20, 54D30, 54D99; secondary 54G05.

sInt A = A. It is known that $sClA = X \setminus sInt(X \setminus A)$ [3], $sClA = A \cup IntClA$ and $sIntA = A \cap ClIntA$ [15]. A space (X, τ) is extremally disconnected iff $ClG \in \tau$ for every $G \in \tau$. A space (X, τ) is said to be quasi H-closed [12] (nearly compact [14], s-closed [16]) iff for every cover $\{V_{\alpha} : a \in \Delta\}$ of X such that $V_{\alpha} \in \tau$ (resp. $V_a \in \tau, V_a \in SO(X, \tau)$) for all $a \in \Delta$, there exists a finite subset Δ_0 of Δ such that $X = \bigcup_{a \in \Delta_0} ClV_a$ (resp. $X = \bigcup_{\alpha \in \Delta_0} IntClV_a, X = \bigcup_{a \in \Delta_0} ClV_a$). A space (X, τ) is called almost regular [13] (s-regular [7]) iff for each $G \in RO(X, \tau)$ (resp. $G \in \tau$) containing a point $x \in X$ there exists $U \in \tau$ (resp. $U \in SO(X, \tau)$) such that $x \in U \subset ClU \subset G$ (resp. $x \in U \subset sClU \subset G$).

2 Regular Semi-Open Sets

Definition 2.1. A subset A of a space (X, τ) is said to be a regular semi-open set [2] iff $A = s \operatorname{Int} s ClA$. We shall denote the class of all regular semi-open subsets of a space (X, τ) by $RSO(X, \tau)$. It is clear that $RSO(X, \tau) \subset$ $SO(X, \tau)$.

Lemma 2.1. For any subset A of a space (X, τ) .

 $IntClA \subset sIntsClA \subset ClIntClA$

Proof. Straightforward.

Lemma 2.2. Let (X, τ) be any space. Then the following statements are equivalent.

- (i) $A \in RSO(X, \tau)$.
- (ii) $X \setminus A \in RSO(X, \tau)$.
- (iii) A = sClsIntA.
- (iv) $A \in SO(X, \tau) \cap SC(X, \tau)$.
- (v) there exists $U \in RO(X, \tau)$ such that $U \subset A \subset ClU$.

Proof. (i) \rightarrow (ii) Let $A \in RSO(X, \tau)$. Then A = sIntsClA. By lemma 2.1, we deduce that $IntClA \subset A$, i.e. $A \in SC(X, \tau)$ and hence $X \setminus A = sIntsCl(X \setminus A)$.

Consequently, $X \setminus A \in RSO(X, \tau)$. (ii) \rightarrow (iii). Obvious. (iii) \rightarrow (iv). Obvious. (iv) \rightarrow (v). Let $A \in SO(X, \tau) \cap SC(X, \tau)$. Then $IntClA \subset A \subset ClIntA$. Taking $U = IntClA \in RO(X, \tau)$, we get

 $U \subset A$ and $A \subset ClIntA \subset ClIntClA = ClU$,

i.e. there exists $U \in RO(X, \tau)$ such that $U \subset A \subset ClU$. $(v) \rightarrow (i)$. Let $U \in RO(X, \tau)$ such that $U \subset A \subset ClA$. Then ClU = ClA, U = IntClU = IntClA and so $IntClA \subset A$. Now, since $U \subset IntA$ and $IntA \subset IntClA = U$, so U = IntA and ClU = ClIntA, which implies that $A \subset ClIntA$. Accordingly,

 $sIntsClA = sClA \cap ClIntsClA$ $= (A \cup IntClA) \cap ClInt(A \cup IntClA)$ $= A \cap ClIntA = A,$

i.e. $A \in RSO(X, \tau)$. This completes the proof of the lemma.

Lemma 2.3. For any space (X, τ) ,

$$RO(X,\tau) \cup RC(X,\tau) \subset RSO(X,\tau).$$

Proof. If $A \in RO(X,\tau)$ or $A \in RC(X,\tau)$, then $A \in SO(X,\tau)$ and $A \in SC(X,\tau)$, which implies that $A \in RSO(X,\tau)$ by lemma 2.2.

Example 2.1. The inclusion relation in lemma 2.3 ,in general, cannot be replaced by equality. As an example let $X = \{a, b, c, d, \}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Then $\{a, c\} \in RSO(X, \tau)$ but $\{a, c\} \notin RO(X, \tau) \cup RC(X, \tau)$.

We have the following diagram of implications, and any other, except those

resulting by transitivity, can not be added, in general.

$$A \in RO(X,\tau) \longrightarrow A \in RSO(X,\tau) \longleftarrow A \in RC(X,\tau)$$

$$\downarrow \qquad \qquad \downarrow$$

$$A \in \tau \longrightarrow A \in \alpha O(X,\tau) \longrightarrow A \in SO(X,\tau)$$

$$\downarrow \qquad \qquad \downarrow$$

$$A \in PO(X,\tau) \longrightarrow A \in \beta O(X,\tau)$$

As a sample we give the following example.

Example 2.2 Example 2.1 shows that

(i) τ and $RSO(X, \tau)$ may be not comparable, in general.

(ii) $\alpha O(X, \tau)$ and $RSO(X, \tau)$ may be not comparable, in general.

(iii) $RO(X,\tau) \neq RSO(X,\tau) \neq RC(X,\tau)$, in general.

(iv) $RSO(X, \tau)$, may be neither supratopology nor infratopology [5] on X, in general.

Lemma 2.4. For any space (X, τ) , if $A \in RSO(X, \tau)$ and $A \subset B \subset ClA$, then $B \in RSO(X, \tau)$.

Proof. By lemma 2.2, there exists $U \in RO(X, \tau)$ such that $U \subset A \subset ClU$. Hence, $U \subset B \subset ClU$ and $B \in RSO(X, \tau)$ by using lemma 2.2 again.

Lemma 2.5. For any space (X, τ) , $A \in RSO(X, \tau)$ iff there exist an open set G and a closed set F such that

$$\operatorname{Int} F \subset G \subset A \subset F \subset \operatorname{Cl} G$$

Proof. Straightforward.

Lemma 2.6. For any space (X, τ) ,

$$PO(X,\tau) \cap RSO(X,\tau) = RO(X,\tau)$$

Proof. Suppose that $A \in PO(X, \tau)$ and $A \in RSO(X, \tau)$. Then $A \subset IntClA$ and A = sIntsClA. Therefore,

$$A = s \operatorname{Int}(A \cup \operatorname{Int}ClA) = s \operatorname{Int}\operatorname{Int}ClA = \operatorname{Int}ClA$$

i.e. $A \in RO(X, \tau)$. The reverse implication follows directly from the above diagram.

Corollary 2.1. For any space (X, τ) ,

$$PC(X,\tau) \cap RSO(X,\tau) = RC(X,\tau)$$

Proof. Obvious.

Remarks. Lemma 2.6 and corollary 2.1 may be not true in general even if $A \in \beta O(X,\tau)$ (resp. $A \in \beta C(X,\tau)$) instead of $A \in PO(X,\tau)$ (resp. $A \in PC(X,\tau)$). In example 2.1, $\{a,c\} \in \beta O(X,\tau) \cap RSO(X,\tau)$, but $\{a,c\} \notin RO(X,\tau)$.

Lemma 2.7. For each subset A of a space (X, τ) , the sets sIntsClA, IntsClA, sIntClA and IntClA are rgular semi-open sets.

Proof. We shall prove that $sIntsClA \in RSO(X,\tau)$ and the proof of the other parts is then obvious. We have by lemma 2.1

$$IntClA \subset sIntsClA \subset ClIntClA$$
,

where $IntClA \in RO(X, \tau)$. The result follows directly by using lemma 2.2.

Corollary 2.2. The closure and the semi-closure of a semi-open subset A of a space (X, τ) are regular semi-open.

Proof. Since $A \in SO(X, \tau)$, so ClA = ClIntA and $sClA \subset ClIntsClA$. Therefore, ClA, $sClA \in SO(X, \tau)$. But ClA, $sClA \in SC(X, \tau)$, hence the result follows by lemma 2.2. **Corollary 2.3.** For each subset A of a space (X, τ) , the sets ClIntA, ClsIntA, sClIntA and sClsIntA are regular semi-open.

Proof. This follows directly by corollary 2.2 and by observing that IntA, $sIntA \in SO(X, \tau)$.

Lemma 2.8. For any space (X, τ) , if $Y \in \alpha O(X, \tau)$ and $A \in RSO(X, \tau)$ then $A \cap Y \in RSO(Y, \tau_Y)$.

Proof. Since $A \in RSO(X,\tau)$, so $A \in SO(X,\tau)$ and $X \setminus A \in SO(X,\tau)$. Therefore, $A \cap Y \in SO(Y,\tau_Y)$ and $(X \setminus A) \cap Y \in SO(Y,\tau_Y)$ [9]. But $(X \setminus A) \cap Y = Y \setminus (A \cap Y)$ and hence $Y \setminus (A \cap Y) \in SO(Y,\tau_Y)$. Consequently, $A \cap Y \in RSO(Y,\tau_Y)$.

Lemma 2.8 may be not true, in general, even if $Y \in RSO(X, \tau)$, as the following example shows.

Example 2.3. Taking $Y = \{a, c, d\}$ and $A = \{b, c, d\}$ in example 2.1, then $A \cap Y \notin RSO(Y, \tau_y)$.

Lemma 2.9. For any space (X, τ) , if $Y \in RO(X, \tau)$ and $A \in RSO(Y, \tau_y)$, then $A \in RSO(X, \tau)$.

Proof. By lemma 2.2, we have $A \in SO(Y, \tau_y)$ and $Y \setminus A \in SO(Y, \tau_y)$. This implies that $A \in SO(X, \tau)$ and $Y \setminus A \in SO(X, \tau)$ [10]. Since Y is regular open in X, so it is regular semi-open in X and hence $X \setminus Y \in SO(X, \tau)$. Therefore, $(Y \setminus A) \cup (X \setminus Y) = X \setminus A \in SO(X, \tau)$. Accordingly, $A \in SC(X, \tau)$. By lemma 2.2, $A \in RSO(X, \tau)$.

3. S^* -Closed Spaces

Definition 3.1. A filterbase \mathcal{F} in a space (X, τ) s^* -converges to a point $x_0 \in X$ iff for each $A \in RSO(X, \tau)$ such that $x_0 \in A$, there exists an $F \in \mathcal{F}$ such that $F \subset A$.

Definition 3.2. A filterbase \mathcal{F} in a space (X, τ) s^* -accumulates to $x_0 \in X$ iff for each $A \in RSO(X, \tau)$ such that $x_0 \in A$ and each $F \in \mathcal{F}$, $F \cap A \neq \phi$.

The following lemma is an easy consequence of the above definitions.

Lemma 3.1. If \mathcal{F} is a maximal filterbase in a space (X, τ) , then \mathcal{F} s^{*}-accunulates to $x_0 \in X$ iff \mathcal{F} s^{*}-converges to x_0 .

Theorem 3.1. A filterbase \mathcal{F} in a space (X,τ) s^* -converges to $x_0 \in X$ iff for each $A \in SO(X,\tau)$ such that $x_0 \in A$, there exists an $F \in \mathcal{F}$ such that $F \subset sClA$.

Proof. (Necessity). Suppose that \mathcal{F} s^{*}-converges to $x_0 \in X$ and $A \in SO(X, \tau)$ such that $x_0 \in A$. By corollary 2.2, $sClA \in RSO(X, \tau)$ and $x_0 \in sClA$. Therefore, there exists an $F \in \mathcal{F}$ such that $F \subset sClA$.

(Sufficiency). Let the condition be satisfied and let $A \in RSO(X,\tau)$ such that $x_0 \in A$. Then $A \in SO(X,\tau)$ and therefore, there exists an $F \in \mathcal{F}$ such that $F \subset sClA$. By lemma 2.2, $A \in SC(X,\tau)$. Consequently, sClA = A and the proof is complete.

The following theorem can be proved similarly.

Theorem 3.2. A filterbase \mathcal{F} in a space (X, τ) s^* -accumulates to $x_0 \in X$ iff for each $A \in SO(X, \tau)$ such that $x_0 \in A$ and each $F \in \mathcal{F}$, $F \cap sClA \neq \phi$.

Definition 3.3. A space (X, τ) is said to be s^* -closed space iff each regular semi-open cover of X has a finite subcover.

Theorem 3.3. Each s^* -closed space is nearly compact and s-closed.

Proof. Obvious.

It is known that the one point compactification of a finite discrete space is not s-closed [16], and by theorem 3.3, is therefore not s^* -closed. But it is nearly compact.

Theorem 3.4. A space (X, τ) is s^* -closed iff for each semi-open cover

 $\{A_a : a \in \Delta\}$ of X, there exists a finite subset Δ_0 of Δ such that X = $\bigcup sClA_a$. aEDo

Proof. (Necessity). Let (X, τ) be s^* -closed and $\{A_a : a \in \Delta\}$ be a semi-open cover of X. By corollary 2.2, we have $sClA_a \in RSO(X, \tau)$ for every $a \in \Delta$ and $X = \bigcup sClA_a$. Therefore, there exists a finite subset Δ_0 of Δ such that $X = \bigcup_{a \in \Delta_0} sClA_a$.

(Sufficiency). Let $\{A_a : a \in \Delta\}$ be any regular semi-open cover of X. Then, by lemma 2.2, $A_a \in SO(X,\tau)$ and $A_a \in SC(X,\tau)$, for each $a \in \Delta$. Therefore, by the hypothesis, there exists a finite subset Δ_0 of Δ such that

$$X = \bigcup_{a \in \Delta_0} s C l A_a = \bigcup_{a \in \delta_0} A_a,$$

which shows that (X, τ) is s^* -closed.

Theorem 3.5. For any space (X, τ) , the following statements are equivalent.

- (i) (X, τ) is s^* -closed.
- (ii) For each semi-open cover $\{A_a : a \in \Delta\}$ of X, there exists a finite subset Δ_0 of Δ such that $X = \bigcup_{a \in \Delta_0} sClA_a$.
- (iii) For each family $\{F_a : a \in \Delta\}$ of semi-closed subsets of X such that
- $\bigcap_{a \in \Delta} F_a = \phi, \text{ there exists a finite subset } \Delta_0 \text{ of } \Delta \text{ such that } \bigcap_{a \in \Delta_0} F_a = \phi.$ (iv) for each family $\{F_a : a \in \Delta\}$ of semi-closed subsets of X, if $\bigcap_{a \in \Delta_0} \text{sInt} F_a \neq \phi$ for every finite subset Δ_0 of Δ , then $\bigcap_{a \in \Delta} F_a \neq \phi$.
- (v) for each family $\{A_a : a \in \Delta\}$ of regular semi-open subsets of X such that $\bigcap_{a \in \Delta} A_a = \phi, \text{ there exists a finite subset } \Delta_0 \text{ of } \Delta \text{ such that } \bigcap_{a \in \Delta_0} A_a = \phi.$ (vi) for each family $\{A_a : a \in \Delta\}$ of regular semi-open subsets of X, if $\bigcap_{a \in \Delta_0} A_a$
- $\neq \phi$ for every finite subset Δ_0 of Δ , then $\bigcap_{a \in \Delta} A_a \neq \phi$.
- (vii) Every filterbase \mathcal{F} in X s^{*}-accumulates to some point $x_0 \in X$.
- (viii) Every maximal filterbase \mathcal{F} in X s^{*}-converges to some point $x_0 \in X$.

Proof. By theorem 3.4 we have (i) \leftrightarrow (ii) and the equivalencies (iii) \leftrightarrow (iv) and (v) \leftrightarrow (vi) are obvious.

(ii) \rightarrow (iii). Let $\{F_a : a \in \Delta\}$ be a family of semi-closed subsets of X such that $\bigcap_{a \in \Delta} F_a = \phi$. Therefore, $X = \bigcup_{a \in \Delta} (X \setminus F_a)$, where $X \setminus F_a \in SO(X, \tau)$ for all $a \in \Delta$. By (ii), there exists a finite subset Δ_0 of Δ such that

$$X = \bigcup_{a \in \Delta_0} sCl(X \setminus F_a) = \bigcup_{a \in \Delta_0} (X \setminus sIntF_a) = X \setminus (\bigcap_{a \in \Delta_0} sIntF_a),$$

which implies that $\bigcap_{a \in \Delta_0} s \operatorname{Int} F_a = \phi$.

(iii) \rightarrow (v). Let $\{A_a : a \in \Delta\}$ be a family of regular semi-open subsets of X such that $\bigcap_{a \in \Delta} A_a = \phi$. By lemma 2.2, $A_a \in SO(X, \tau) \cap SC(X, \tau)$ for all $a \in \Delta$. Using (iii), there exists a finite subset Δ_0 of Δ such that $\bigcap_{a \in \Delta_0} sIntA_a = \phi = \bigcap_{a \in \Delta_0} A_a$.

 $(\mathbf{v}) \rightarrow (\mathbf{i})$. Let $\{A_a : a \in \Delta\}$ be any regular semi-open cover of X. Therefore, $\bigcap_{a \in \Delta} (X \setminus A_a) = \phi$ and by lemma 2.2, $X \setminus A_a \in RSO(X, \tau)$ for all $a \in \Delta$. Using (\mathbf{v}) , there exists a finite subset Δ_0 of Δ such that $\bigcap_{a \in \Delta_0} (X \setminus A_a) = \phi$. This implies that $\bigcup_{a \in \Delta_0} A_a = X$ and X is s^* -closed.

(i) \rightarrow (viii). Suppose that $\mathcal{F} = \{F_a : a \in \Delta\}$ is a maximal filterbase in X which does not s^* -converge to any point in X. Therefore, by lemma 3.1, \mathcal{F} does not s^* -accumulate to any point in X. This implies that for every $x \in X$, there exist $A(x) \in RSO(X, \tau)$ containing x and $F_{a(x)} \in \mathcal{F}$ such that $F_{a(x)} \cap A(x) = \phi$. Hence, the family $\{A(x) : x \in X\}$ is a regular semi-open cover of X and by the hypothesis, there is a finite subfamily $\{A(x_i) : i = 1, 2, \ldots, n\}$ such that $X = \bigcup_{i=1}^{n} A(x_i)$. Since \mathcal{F} is a filterbase in X, there exists an $F_0 \in \mathcal{F}$ such that $F_0 \subset \bigcap_{i=1}^{n} F_{a(x_i)}$. Accordingly, $F_0 \cap A(x_i) = \phi$ for all $i \in \{1, 2, \ldots, n\}$. This implies that

$$\phi = F_0 \cap \left(\bigcup_{i=1}^n A(x_i)\right) = F_0 \cap X,$$

i.e. $F_0 = \phi$. This is a contradiction and consequently, \mathcal{F} must s^* -converges to some point $x_0 \in X$.

 $(viii) \rightarrow (vii)$. Follows directly from lemma 3.1 and the fact that every filterbase is contained in a maximal filterbase.

(vii) \rightarrow (v). Let $\{A_a : a \in \Delta\}$ be a family of regular semi-open subsets of X such that $\bigcap_{\substack{a \in \Delta \\ n \in \Delta}} A_a = \phi$. Suppose that for every finite subfamily $\{A_{a_i} : i = 1, 2, \ldots, n\}$, $\bigcap_{i=1}^{n} A_{a_i} \neq \phi$. Therefore,

$$\mathcal{F} = \{\bigcap_{i=1}^{n} A_{a_i} : n \in N, \quad a_i \in \Delta\}$$

forms a filter base in X. Using (vii), $\mathcal{F} s^*$ -accumulates to some point $x_0 \in X$. This implies that, for every $A(x_0) \in RSO(X, \tau)$ containing $x_0, F \cap A(x_0) \neq \phi$ for every $F \in \mathcal{F}$. Since $\bigcap_{F \in \mathcal{F}} F = \phi$, there exists $F_0 \in \mathcal{F}$ such that $x_0 \notin F_0$, which implies that there exists $a_0 \in \Delta$ such that $x_0 \notin A_{a_0}$. Accordingly, $x_0 \in X \setminus A_{a_0}$ and $X \setminus A_{a_0} \in RSO(X, \tau)$ by using lemma 2.2. Therefore, there exists $a_0 \in \Delta$ such that $F_0 \cap (X \setminus A_{a_0}) = \phi$ contradicting the fact that $\mathcal{F} s^*$ -accumulates to x_0 . This completes the proof.

Theorem 3.6. Each s-regular and s^* -closed space is compact.

Proof. Let $\{G_a : a \in \Delta\}$ be any open cover of an *s*-regular and s^* -closed space (X,τ) . Then for each $x \in X$, there exists an $a(x) \in \Delta$ such that $x \in G_{a(x)}$. Since (X,τ) is *s*-regular, there exists $A(x) \in SO(X,\tau)$ such that $x \in A(x) \subset sClA(x) \subset G_{a(x)}$. Therefore, the family $\{sClA(x) : x \in X\}$ is a regular semi-open cover of (X,τ) (by using corollary 2.2). Since (X,τ) is s^* -closed, there exists a finite subfamily $\{A(x_i) : i = 1, 2, ..., n\}$ such that $X = \bigcup_{i=1}^n sClA(x_i) \subset \bigcup_{i=1}^n G_{a(x_i)}$, which completes the proof.

The following example shows that the condition of s-regularity in theorem 3.6 can not be dropped.

Example 3.1. Let X = (0,1) with the topology τ consisting of X, ϕ and

all subsets of X of the form (0, 1 - 1/n), where n = 2, 3, ... Then (X, τ) is neither *s*-regular nor compact, but it is s^* -closed because the only non-empty regular semi-open set in (X, τ) is X itself.

Using theorem 3.4 and lemma 4.1 of [11], we get the following result.

Corollary 3.1. Each extremally disconnected s-closed space is s^* -closed.

Using corollary 3.1 and theorem 3.4 of [4], we get the following reslut.

Corollary 3.2. If a spase (X, τ) is nearly compact (or quasi H-closed) and extremally disconnected, then (X, τ) is s^* -closed.

Using corollary 3.1 and theorem 3.5 of [4], we get the following result.

Corollary 3.3. Each almost regular and s-closed space is s^* -closed.

References

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, "β-open sets and β-continuous mappings", Bull. Fac. Sci. Assiut Univ. (1983) 1-18.
- [2] D. E. Cameron, "Properties of s-closed spaces", Proc. Amer. Math. Soc., 72 (1978), 581-586.
- [3] S. G. Crossley and S. K. Hildebrand, "Semi-closure, Taxas", J. Sci. 22 (2+3) (1971), 99-112.
- [4] R. A. Herrman, "RC-convergence", Proc. Amer. Math. Soc., 75 (1979), 311-317.
- [5] T. Husain, "Topology and maps", Plenum Press, 1977.
- [6] N. Levine, "Semi-open sets and semi-continuity in topological spaces", Amer. Math. Monthly, 70 (1963) 36-41 MR 29 # 4025.
- [7] S. N. Maheshwari and R. Prasad, "On s-regular spaces", Glasnik Mat. Ser. III 10(30) (1975), 347-350.
- [8] A. S. Mashour, M. E. Abd El-Monsef and S. N. El-Deeb, "On pre-continuous and week pre-continuous mappings", Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [9] O. Njastad, "On some classes of nearly open sets", Pacific J. Math. 15 (1965) 961-970.
- [10] T. Noiri, "On semi-continuous mappings", Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat. Natur 8 (54) (1973), 210-214.
- [11] T. Noiri, "Properties of s-closed spaces", Acta Math. Acad. Sci. Hung. 53 (3-4) (1980), 431-436.
- [12] J. Porter and J. Thomas, "On H-closed and minimal Hausdorff spaces", Trans. Amer. Math. Soc. 138 (1969), 159-170.
- [13] M. K. Singal S. P. Arya, "On almost regular spaces", Glasnik Mat. Ser. III (4) 24 (1969), 89-99.

- [14] M. K. Singal and A. Mathur, "On nearly compact spaces", Boll. Un. Math. Ital., (4) 2 (1969), 702-710.
- [15] S. F. Tadros and A. S. Abd Allah, "On some mappings of topological spaces", Accepted in Ain Shams Univ. Sci. Bull.
- [16] T. Thompson, "S-closed spaces", Proc. Amer. Math. Soc., 60 (1976), 335-338.

Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura, EGYPT.