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ON REGULAR SEMI-OPEN SETS AND S*-CLOSED SPACES

S. F. TADROS AND A. B. KHALAF

Abstract. In this note, the -egular semi-open sets, introduced in [2],
are further investigated. Using covers consisting of such sets, a new class
of topological spaces, called the s*-closed spaces, is defined and studied.

1. Preliminaries

By a space (X,7) we mean a topological space on which no separation
axiom is assumed. We recall the following definitions, notational conventions
and characterizations. The closure (interior) of a subset A of X is denoted by
ClIA (resp. IntA). A is called regular open (regular closed) iff A = IntCIA (resp.
A = ClIntA). The family of all regular open (regular élosed) subsets of (X, 7)
is denoted by RO(X,7) (resp. RC(X,7)). A set A is said to be semi— (a—,
pre—, B—) open subset of (X,7) ifl A C CllntA [6] (resp. A C IntClIntA
[9], A Cc IntCIA [8], A C CllntCIA [1] ). The complement of each semi—
(resp. a—, pre—, B—) open set is called a semi— (resp. a—, pre—,3—) closed
set. The family of all semi—open (a—open, pre—open, f—open, semi—closed,
a—closed, pre—closed, B—closed) subsets of (X, 7) is denoted by SO(X, 7) (resp.
«O(X,7), PO(X,1), BO(X,T), SC(X,T), aC(X,T), PC(X,T), BC(X,7)). The
semi—closure (semi—interior) of a set A, denoted by sCIA (resp. sIntA), is
defined in a natural way [3], A € SC(X,7) il sCIA = A and A € SO(X, 1) iff
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sInt4 = A. It is known that sClA = X \ sInt(X \ A) [3], sCIA = AUIntCIA and
slntiA = AN ClIntA [15]. A space (X, 7) is extremally disconnected iff CIG € 7
iorevery G € 7. A space (X, 7)is said to be quasi H —closed [12] (nearly compact
[14], s—closed [16]) iff for every cover {V, : a € A} of X such that V,, € 7 (resp.
Ve € T,-Va € SO(X, 7)) for all @ € A, there exists a finite subset Ay of A such

that X = |J CIV, (resp. X = J IntCiV,, X = |J CIV,). A space (X, 1)
a€lo a€lg a€lp
:s called almost regular [13] (s—regular [7]) iff for each G € RO(X,T) (resp.

2=y,

G € 7) containing a point z € X there exists U € 7 (resp. U € SO(X,T)) such
that z € U C CIU C G (resp. z € U C sCIU C G).

2 Regular Semi—Open Sets

Irefinition 2.1. A subset A of a space (X,7) is said to be a regular
cemi-oper set [2] iff A = sIntsClA. We shall dencte the class of all regular
s=mi-open subsets of a space (X, 7) by RSO(X, 7). It is clear that RSO(X,7) C

SOLX, 7).
Lemma 2.1. For any subset A of a space (X, 7).

IntClA C sIntsClA C ClIntClA

Proof. Straightforward.

Levama 2.2. Let (X,7) be any space. Then the foliowing statements are
squivalent,
(iy A€ RSO(X, 7).
(i) X\A e RSO(X,1).
(iii) A = sClsIntA.
(iv) A€ SO(X,7)n SC(X,T).
(v) there exists U € RO(X,7) such that U C A c CIU.

Proof. (i) — (ii) Let A € RSO(X,7). Then A = sIntsCIA. By lemma 2.1,
we deduce that IntCIA C A,ie. A € SC(X,7)and hence X\A = sIntsCl(X\A).
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Consequently, X \ A € RSO(X, 7).

(ii) — (iii). Obvious.

(iii) — (iv). Obvious.

(iv) = (v). Let A € SO(X,7)NSC(X,7). Then IntCIA C A C CiIntA.
Taking U = IntCIA € RO(X, 1), we get

U cC Aand A C ClintA C ClIntCIA = ClU,

i.e. there exists U € RO(X, 7) such that U C A C CIU.

(v)—(i). Let U € RO(X,t) such that U C A C ClA. Then CIU = CiA,
U = IntCIU = IntClA and so IntCIA C A. Now, since U C IntA and IntA C
IntCIA = U, so U = IntA and CIU = ClintA, which implies that A C ClIntA.
Accordingly,

sIntsClA = sCIA N ClintsClA
= (AU IntClA) N ClInt(AU IntCIA)
= ANCllntA = A,

i.e. A€ RSO(X,7). This completes the proof of the lemma.

Lemma 2.3. For any space (X, T),

RO(X,7)U RC(X,T) C RSO(X, ).

Proof. If A € RO(X,7) or A € RC(X,7), then A € SO(X,7) and A €
SC(X,r), which implies that A € RSO(X, ) by lemma 2.2.

Example 2.1. The inclusion relation in lemma 2.3 ,in general, cannot be
replaced by equality. As an example let X = {a,b,¢,d,}, 7 = {X,¢,{a},{b},
{a,b},{a,b,c}}. Then {a,c} € RSO(X,7) but {a,c} &€ RO(X,7)U RC(X, ).

We have the following diagram of implications, and any other, except those
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resulting by transitivity, can not be added, in general.

A€ RO(X,7) — A € RSO(X,7) — A € RC(X, )
! 4
A€ — A€a0(X,7) — A€ SO(X,r)
l ;
A€ PO(X,7) — A € BO(X,T)

As a sample we give the following example.

Example 2.2 Example 2.1 shows that
(i) 7 and RSO(X,7) may be not comparable, in general.
(ii) «0(X,7) and RSO(X,7) may be not comparable, in general.
(i) RO(X,7) # RSO(X,7) # RC(X,T), in general.
(iv) RSO(X, ), may be neither supratopology nor infratopology [5] on X, in

general.

Lemma 2.4. For any space (X,7), if A € RSO(X,7) and A C B C CIA,
then B € RSO(X,1).

Proof. By lemma 2.2, there exists U € RO(X,7) such that U ¢ A ¢ CIU.
Hence, U C B C CIU and B € RSO(X,7) by using lemma 2.2 again.

Lemma 2.5. For any space (X, 1), A € RSO(X, 1) iff there exist an open

set G and a closed set I' such thal

It ciGc AcFcCle

Proof. Straightforward.

Lemma 2.6. For any space (X, 1),

€

PO(X,7)N RSO(X,7) = RO(X,T)
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Proof. Suppose that A € PO(X,7)and A € RSO(X,7). Then A C IntCIA
and A = sIntsClA. Therefore,

A = sInt(AUIntClA) = sIntIntCIA = IntCiA,

ie. A € RO(X,7). The reverse implication follows directly from the above

diagram.
Corollary 2.1. For any space (X, T),

PC(X, 7)1 REO(X,v) = BRC(X, )

Proof. Obvious.

Remarks. Lemma 2.6 and corollary 2.1 may be not true in general even
if A€ BO(X,T) (resp. A € BC(X,7)) instead of A € PO(X, 1) (resp. A €
PC(X,7)). In example 2.1, {a,c} € BO(X,7) N RSO(X,7), but {a,c} &
RO(X,T).

Lemma 2.7. For each subset A of a space (X,T), the sets sIntsClA,

IntsClA, sIntClIA and IntClA are rgular semi—open sets.

Proof. We shall prove that sIntsClA € RSO(X,7) and the proof of the

other parts is then obvious. We have by lemma 2.1
IntClA C slntsClA C ClIntClA,
where IntCIA € RO(X,7). The result follows directly by using lemma 2.2.

Corollary 2.2. The closure and the semi—closure of a semi—open subset

A of a space (X, T) are regular semi—open.

Proof. Since A € SO(X,T), so ClA = ClIntA and sClA C ClIntsClA.
Therefore, CIA, sClA € SO(X, 7). But ClA, sCIA € SC(X,7), hence the result
follows by lemma 2.2.
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Corollary 2.3. For each subset A of a space (X,7), the sets ClIntA,
ClsIntA, sClIntA and sClsIntA are reqular semi—open.

Proof. This follows directly by corollary 2.2 and by observing that IntA,
slntA € SO(X, 7).

Lemma 2.8. For any space (X,7), if Y € aO(X,7) and A € RSO(X,T)
then ANY € RSO(Y,1y).

Proof. Since A € RSO(X,7),s0 A € SO(X,7)and X \ 4 € SO(X,7).
Therefore, ANY € SO(Y,7y) and (X \ A)NY € SO(Y,ry) [9]. But (X \
A)NY =Y\ (ANY) and hence Y \ (ANY) € SO(Y,ry). Consequently,
ANY € RSO(Y,y).

Lemma 2.8 may be not true, in general, even if Y € RSO(X,7), as the

following example shows.

Example 2.3. Taking V' = {a,c,d} and A = {b,c,d} in example 2.1, then
ANY € RSO(Y, ).

Lemma 2.9. For any space (X,7), if ¥ € RO(X,7) and A € RSO(Y,1,),
then A€ RSO(X, 7).

Proof. By lemma 2.2, we have A € SO(Y,7,) and Y \ 4 € SO(Y, 7). This
implies that A € SO(X,7) and Y \ A € SO(X,7) [10]. Since Y is regular open
in X, so it is regular semi—open in X and hence X \ Y € SO(X,7). Therefore,
(Y\A)U(X\Y)=X\A4¢€ SO(X,7). Accordingly, A € SC(X,7). By lemma
2.2, A€ RSO(X,7).

3. §*—Closed Spaces

Definition 3.1. A filterbase F in a space (X, 7) s*—converges to a point
zo € X iff for each A € RSO(X,7) such that 29 € A, there exists an F € F
such that F' C A.
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Definition 3.2. A filterbase F in a space (X, 7) s*—accumulates to zg € X
iff for each A € RSO(X,7) such that zo € A and each F € F, Fn A # ¢.

The following lemma is an easy consequence of the above definitions.

Lemma 3.1. If F is a mazimal filterbase in a space (X, 7), then F s*—accu-

nmulates to zg € X iff F s*—converges to zg.

Theorem 3.1. A filterbase F in a space (X,7) s*—converges to g € X
iff for each A € SO(X,T) such that xg € A, there exists an F € F such that
F c sCIA.

Proof. (Necessity). Suppose that F s*—converges to zo € X and A €

SO(X, ) such that 29 € A. By corollary 2.2, sCIA € RSO(X,7) and zo € sCIA.
Therefore, there exists an F' € F such that F' C sClA.

(Sufficiency). Let the condition be satisfied and let A € RSO(X,7) such
that zg € A. Then A € SO(X,7) and therefore, there exists an F' € F such
that F C sClIA. By lemma 2.2, A € SC(X,7). Consequently, sC/A = A and
the proof is complete.

The following theorem can be proved similarly.

Theorem 3.2. A filterbase F in a space (X, 1) s*—accumulates to zog € X
iff for each A € SO(X, 1) such taht o € A and each F € F, FNsCIA # ¢.

Definition 3.3. A space (X, 1) is said to be s*—closed space iff each regular

semi—open cover of X has a finite subcover.
Theorem 3.3. Fach s*—closed space is nearly compact and s—closed.

Proof. Obvious.
It is known that the one point compactification of a finite discrete space
is not s—closed [16], and by theorem 3.3, is therefore not s*—closed. But it is

nearly compact.

Theorem 3.4. A space (X, 1) is s*—closed iff for each semi—open cover
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{4. : o € A} of X, there ezxists a finite subset Ay of A such that X =

IU sCiA,.
a€lp

Proof. (Necessity). Let (X,7) be s*—closed and {4, : @ € A} be a
semi—open cover of X. By corollary 2.2, we have sCl4, € RSO(X, ) for every

a € Aand X = [J sClA,. Therefore, there exists a finite subset Ay of A such
c€EA
that X = | ] sCid,.
a€lAo
(Sufficiency). Let {A, : « € A} be any regular semi—open cover of X.

Then, by lemma 2.2, A, € SO(X,7) and A, € SC(X,7), for each a € A.

Therefore, by the hypothesis, there exists a finite subset Ag of A such that

X = U sClA, = U -

a€lop a€ébp

which shows that (X, 7) is s*—closed.

Theorem 3.5. For any space (X, 1), the following statements are equiva-
lent.
(i) (X,7) is s*—closed.
(ii) For each semi—open cover {A, : a € A} of X, there ezists a finite subset

Ao of A such that X = |J sClA,.
a€lAyp
(iii) For each family {F, : a € A} of semi—closed subsets of X such that

(| Fo = ¢, there exists a finite subset Ag of A such that N F,=¢.
(iv) ;‘oerl'leach family {F, : a € A} of semi—closed subsets of X, z';efA]o sIntF, # ¢
Jor every finite subset Ay of A, then () F, # ¢. "t
(v) for each family {A, : « € A} of regul(:;Asemi—open subsets of X such that

(1 Ao = @, there exists a finite subset Ag of A such that [l da=1d.
agl a€lAp g
(vi) for each family {A, : a € A} of regular semi—open subsets of X, if (| A,

aEAo
# & for every finite subset Ay of A, then N A # ¢.
acA
(vii) Ewery filterbase F in X s*—accumulates to some point zg € X.

(viii) Every mazimal filterbase F in X s*—converges to some point o € X.
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Proof. By theorem 3.4 we have (i)« (ii) and the equivalencies (iii)«(iv)

and (v)«(vi) are obvious.

(ii)—(ii1). Let {F, : a € A} be a family of semi—closed subsets of X such

that [| F, = ¢. Therefore, X = |J (X\F,), where X \ F, € SO(X, 1) for all
a€A a€A
a € A. By (ii), there exists a finite subset Ag of A such that

X = |JsCx\F) = |J (X\sIntF,) = X\( () sIntF.),

a€lg a€lg a€lg
which implies that [\ slntF, = ¢.
GEAO
(iii)—(v). Let {A, : @« € A} be a family of regular semi—open subsets of X

such that (] A, = ¢. By lemma 2.2, A, € SO(X,7)NSC(X, ) for all a € A.
a€EA
Using (iii), there exists a finite subset Ay of A such that [} sIntd, = ¢ =

a€lo
N A
G.EAQ
(v)—(i). Let {A, : @ € A} be any regular semi—open cover of X. There-

fore, (] (X \ Az) = ¢ and by lemma 2.2, X \ A, € RSO(X,7) for all a € A.
a€A
Using (v), there exists a finite subset Ag of A such that [ (X\ A,) = ¢. This
a€lAg
implies that |J A, = X and X is s*—closed.
[ATAY)

(i)—(viii). Suppose that F = {F, : @ € A} is a maximal filterbase in X
which does not s*—converge to any point in X. Therefore, by lemma 3.1, F does
not s*—accumulate to any point in X. This implies that for every z € X, there
exist A(z) € RSO(X,) containing z and F,(,) € F such that Fapay NA(Z) = ¢
Hence, the family {A(z) : « € X} is a regular semi—open cover of X and by
the hypothesis, there is a finite subfamily {A(z;) : ¢ = 1,2,...,n} such that
A = CJ A(z;). Since F is a filterbase in X, there exists an Fp € F such that

i=1
o C ‘51 Fazy- Accordiugly, o N A(e;) = ¢ for all ¢ € {1,2,...,n}. This
i=

implies that l
Ti

¢ = Rn({JA@) = RNk,

=]
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i.e. Fy = ¢. This is a contradiction and consequently, 7 must s*—converges to
some point 29 € X.
(viii)—(vii). Tollows directly from lemma 3.1 and the fact that every

filterbase is contained in a maximal filterbase.

(vii)—(v). Let {A, : a € A} be a family of regular semi—open subsets of

X such that [) A, = ¢. Suppose that for every finite subfamily {A,, : i =
a€EA

Li2esss sl ﬂ A, # ¢. Therefore,
1=1

F = {ﬂAai:nEN, a; € A}

forms a filter base in X. Using (vii), F s*—accumulates to some point zo € X.
This implies that, for every A(zo) € RSO(X, T) containing zo, F N A(zo) # ¢
for every F' € F. Since [)| I = ¢, there exists Iy € F such that zo &€ Fy, which
implies that there existgii: € A such that 2o € A,,. Accordingly, z¢ € X \ 4,,
and X \ A,, € RSO(X,7) by using lemma 2.2. Therefore, there exists ap € A
such that Fo N (X \ Ag,) = ¢ contradicting the fact that F s*—accumulates to

zo. This completes the proof.
Theorem 3.6. Each s—regular and s*—closed space is compact.

Proof. Let {G, : a € A} be any open cover of an s—regular and s*—closed
space (X, 7). Then for each z € X, there exists an a(z) € A such that
T € Ggy(z). Since (X,7) is s—regular, there exists A(z) € SO(X,7) such that
z € A(z) C sClA(z) C Ggy(z). Therefore, the family {sClA(z) : z € X} is
a regular semi—open cover of (X,7) (by using corollary 2.2). Since (X,7) is
s —closed there exists a finite subfamily {A(z;) : ¢ = 1,2,...,n} such that

X = U sClA(z;) C U G o(z;)» Which completes the proof.

The following example shows that the condition of s—regularity in theorem

3.6 can not be dropped.

Example 3.1. Let X = (0,1) with the topology 7 consisting of X, ¢ and
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all subsets of X of the form (0,1 — 1/n), where n = 2,3,.... Then (X,7) is

neither s—regular nor compact, but it is s*—closed because the only non—empty

regular semi—open set in (X, 7) is X itself.

and

[1]
(2]

[4]

[13]

Using theorem 3.4 and lemma 4.1 of [11], we get the following result.

Corollary 3.1. Fach extremally disconnected s—closed space is s*—closed.

Using corollary 3.1 and theorem 3.4 of [4], we get the following reslut.

Corollary 3.2. If a spase (X, ) is nearly compact (or quasi H—closed)

exiremally disconnected, then (X, 1) is s*—closed.

Using corollary 3.1 and theorem 3.5 of [4], we get the following result.

Corollary 3.3. Each almost regular and s—closed space is s*— closed.
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