RINGS WITH ASSOCIATORS IN THE LEFT AND MIDDLE NUCLEUS

CHEN-TE YEN

Abstract. Let R be a nonassociative ring, N, M and L the left, middle and right nucleus respectively. It is shown that if R a semiprime ring satisfying $(R, R, R) \subset N \cap M$ (resp. $(R, R, R) \subset M \cap L)$, then $L \subset M \subset N$ (resp. $N \subset M \subset L$); moreover, R is associative if $((R, R, M),(R, R, R))=0(\operatorname{resp} .((M, R, R),(R, R, R))=0)$ or $(M, R) \subset$ M; and the Abelian group $(R,+)$ has no elements of order 2. We also prove that if R is a simple ring satisfying char $R \neq 2$, and $(R, R, R) \subset$ $N \cap M$ or $(R, R, R) \subset M \cap L$ then R is associative.

1. Introduction

Let R be a nonassociative ring. We adopt the usual notation for associators and commutators: $(x, y, z)=(x y) z-x(y z),(x, y)=x y-y x$. We shall denote the left nucleus, middle nucleus, right nucleus and nucleus by N, M, L and G respectively. Thus N, M, L and G consists of all elements n such that $(n, R, R)=0$, $(R, n, R)=0,(R, R, n)=0$ and $(n, R, R)=(R, n, R)=(R, R, n)=0$ respectively. A ring R is called prime if the product of any two nonzero ideals is nonzero. R is called semiprime if the only ideal of R which squares to zero is the zero ideal. Kleinfeld [2] weakened Thedy's hypotheses [3] to obtain the following result: If R is a prime ring which satisfies $(x, R, x) \subset N$ and $(R, R) \subset N$, then

Received November 1, 1991; revised May 9, 1992.
1980 Mathematics Subject Classification (1985 Revision).
Primary 17A. 30.
Key words and phrases: Nonassociative ring, semiprime ring, prime ring, simple ring.
R is either associative or commutative. In the notes [4,5,6,7], we weaken Kleinfeld's hypotheses to obtain the same result. In [1], Kleinfeld proved that if R is a semiprime ring satisfying $(R, R, R) \subset G$ and the Abelian group $(R,+)$ has no elements of order 2 , then R is associative. In [8], using Kleinfeld's result we improve his result as follows: If R is a semiprime ring satisfying $(R, R, R) \subset N \cap L$, and the Abelian group $(R,+)$ has no elements of order 2 , then R is associative. In [7], using his result we prove that if R is a semiprime ring which satisfies $(R, R, R) \subset N$ and the Abelian group $(R,+)$ has no elements of order 2 and $(N, R) \subset N$ then R is associative. In this note, using his result we show the following: If R is a semiprime ring satisfying $(R, R, R) \subset N \cap M$ (resp. $(R, R, R) \subset M \cap L)$, then $L \subset M \subset N$ (resp. $N \subset M \subset L$); moreover, R is associative if $((R, R, M),(R, R, R))=0(\operatorname{resp} .((M, R, R),(R, R, R))=0)$ or $(M, R) \subset M$; and the Abelian group $(R,+)$ has no elements of order 2. We also prove that if R is a simple ring satisfying $(R, R, R) \subset N \cap M$ or $(R, R, R) \subset M \cap L$; and char $R \neq 2$ then R is associative.

2. Results

Let R be a nonassociative ring. In every ring one may verify the identity

$$
\begin{equation*}
(w x, y, z)-(w, x y, z)+(w, x, y z)=w(x, y, z)+(w, x, y) z \tag{1}
\end{equation*}
$$

Suppose that $n \in N$. Then with $w=n$ in (1) we obtain

$$
\begin{equation*}
(n x, y, z)=n(x, y, z) \quad \text { for all } \quad n \text { in } N \tag{2}
\end{equation*}
$$

Assume that $m \in L$. Then with $z=m$ in (1) we get

$$
\begin{equation*}
(w, x, y m)=(w, x, y) m \quad \text { for all } \quad m \text { in } L \tag{3}
\end{equation*}
$$

As consequences of (1), (2) and (3), we have that N, M and L are associative subrings of R.

We assume that R satisfies

$$
\begin{equation*}
(R, R, R) \subset N \cap M \tag{*}
\end{equation*}
$$

Using (1) and (*) we have

$$
\begin{equation*}
w(x, y, z)+(w, x, y) z \in N \cap M \tag{4}
\end{equation*}
$$

Then with $y \in M$ in (4), we get

$$
\begin{equation*}
(R, R, M) R \subset N \cap M \tag{5}
\end{equation*}
$$

Combining (5) with (*), and using (2) we obtain

$$
\begin{equation*}
(R, R, M)(R, R, R)=0 \tag{6}
\end{equation*}
$$

And with $x \in(R, R, M)$ in (1), and applying $\left(^{*}\right)$ and (5) we get

$$
\begin{equation*}
R(R, R, M) \subset N \tag{7}
\end{equation*}
$$

Thus with $z \in M$ in (4), and using (7) we obtain $(R, R, R) M \subset N$. Applying this, (*) and (2) we have

$$
\begin{equation*}
(R, R, R)(M, R, R)=0 \tag{8}
\end{equation*}
$$

Then with $z \in L$ in (4), we get

$$
\begin{equation*}
(R, R, R) L \subset N \cap M \tag{9}
\end{equation*}
$$

Definition 1. Let I be the associator ideal of R. I consists of the smallest ideal which contains all associators.

Note that I may be characterized as all finite sums of associators and right (or left) multiples of associators, as a consequence of (1). Hence we have

$$
\begin{equation*}
I=(R, R, R)+(R, R, R) R=(R, R, R)+R(R, R, R) \tag{10}
\end{equation*}
$$

Then with $x \in(R, R, R)$ and $y \in L$ in (1), and using (*) and (9) we obtain $(R(R, R, R), L, R)=0$. By $(*)$ and (10), this implies $(I, L, R)=0$. Thus it follows from this, $(*),(2)$ and (10) that

$$
\begin{equation*}
(R, R, R)(R, L, R)=0 \tag{11}
\end{equation*}
$$

Definition 2. Let $B=\{b \in I:(R, R, R) b=0\}$.

Lemma 1. If R is a ring satisfying $(R, R, R) \subset N \cap M$, then B is an ideal of R and $I \cdot B=0$.

Proof. Assume that $b \in B, x, y, z, w \in R$. Then using (*), we have $(x, y, z)(b w)=((x, y, z) b) w=0$. Thus $b R \subset B$. On the other hand, applying (*) twice and (1) we obtain $(w, x, y)(z b)=((w, x, y) z) b=-(w(x, y, z)) b=$ $-w((x, y, z) b)=0$. Hence $R b \subset B$. At this point we have verified that B is an ideal of R. Obviously, we get $(R, R, R) B=0$ and $((R, R, R) R) B=0$. Thus by (10) we obtain $I \cdot B=0$, as desired.

Lemma 2. If R is a ring satisfying $(R, R, R) \subset N \cap M$ and $(R, R, R) N \subset$ M, then $(R, R, R)(R, N, R)=0$.

Proof. Assume that $(R, R, R) N \subset M$. Then with $x \in(R, R, R)$ and $y \in N$ in (1), and using (*) we obtain $(R(R, R, R), N, R)=0$. Applying this, (*) and (10), we have $(I, N, R)=0$. Thus this implies $(R, R, R)(R, N, R)=0$, as desired.

Then with $w \in N$ in (4), we have

$$
\begin{equation*}
N(R, R, R) \subset N \cap M \tag{12}
\end{equation*}
$$

Also with $x \in N$ in (4), we get $(R, N, R) R \subset N \cap M$. Using this, (*) and (2), we obtain

$$
\begin{equation*}
(R, N, R)(R, R, R)=0 \tag{13}
\end{equation*}
$$

Then with $x \in N$ and $y \in(R, R, R)$ in (1), and applying (*) and (12), we have

$$
\begin{equation*}
(R, N,(R, R, R) R)=(R, N,(R, R, R)) R \tag{14}
\end{equation*}
$$

Theorem 1. If R is a semiprime ring satisfying $(R, R, R) \subset N \cap M$, then $G=L \subset M \subset N$; moreover, R is associative if $((R, R, M),(R, R, R))=0$ or $(M, R) \subset M$; and the Abelian group $(R,+)$ has no elements of order 2.

Proof. Using Lemma 1 , we have $B^{2}=0$. Thus by semiprimeness of R, we obtain $B=0$. Applying (8) and (11), we get $(M, R, R) \subset B$ and $(R, L, R) \subset B$. Hence we have $(M, R, R)=(R, L, R)=0$, and so $G=L \subset M \subset N$.

Assume that $((R, R, M),(R, R, R))=0$. Then using this and (6) we obtain $(R, R, R)(R, R, M)=0$. Thus we get $(R, R, M) \subset B$ and so $(R, R, M)=0$. Hence $M=L=G$. Thus $(R, R, R) \subset G$. By Kleinfeld's result [1], R is associative.

Assume that M is a Lic ideal of R. Combining this with (12) yields $(R, R, R) N \subset M$. Applying Lemma 2, we have $(R, N, R) \subset B$ and so $(R, N, R)=$ 0 . Thus $N=M$. Hence $(R, R, R) \subset N$ and $(N, R) \subset N$. By Theorem 1 of [7], R is associative.

Definition 3. Let $A=\{a \in I: a(R, R, R)=0\}$.
Recall that a ring R is called simple if R is the only nonzero ideal of R. Thus, a simple ring is prime if $R^{2} \neq 0$, and a prime ring is semiprime.

Theorem 2. If R is a simple ring satisfying $(R, R, R) \subset N \cap M$, and char $R \neq 2$, then R is associative.

Proof. By simplicity of R, we have $R^{2}=0$ or $R^{2}=R$; and $I=0$ or $I=R$. If $R^{2}=0$ or $I=0$, then R is associative. Assume that $R^{2}=R$ and $I=R$.

Thus by (10) and (*), we have $R=R^{2}=((R, R, R)+(R, R, R) R) R=$ $(R, R, R) R+(R, R, R)\left(R^{2}\right)=(R, R, R) R$. Hence using this, (14) and (13), we obtain $(R, N, R)=(R, N,(R, R, R) R)=(R, N,(R, R, R)) R=$ $(R, N,(R, R, R))((R, R, R) R)=((R, N,(R, R, R))(R, R, R)) R=0$. Thus we have $N \subset M$. Combining this with Theorem 1 yields $N=M$. Then with $y \in N$ in (4), we obtain $(R, R, N) R \subset N$. Combining this with $(*)$ yields $(R, R, N)(R, R, R)=0$. Hence $(R, R, N) \subset A$. Assume that $a \in A$ and $x \in R$. Then $a(R, R, R)=0$, and using (*) we get $a R=a((R, R, R) R)=$ $(a(R, R, R)) R=0$. Thus $A=\{a \in R: a R=0\}$. Obviously, $A \subset N$. Because of $N=M$, we obtain $(a x) R=0$ and $(x a) R=x(a R)=0$. Hence A is an ideal of R. By simplicity of R and $R^{2}=R$, we have $A=0$. Thus, $(R, R, N) \subset A$ implies
$(R, R, N)=0$. Hence $N=L=G$ by Theorem 1. Thus $(R, R, R) \subset G$. By Kleinfeld's result [1], R is associative. This contradicts to $I=R$. Hence $I=0$. Therefore R is associative.

By symmetry, we can prove the following:
Lemma 3. If R is a ring satisfying $(R, R, R) \subset M \cap L$, then A is an ideal of R and $A \cdot I=0$.

Theorem. 3. If R is a semiprime ring satisfying $(R, R, R) \subset M \cap L$, then $G=N \subset M \subset L$; moreover, R is associative if $((M, R, R),(R, R, R))=0$ or $(M, R) \subset M$; and the Abelian group $(R,+)$ has no elements of order 2.

Theorem 4. If R is a simple ring satisfying $(R, R, R) \subset M \cap L$, and char $R \neq 2$, then R is associative.

Using the result of [4], we can improve the result of [5] as follows:
Theorem 5[5]. If R is a prime ring with $N \neq 0$ satisfying $(x, y, z)+$ $(z, y, x) \in N$ and $(N+N R, R) \subset N$, then R is either associative or commutative.

Added in proof. In [7], we have proved that if R is a prime ring which satisfies $(x, y, z)+(z, y, x) \in N,(N, R) \subset N$ and $((R, R), R, R) \subset N$ then either $(N, R)=0$ or char $R=2$ or R is associative. By adding the hypothesis " $(R, R), R, R) \subset N$ " in the Main Theorem of [5], we obtain Thedy's and Kleinfeld's results for the semiprime ring case. This result is in [7]: If R is a semiprime ring which satisfies $(x, y, z)+(z, y, x) \in N,(N, R) \subset N,(N R, R) \subset N$ and $((R, R), R, R) \subset N$, then R is a subdirect sum of a semiprime associative ring and a semiprime commutative ring.

References

[1] E. Kleinfeld, "A class of rings which are very nearly associative", Amer. Math. Monthly, 93 (1986), 720-722.
[2] E. Kleinfeld, "Rings with (x, y, x) and commutators in the left nucleus", Comm. in Algebra, 16 (1988), 2023-2029.
[3] A. Thedy, "On rings with commutators in the nuclei", Math. Z., 119 (1971), 213-218.
[4] C. T. Yen, "Rings with $(x, y, z)+(z, y, x)$ and $\left(N+R^{2}, R\right)$ in the left nucleus", unpublished manuscript.
[5] C. T. Yen, "Rings with (x, R, x) and ($N+N R, R$) in the left nucleus", Tamkang J. Math., 23 (1992), 247-251.
[6] C. T. Yen, "Rings with $(x, y, z)+(z, y, x)$ and (N, R) in the left nucleus", submitted.
[7] C. T. Yen, "Rings with $(x, y, z)+(z, y, x),(N, R)$ and $((R, R), R, R)$ in the left nucleus", submitted.
[8] C. T. Yen, "Rings with associators in the left and right nucleus", submitted.

Department of Mathematics, Chung Yuan Christian University, Chung Li, Taiwan, 320, Republic of China.

