ON THE $\|T\| \cdot C_{1}$ SUMMABILITY OF A SEQUENCE OF $\mathbb{F O U R I E R}$ COEFFICIENTS

M.L. MITTAL, G.PRASAD AND RAJESH KUMAR

Abstract

Mohanty and Nanda (1959) were the first to establish a result for the $(C, 1)$ i.e. C_{1}-summability of the sequence $\left\{n B_{n}(x)\right\}$. Varshney (1959) improved the result for $\left(N, \frac{1}{n+1}\right) \cdot C_{1}$ summability which was generalised by several investigators such as Sharma (1970), Singh (1963), Lal (1971), Khare and Singh (1988) etc. In this note, we have discussed $\|T\| \cdot C_{1}$-summability of the sequence $\left\{n B_{x}(x)\right\}$ which includes the result due to Khare and Singh (1988).

1. Let Σu_{n} be a given infinite series with the sequence of partial sum $\left\{s_{n}\right\}$. Let $\|T\| \equiv\left(a_{n, k}\right)$ be infinite triangular matrix with real constants. Then sequence-tosequence transformation.

$$
t_{n}=\sum_{k=0}^{n} a_{n, k} s_{k}, \quad n=0,1,2, \cdots ;
$$

defines the T-transform of the sequence $\left\{s_{n}\right\}$. Recall that the matrix elements $a_{n, k}=0$ for each $k>n$, then the matrix is called triangular. The series Σu_{n} is said to be T-summable to s, if $\lim _{n \rightarrow \infty} t_{n}=s$

The regularity conditions for T-method are :
(1) There exists a constant $K: \sum_{k=0}^{n}\left|a_{n, k}\right|<K$, for each n;
(2) For every $k, \lim _{n \rightarrow \infty} a_{n, k}=0$; and
(3) $\lim _{n \rightarrow \infty} \Sigma_{0}^{n} a_{n, k}=1$.

The matrix T-reduces to Nörlund matrix generated by the sequence of coefficients $\left\{p_{n}\right\}$ if

$$
a_{n, k}= \begin{cases}p_{n-k} / P_{n}, & \text { if } k \leq n ; \\ 0, & \text { if } k>n ;\end{cases}
$$

where $P_{n}=\sum_{r=0}^{n} p_{r} \neq 0$.

Received Oct. 24, 1989.

If the method of summability $\|T\|$ is applied to Cesaro means of order one, another method of summability $\|T\| \cdot C_{1}$ is obtained.
2. Let $f(x)$ be a periodic function with period 2π and integrable in the sense of Lebesgue over an interval $(-\pi, \pi)$. Let the Fourier-series of $f(x)$ be

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} A_{n}(x) \tag{2.1}
\end{equation*}
$$

and the series conjugate to (2.1) is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n x-a_{n} \sin n \pi\right) \equiv \sum_{n=1}^{\infty} B_{n}(x) \tag{2.2}
\end{equation*}
$$

We write

$$
\begin{aligned}
\phi(t) & =f(x+t)-f(x-t) \\
\Psi(t) & =f(x+t)-f(x-t)-\ell \\
\Psi_{1}(t) & =\int_{0}^{t}|\psi(x)| d u \\
A_{n, r} & =\sum_{k=r}^{n} a_{n, k}
\end{aligned}
$$

where ℓ is a constant, and $\mathcal{T}=[1 / t]$ the integral part of $1 / t$.

3. Mohanty and Nanda (1954) proved the following theorem :

Theorem A. If

$$
\begin{align*}
& \Psi(t)=o(1 / \log (1 / t)) \text { as } t \rightarrow 0 \tag{3.1}\\
& \quad \text { and } \\
& a_{n}=O\left(n^{-\delta}\right) ; b_{n}=O\left(n^{-\delta}\right), O<\delta<1
\end{align*}
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $(C, 1)$ to the value ℓ / π.
From this result they have deduce a well known criterion, the Hardy and Littlewood's test for the convergence of the conjugate series (2.2). Varshney (1959) improved Theorem A in the follwing form :

Theorem \mathbb{B}. If

$$
\begin{equation*}
\int_{0}^{t}|\Psi(u)| d u=o\left(\frac{t}{\log 1 / t}\right), \text { as } t \rightarrow 0 \tag{3.2}
\end{equation*}
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $(N, 1 / n+1)$. C_{1} to the value ℓ / π.
Result of Varshney was generalised by several workers for $\left(N, p_{n}\right) \cdot C_{1}$ summability of the sequence $\left\{n B_{n}(x)\right\}$ such as Sharma (1970), Lal (1971) using monotonocity on $\left\{p_{n}\right\}$. Dropping the monotonocity, very recently Khare and Singh (1988) proved (N, p_{n}) $\cdot C_{1}$ summability of the sequence $\left\{n B_{n}(x)\right\}$. They proved:

Theorem C. Let $\left(N, p_{n}\right)$ be a reqular Nörlund method defined by a sequence $\left\{p_{n}\right\}$ of complex numbers such that

$$
\begin{equation*}
\sum_{k=1}^{n} k\left|p_{n-k}-p_{n-k-1}\right|=O\left(\left|P_{n}\right|\right), \text { as } n \rightarrow \infty \tag{3.3}
\end{equation*}
$$

If

$$
\begin{equation*}
\Psi(t)=o(1), \text { as } t \rightarrow 0+ \tag{3.4}
\end{equation*}
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $\left(N, p_{n}\right) \cdot C_{1}$ to the value ℓ / π.
4. Now we extend the above theorem to $\|T\| \cdot C_{1}$ - summability of the sequence $\left\{n B_{n}(x)\right\}$. We prove the following theorem:

Theorem: Let $\|T\| \equiv\left(a_{n, k}\right)$ be an infinite triangular matrix with $a_{n, k} \geq 0$ with $A_{n, 0}=1, \forall n \geq 0$ and $\left\{a_{n, k}\right\}_{k=0}^{n}$ satisfy

$$
\begin{equation*}
\sum_{1}^{n} k\left|a_{n, k}-a_{n, k+1}\right|=O(1), \text { as } n \rightarrow \infty \tag{4.1}
\end{equation*}
$$

If

$$
\begin{equation*}
\Psi_{1}(t)=o(t) \text { as } t \rightarrow 0+ \tag{4.2}
\end{equation*}
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $\|T\| \cdot C_{1}$ to the value ℓ / π.
We note that condition (4.1) in the case of $\left(N, p_{n}\right) \cdot C_{1}$ summability reduce to condition (3.3), while condition (3.4) implies condition (4.2).

5. Proof of the Theorem:

If we denote the C_{1} transformation of the sequence $\left\{n B_{n}(x)\right\}$ by σ_{n}, we have, after Mohanty and Nanda (1954), that

$$
\sigma-\ell / \pi=\frac{1}{\pi} \int_{0}^{\pi} \Psi(t)\left[\frac{\sin n t}{n t^{2}}-\frac{\cos n t}{t}\right] d t+o(1)
$$

Since the method of summability under consideration is regular, we have to show that under the conditions of our theorem.

$$
\begin{aligned}
I & =\int_{0}^{\pi} \frac{\Psi(t)}{\pi} \sum_{k=1}^{n} a_{n, k}\left(\frac{\sin k t}{k t^{2}}-\frac{\cos k t}{t}\right) d t \\
& =o(1) \text { as } n \rightarrow \infty
\end{aligned}
$$

where

$$
\begin{aligned}
\left|I_{2,1}\right| & \leq \sum_{k=N}^{n}\left|a_{n, k}-a_{n, k+1}\right| \int_{1 / k}^{\delta} t^{-2}|\Psi(t)| d t \\
& =\sum_{k=N}^{n}\left|a_{n, k}-a_{n, k+1}\right|\left\{\left[t^{-2} \Psi_{1}(t)\right]_{1 / k}^{\delta}+\int_{1 / k}^{\delta} t^{-3} \Psi_{1}(t) d t\right\} \\
& =\sum_{N}^{n}\left|a_{n, k}-a_{n, k+1}\right|\left[o\left(t^{-1}\right)_{1 / k}^{\delta}+o\left(\int_{1 / k}^{\delta} t^{-2} d t\right)\right] \\
& =o\left[\sum_{N}^{n} k\left|a_{n, k}-a_{n, k+1}\right|\right]=o(1) . \\
\left|I_{2,2}\right| & \leq \sum_{k=N}^{n} a_{n, k+1} \int_{1 / k+1}^{1 / k}|\Psi(t)| t^{-2} d t \\
& =\sum_{k=N}^{n} a_{n, k+1}\left[\left\{t^{-2} \Psi_{1}(t)\right\}_{1 / k+1}^{1 / k}+\int_{1 / k+1}^{1 / k} t^{-3} \Psi_{1}(t) d t\right] \\
& =\sum_{N}^{n} a_{n, k+1}\left[o\left(t^{-1}\right)_{1 / k+1}^{1 / k}+o\left(\int_{1 / k+1}^{1 / k} t^{-2} d t\right)\right] \\
& =o\left(\sum_{N}^{n} \frac{\left|a_{n, k+1}\right|}{k(k+1)}=o(1) .\right.
\end{aligned}
$$

Having fixed δ we are to show that $I_{3} \rightarrow 0$ as $n \rightarrow \infty$. But this follows by RiemannLebesgue theorem and regularity of the method.

This proves the theorem.

References

[1] Khare,S.P. and Singh,Man, "A study of the sequence of Fourier Coefficients", Bull. Cal. Math. Soc. 80, (1988) 161.
[2] Lal,S.N., "On the Nörlund Summability of Fourier Series and the behaviour of Fourier Coefficient", Indian Jl. Math. 13, (1971) 177.
[3] Mohanty,R. and Nanda,M., "On the behaviour of Fourier Coefficients", Proc. Amer. Math. Soc. 5, (1954) 79.
[4] Sharma,R.M., "On $\left(N, p_{n}\right) \cdot C_{1}$ summability of the sequence $\left\{n B_{n}(x)\right\}$ ", Rend. Circ. Palermo 2, 19, (1970) 217.
[5] Varshney,O.P., "On a sequence of Fourier Coefficients", Proc. Amer. Math. Soc. 10, (1959) 790.

Assume that, $\exists \delta(0<t \leq \delta)$:
$a_{n, m}=0$ for every positive integer $m \leq[1 / \delta]$.
Therefore

$$
I=\int_{0}^{\pi} \frac{1}{\pi} \sum_{k=N}^{n} a_{n, k} \Psi(t) h_{k}(t) d t
$$

where $N=[1 / \delta]+1$ and

$$
h_{k}(t)=\frac{\sin k t}{k t^{2}}-\frac{\cos k t}{t}
$$

Let us write

$$
\begin{aligned}
\pi I & =\sum_{k=N}^{n} a_{n, k} \int_{0}^{\pi} \Psi(t) h_{k}(t) d t \\
& =\sum_{N}^{n} a_{n, k}\left[\int_{0}^{1 / k}+\int_{1 / k}^{\delta}+\int_{\delta}^{\pi}\right) \Psi(t) h_{k}(t) d t \\
& =I_{1}+I_{2}+I_{3}, \quad \text { say. }
\end{aligned}
$$

Now

$$
\begin{aligned}
\left|I_{1}\right| & =\left|\sum_{N}^{n} a_{n, k} \int_{0}^{1 / k} \Psi(t) h_{k}(t) d t\right| \\
& \leq \sum_{N}^{n} a_{n, k} \int_{0}^{1 / k} k^{2} t|\Psi(t)| d t \\
& \leq \sum_{N}^{n} k a_{n, k} \int_{0}^{1 / k}|\Psi(t)| d t \\
& =o\left(\sum_{N}^{n} a_{n, k}\right)=o(1)
\end{aligned}
$$

and

$$
\begin{aligned}
I_{2} & =\frac{1}{\pi} \sum_{N}^{n} a_{n, k} \int_{1 / k}^{\delta} \Psi(t) h_{k}(t) d t \\
& =\frac{1}{\pi} \sum_{N}^{n} a_{n, k} \int_{1 / k}^{\delta} \Psi(t)\left[H_{k}(t)-H_{k-1}(t)\right] d t
\end{aligned}
$$

where

$$
\begin{aligned}
H_{k}(t) & =\frac{1}{t^{2}} \sum_{m=1}^{k} \frac{\sin m t}{m}-\frac{1}{t} \sum_{1}^{k} \cos m t \\
& =O\left(t^{-2}\right) \text { for } \pi \geq t>0 \text { as easily seen. }
\end{aligned}
$$

Thus

$$
\begin{aligned}
I_{2} & =\frac{1}{\pi} \sum_{k=N}^{n}\left(a_{n, k}-a_{n, k+1}\right) \int_{1 / k}^{\delta} \Psi(t) H_{k}(t) d t-\frac{1}{\pi} \sum_{k=N}^{n} a_{n, k+1} \int_{1 /(k+1)}^{1 / k} \Psi(t) H_{k}(t) d t \\
& =I_{2,1}+I_{2,2}, \text { say },
\end{aligned}
$$

