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ON THE IITll · C1 SUMMABILITY OF A SEQUENCE 
OF FOURIER COEFFICIENTS 

M.L. MITTAL, G.PRASAD AND RAJESH KUMAR 

Abstract. Mohanty and Nanda (1959) were the first to establish a result for the 
(C, 1) i.e. Ci-summability of the sequence {n Bn(x)}. Varshney (1959) improved 
the result for (N, n~i) ·Ct summability which was generalised by several investiga­ 
tors such as Shanna (1970), Singh {1963), Lal (1971), Khare and Singh (1988) etc. 
In this note, we have· discussed IITII · Ci-summability of the sequence {n Bx(x)} 
which includes the result due to Khare and Singh (1988). 

1. Let Eun be a given infinite series with the sequence of partial sum {Sn}. Let 
IITII _ (an,k) be infinite triangular matrix with real constants. Then sequence-to­ 
sequence transformation. 

n 0, 1, 2, .. ·; 

defines the T-transform of the sequence {sn}- Recall that the matrix elements an,k = 0 
for each k > n, then the matrix is called triangular. The series Eun is said to be 
T-summable to s, if limn-+oo tn = s 

The regularity conditions for T-method are : 
(1) There exists a constant J{: Ek=O I an,k I< K, for each n; 
(2) For every k, limn-+oo an,k = O; and 
(3) limn-+OO Eaan,k = l. 

The matrix T-reduces to Norlund matrix generated by the sequence of coefficients 
{Pn} if 

{ 

Pn-k/Pn, 
an,k = 

0, 

if k :S n; 

if k > n; 
n 

where Pn = LJr =/ 0. 
r=O 
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If the method of summability IITII is applied to Cesaro means of order one, another 
method of summability IITII · C1 is obtained. 

2. Let f(x) be a periodic function with period 21r and integrable in the sense of 
Lebesgue over an interval (-1r, 1r). Let the Fourier-series of f(x) be 

1 = = 
2 ao + L ( an cos nx + bri sin nx) _ L An ( x), 

1 n=O 
(2.1) 

and the series conjugate to (2.1) is 

= = 
L(bn cos nx - a~ sin n1r) = L Bn(x). (2.2) 
n=l n=l 

We write 
¢,(t) = f(x + t) - f(x - t); 
w(t) = f(x + t) - f(x - t) 

~t 

W1(t) = la I 'lj,,(x) I du; 
f· l 

n 

An,r = Lan,k; 
k=r 

where f is a constant, and T = [1/t] the integral part of 1/t. 

3. Mohanty and Nanda (1954) proved the following theorem : 

Theorem A. If 

w(t) = o(l/log(l/t)) as t - 0, 
and 

an = O(n-6); bn = O(n-6), 0 < 6 < 1, 

(3.1) 

then the sequence {nBn(x)} is summable (C, l) to the value f/1r. 

From this result they have deduce a well known criterion, the Hardy and Littlewood's 
test for the convergence of the conjugate series (2.2). Varshney (1959) improved Theorem 
A in the follwing form : 

Theorem B. If 

o( t 
log 1/t ), as t - 0, (3.2) 
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then the sequence {nBn(x)} is summable (N, 1/n + 1). C1 to the value f/1r. 
Result of Varshney was generalised by several workers for ( N, Pn) · C1 summability of 

the sequence {nBn(x)} such as Sharma (1970), Lal (1971) using monotonocity on {Pn}­ 
Dropping the monotonocity, very recently Khare and Singh (1988) proved (N, Pn) · C1 
summability of the sequence {nBn(x)}. They proved: 

Theorem C. Let (N,Pn) be a reqular Norlund method defined by a sequence {Pn} 
of complex numbers such that 

n I: k I Pn-k - Pn-k-1 I= 0(1 Pn I), as n-+ 00 
k=l 

If 
w(t) = o(l), as t - o+, 

then the sequence {nBn(x)} is summable (N,Pn) · C1 to the value f/1r. 

(3.3) 

(3.4) 

4. Now we extend the above theorem to IITll·C1 - summability of the sequence {n Bn(x)}. 
We prove the following theorem: 

Theorem: Let IITII = (an,k) be an infinite triangular matrix with an,k 2: 0 with 
An,o = 1, Vn 2: 0 and { an,dk=O satisfy 

n 

I: k I an,k - an,k+l I= 0(1), as n - oo. 
1 

(4.1) 

If 
w1(t) = o(t) as t-+ O+ 

then the sequence { n Bn ( x)} is summable I ITI I · C1 to the value ff 1r. 
We note that condition (4.1) in the case of (N,Pn) · C1 summability reduce to con­ 

dition (3.3), while condition (3.4) implies condition ( 4.2). 

(4.2) 

5. Proof of the Theorem: 

If we denote the C 1 transformation of the sequence { n Bn ( x)} by u n, we have, after 
Mohanty and Nanda (1954), that 

1 1,r sin nt cos nt 
O" - f/1r = - w(t)[-2- - ]dt + o(l). 

7r o nt t 

Since the method of summability under consideration is regular, we have to show that 
under the conditions of our theorem. 

I = 111" '11(t) ~ a k(sin kt._ cos kt )dt 
1r L..J n, kt2 t 

O k=l 

= o( 1) as n -+ oo. 
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where 

n 

= o(~ k I an,k - an,k+l I] = o(l). 
N 

n 1/k 
I I2,2 l :::; L an,k+l 1 I w(t) I r2 dt 

k=N 1/k+I 
n 1/k 

= ~ an,k+l [{C2'111(t)}!~!+1 + 1 C
3W1(t)dt] 

k=N 1/k+l 
n I/k 

= I: an,k+l (o(r1)~~!+1 + ocJ · r2dt)l 
N 1/k+l 

= o(~ I an,k+I I = o(l). 
~ k(k + 1) 

Having fixed 8 we are to show that Is - 0 as n - oo. But this follows by Riemann­ 
Lebesgue theorem and regularity of the method. 

This proves the theorem. 

References 

[1] Khare,S.P. and Singh,Man, "A study of the sequence of Fourier Coefficients", Bull. Cal. Math. Soc. 
80, (1988) 161. 

[2] Lal,S.N., "On the Norlund Summability of Fourier Series and the behaviour of Fourier Coefficient", 
Indian JI. Math. 13, (1971) 177. 

[3] Mohanty,R. and Nanda,M., "On the behaviour of Fourier Coefficients", Proc. A mer. Math. Soc. 5, 
(1954) 79. 

[4] Sharma,R.M., "On (N, Pn).Ci summability of the sequence {nBn(x)}", Rend. Gire. Palermo 2, 
19, (1970) 217. 

[5] Varshney,0.P., "On a sequence of:F'ourier Coefficients", Proc. Amer. Math. Soc. 10, (1959) 790. 

Department of Mathematics, University of Roorkee, Roorkce-247 667, India. 



28 M.L. MITTAL, G.PRASAD AND RAJESH KUMAR 

Assume that, 3 8 (0 < t ::; 8): 
an,rn = 0 for every positive integer m ::; [1/ «5]. 

Therefore 

1
,r 1 n .. 

I= ; L an,k w(t) hk(t)dt, 
O k=N 

where N = [1/ 8] + l and 
hk(t) = sin kt - cos kt 

kt2 -t- 
Let us write 

1rI = t an,k 1"' w(t) hk(t)dt 
k=N O 

n 11/k Jo ir = I: an,k[ + + r )w(t)hk(t)dt 
N O 1/k lo 

= I1 + I2 + l3 , say. 
Now 

n 1/k 

I Ii I =I L an,k r w(t) hk(t)dt ' 
N lo 
n 1/k ::; L an,k [ k2t I w(t) I dt 
N lo 
n 1/k ::; L k an,k r ' w(t) I dt 
N lo 

n 

= o(.L an),) =··o(i), 
N 

and 

where 
1 k . l k ~ smmt ~ = t2 L-t m - t L..J cos mt 

m=l 1 

= O(C2
) for 1r ~ t > 0 as easily seen. 

Thus 

l n Jo l n ·. 11/ k 
h = ; I: (an,k - an,k+1) w(t) lh(t)dt - - I: an,k+l w(t) fh(t)dt 

k::::.N 1/k 7r k=N 1/(k+l) 

= 12,1 + h,2, say, 


