NON SYMMETRIC HOMOGENEOUS BOUNDED DOMAINS IN 6 DIMENSIONAL COMPLEX SPACE

G.E. DIMOU

1. Introduction

Let D be a homogeneous bounded domain in $\mathbb{C}^{n}, n=6$. One of the problems for the homogeneous bounded domains in $\mathbb{C}^{n}, n \leq 3$ is to classify those which are not symmetric. In each \mathbb{C}^{4} and \mathbb{C}^{5} there is only one non-symmetric homogeneous bounded domain. In a previous paper we have given a new representation each of those nonsymmetric homogeneous bounded domains in \mathbb{C}^{4} and $\mathbb{C}^{5}([10])$.

The aim of this paper is to describe with a new representation one of the nonsymmetric homogeneous bounded domains in \mathbf{C}^{n}, where $n=6$.

The whole paper contains three paragraphs. Each of them is analyzed as follows.
In the second paragraph we give the relation between these domains, Siegel domains and normal J-algebras.

The description of this special non-symmetric homogeneous bounded domain in $\mathbb{C}^{n}, n=6$, is included in the last paragraph.
2. Let \mathbb{C}^{n} be the n dimensional Euclidean complex space. An open connected subset D of the C^{n} is called domain. We denote by $G(D)$ the group of all holomorphic automorphisms of D. If D is bounded, then $G(D)$ is a Lie group and there exists on D a volume element w which is defined by

$$
w=(\sqrt{-1})^{n^{2}} K d z_{1} \wedge \ldots \wedge d z_{n} \wedge d \bar{z}_{1} \ldots \wedge d \bar{z}_{n}
$$

where z_{1}, \ldots, z_{n} are complex coordinates in C^{n} and K the Bergaman function on D, which is positive. The Bergman function K gives a Kähler metric g on D defined by

$$
g=\sum_{h=1}^{n} \sum_{\ell=1}^{n} \frac{\partial^{2} \log K}{\partial z_{h} \partial \bar{z}_{\ell}} d z_{h} \wedge d \bar{z}_{\ell}
$$

and therefore (D, g) is a Kähler manifold. The bounded domain D in \mathbb{C}^{n} is called homogeneous, if the group $G(D)$ acts transitively on D and thererore D, in this case, can be written

$$
\begin{equation*}
D=G(D) / H \tag{2.1}
\end{equation*}
$$

Received October 12, 1989.
where H is the isotropy subgroup of $G(D)$ at the point $z_{0} \in \mathbb{C}^{n}$. The relation (2.1) can also be written as follows

$$
D=G_{0}(D) / H_{0}
$$

where $G_{0}(D)$ is the identiy component of $G(D)$ and H_{0} the isotropy subgroup of $G_{0}(D)$ at $z_{0} \in D$

It is known that there exists a solvable Lie subgroup S of $G(D)$ which can be identified with D

Therefore S is a kähler manifold on which there exists a complex structure on it denoted by J.

Let s be the Lie algebra of S which can be identified with the tangent space of S at its identity element e. The almost complex structure J on D defines an endomorphism J_{0} on s with the following properties

$$
\begin{equation*}
J_{0}: s \rightarrow s, J_{0}: X \rightarrow J_{0}(X), J_{0}^{2}=-i d \tag{2.2}
\end{equation*}
$$

This endomorphism J_{0} satisfies the following relation

$$
\begin{equation*}
[X, Y]+J_{0}\left(\left[J_{0}(X), Y\right]\right)+J_{0}\left(\left[X, J_{0}(Y)\right]\right)-\left[J_{0}(X), J_{0}(Y)\right]=0 \tag{2.3}
\end{equation*}
$$

which is obtained from the fact that the almost complex structure on D is integrable. The Kähler metric g on D induces a Hermitian positive definite symmetric bilinear form B on s. From B we obtain a linear form ω defined by

$$
\begin{equation*}
\omega: s \rightarrow R, \omega: X \rightarrow \omega(X)=B\left(X, J_{0}(X)\right) \tag{2.4}
\end{equation*}
$$

satisfying the following conditions

$$
\begin{gather*}
\omega\left(\left[J_{0}(X), J_{0}(Y)\right]=\omega([X, Y])\right. \tag{2.5}\\
\omega\left(\left[J_{0}(X), X\right]>0 \quad X \neq 0\right. \tag{2.6}
\end{gather*}
$$

Therefore from the homogeneous bounded domain $D=G / H$ we obtain the set $\left\{s, J_{0}, \omega\right\}$, where s a special solvable Lie algebra, J_{0} is an endomorphism on s having the properties (2.2) and (2.3) and ω linear form on s with the properties (2.5) and (2.6)

This set $\left\{s, J_{0}, \omega\right\}$ is called normal J-algebra
Every normal J-algebra has also the property that the operator

$$
\begin{equation*}
\alpha d \tau_{0}: s \rightarrow s, \alpha d \tau_{0}: \tau \rightarrow \alpha d \tau_{0}(\tau)=\left[\tau_{0}, \tau\right] \tag{2.7}
\end{equation*}
$$

has only real characteristic roots $\forall \tau_{0} \in s$, that is, $\alpha d \tau_{0}$, as a matrix, is R-triangular
The inverse is also true. Let $\left(s, J_{0}, \omega\right)$ be a triple, where s is a solvable Lie algebra having the property (2.7), J_{0} an endomorphism on s having the properties (2.2) and (2.3) and ω a linear form on s having the properties (2.5) and (2.6). Then there exists
a unique solvable Lie group S whose Lie algebra is s which can be identified with the tangent space of S at its identity e. The endomorphism J_{0} on s gives arise the complex structure on S and finally the linear form ω on s induces a Hermitian inner product on s defined by

$$
\begin{equation*}
\langle X, Y\rangle=\omega\left(\left[J_{0} X, Y\right]\right) \tag{2.8}
\end{equation*}
$$

which determines the Kähler metric g on S. The couple (S, g) is a Kähler manifold beholomorphically isomonphic onto homgeneous bounded domain in \mathbb{C}^{n}. In the next paragraph we shall give one triplet $\left(s, J_{0}, \omega\right)$ and the Kähler manifold (S, g) which is obtained by this triple.
3. We consider the solvable Lie algebra s, which can be described by the set of matrices

$$
\left.\left.S=\left(\begin{array}{cccccccccc}
0 & X_{1} & X_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{3.1}\\
0 & X_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & X_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & X_{5} & X_{6} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & X_{7} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & X_{8} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & X_{9} & X_{10} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & X_{11} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & X_{12}
\end{array}\right) \quad L=1,2, \cdots, 12\right) \quad \begin{array}{l}
X i E I R^{\circ} \\
\\
0
\end{array}\right)
$$

From this constcuction of s we conclude that the endomorphism J_{0} has the form

$$
\begin{equation*}
J_{0}=\left(\beta_{k \ell}\right), \beta_{k \ell} \in R \quad k=1, \cdots, 12, \ell=1, \cdots, 12 \tag{3.2}
\end{equation*}
$$

which must satisfy the relations (2.2) and (2.3)
From these conditions and after a lot of estimates we obtain

$$
j_{0}=\left(\begin{array}{cccccccccccc}
x & 0 & \frac{-1-x^{2}}{\lambda} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{3.4}\\
0 & \Psi & 0 & \frac{-1-\Psi^{2}}{\mu} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\lambda & 0 & -x & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \mu & 0 & -\Psi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & Z & 0 & \frac{-1-Z^{2}}{k} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \pi & 0 & \frac{-1-\pi^{2}}{v} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & K & 0 & -Z & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & U & 0 & -\pi & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \rho & 0 & \frac{-1-\rho^{2}}{\tau} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \zeta & 0 & \frac{-1-\zeta^{2}}{\omega} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \tau & 0 & -\rho & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \omega & 0 & -\zeta
\end{array}\right)
$$

The linear form ω, on this Lie algebra s, is difined by

$$
\begin{equation*}
\omega(X)=\left\langle X_{0}, X\right\rangle \tag{3.5}
\end{equation*}
$$

where $\left\rangle\right.$ the usual inner product on s and $X_{0}=\left(K_{1}, K_{2}, \cdots, K_{12}\right)$ is a fixed vector. In order that ω satisfies the conditions (2.5) and (2.6) we must have

$$
\begin{equation*}
-K_{1} \lambda>0,-K_{2} \mu>0, \ldots,-K_{6} \omega>0 \tag{3.6}
\end{equation*}
$$

Now, we have proved the following theorem
Theorem 3.1 There exists a homogeneous bounded domain in $\mathcal{C}^{n}, n=6$ having $\left(s, J_{0}, \omega\right)$ normal J-algebra, where s, J_{0} and ω are given by (3.1), (3.4) and (3.5) respectively

Now, we determine the solvable Lie group S which corresponds to the solvable Lie algebra s

We denote by $G L(s)$ the group of all nonsingular endomorphisms of s The Lie algebra $g l(s)$ of $G L(s)$ consists of all endomorphisms of s with the standard bracket operation

$$
\begin{equation*}
[X, Y]=X Y-Y X \tag{3.7}
\end{equation*}
$$

The mapping

$$
\begin{equation*}
\alpha d: s \rightarrow g l(s), \quad \alpha d: B \rightarrow \alpha d B \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha d B: s \rightarrow s, \quad \alpha d B: T \rightarrow \alpha d B(T)=[T, B] \tag{3.9}
\end{equation*}
$$

is a homomorphism of s onto a subalgebta $\alpha d(s)$ of $g l(s)$. Let $\operatorname{Int}(s)$ be the analytic subgroup of $G L(s)$ whose Lie algebra is $\alpha d(s)$ which is called adjoint group of s. The group $\operatorname{Aut}(s)$ of all automorphisms of s is a closed subgroup of $G L(s)$. Thus $A u t(s)$ has a unique analytic structure under which, it becomes a topological Lie subgroup of $G L(s)$. We denote by $d(s)$ the Lie algebra of $\operatorname{Aut}(s)$. Now, the group $\operatorname{Int}(s)$ is connected, so it is generated by elements $e^{\alpha d X}, X \in s$. Therefore Int (s) is a normal subgroup of $\operatorname{Aut}(s)$

From the above we conclude that the solvable Lie group S of s is defined

$$
S=\left(\begin{array}{cccccccccc}
1 & \frac{x_{1}}{x_{3}}\left(e^{x_{3}}-1\right) & \frac{x_{2}}{x_{4}}\left(e^{x_{4}}-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & e^{x_{3}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & e^{x_{4}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{x_{5}}{x_{7}}\left(e^{x_{7}}-1\right) & \frac{x_{6}}{x_{8}}\left(e^{x_{8}}-1\right) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & e^{x_{7}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & e^{x_{8}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{x_{9}}{x_{11}}\left(e^{x_{11}}-1\right) & \frac{x_{11}}{x_{12}}\left(e^{x_{12}}-1\right) \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e^{x_{11}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e^{x_{12}}
\end{array}\right) .
$$

The inner product on the solvable Lie algebra is defined by

$$
\begin{equation*}
<X, Y>=\omega\left(\left[J_{0} X, Y\right]\right) \tag{3.11}
\end{equation*}
$$

where ω is given by (3.5). This inner product determines the Kähler metric on S which is essentially the Bergaman metric on it

Now, we can state the following theorem
Theorem 3.2 The homogeneous non-symmetric bounded domain in $\mathcal{C}^{n} n=6$ is biholomorphically isomorphic onto the solvable Lie group defined by (3.10). The Kähler metric g on S defined by the relation (3.11).

Let F be a Lie automorphism on s. This F can be represented by matrix

$$
F=\left(\begin{array}{cccccccccccc}
\alpha_{11} & 0 & \alpha_{13} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \alpha_{22} & 0 & \alpha_{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \alpha_{55} & 0 & \alpha_{57} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \alpha_{66} & 0 & \alpha_{68} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \alpha_{99} & 0 & \alpha_{911} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \alpha_{1010} & 0 & \alpha_{1012} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

which becomes an isometry with respect to the inner product

$$
<x, y>=<x_{0},\left[J_{0} x, y\right]>=\omega([J x, y])
$$

If we have

$$
\text { Fisom }=\left(\begin{array}{cccccccccccc}
\pm 1 & 0 & \alpha_{13} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \pm 1 & 0 & \alpha_{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \pm 1 & 0 & \alpha_{57} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \pm 1 & 0 & \alpha_{68} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \pm 1 & 0 & \alpha_{911} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \pm 1 & 0 & \alpha_{1012} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

where

$$
\begin{array}{lll}
\alpha_{13}=\frac{-y x \lambda}{1+x^{2}}, & \alpha_{24}=\frac{-2 \mu y}{1+y^{2}}, & \alpha_{57}=\frac{-2 k z}{1+z^{2}} \\
\alpha_{68}=\frac{-2 n v}{1+n^{2}}, & \alpha_{911}=\frac{-2 \tau \rho}{1+\rho^{2}}, & \alpha_{1012}=\frac{-2 \omega J}{1+J^{2}}
\end{array}
$$

Therefore we have proved the following theorem.
Theorem 3.3. The homogeneous bounded domain in $\mathcal{C}^{n} n=6$ described by the theorem 3.2 does not admit any k-symmetric structure.

References

[1] Cartan, E., "Sur les domains bornes homogeneous de l' espace de n variables complexes", Abh. Math. Sem. Hamburg Univ. 11(1936), 116-162.
[2] Hano, J., "On Kählerian homogeneous of unimodular", Am. J. Math. 78(1957), 885-900.
[3] Kaneyuki, S., Homogeneous Bounded Domains and Siegel Domains, Springer-Verlag, New York, (1971).
[4] Koszul, J., "Sur la forme hermitienne canonique des espaces homogenes complexes", Can. J. Math.. 7(1955), 562-576.
[5] Ledger, A., Obata, M., "Affine and Riemannian s-manifolds", J. Differ. 2(1968), 451-459.
[6] Motsushima, Y., "Sur les espaces homogenes Kähleriens d un group de Lie reductif", Nagoya Math. J. 11(1957), 56-70.
[7] Pyatetskij-Shapiro, J., "On a problem proposed by E. Cartan", Dokl. Akad. Nauk SSSR 1249(1959),
272-273.
[8] Pyateskij-Shapiro, J., Automorphic function and the geometry of classical domains, Gordon \& Breach, New York, (1969).
[9] Tsagas, GR., Ledger, A., "Riemannian s-manifolds", J. Diff. Geom. Vol. 12, No 3, (1977), pp.
333-343.
[10] Tsagas; GR., Dimou, G., "New representation of non-symmetric homogeneous bounded domain in C^{4} and C^{5} ", to appear.

