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SOME ANALOGUES OF A THEOREM OF PEANO FOR
BOUNDARY VALUE PROBLEM

RICK BRANTLEY AND JOHNNY HENDERSON

Abstract. Under certain conditions, solutions of boundary value problems for
" = f(z,y,¥',y") are differentiated with respect to boundary conditions, both
boundary points and boundary values. The results obtained are analogues of one
of Peano’s theorems on initial value problems.

1. Introduction

In this paper we will be concerned with differentiating solutions of certain boundary
value problems (BVP’s) with respect to both boundary values and boundary points for
the third order ordinary differential equation

y" = f(z,9,9.,9"). (1)
We assume that the following conditions are satisfied:
(i) f(z,y1,92,¥3) : (a,b) x R® — R is continuous, and
(ii) gf;(:c,yl,yg,ya) : (a,b) x R® — R are continuous, 1 < i < 3.
Furthermore, given a solution y(z) of (1), we are also interested in solutions of BVP’s
for the linear third order differential equation

"o__ : of 7 (i-1)
z ~Z§E(z,y(x),s/(ﬂr),z/(x))z : (2)

1==1

Equation (2) is called the variational equation along the solution y(z) of (1). The varia-
tional equation along a solution y(z) of the nth-order differential equation,

y(n) = f(x,y; y’) y”w ¢ .’y(n—l))’

plays a fundamental role in the study of the calculus of variations [1].

Most textbooks on the theory of ordinary differential equations present a theorem
addressing differentiation of solutions of (1) with respect to initial conditions. Hartman
[3] attributes this well-known theorem to Peano.
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In recent years, authors have obtained results that make use of differentiation of
solutions of BVP’s for (1) with respect to boundary conditions (both boundary points
and boundary values). For example, Peterson [8]- [11], Spencer [13], and Henderson [4,5]
have made use of differentiation with respect to boundary conditions and have estab-
lished comparison results, obtained expressions for extremal points, and have studied
some general relationships between solutions of BVP’s for nonlinear ordinary differential
equations and solutions of BVP’s for the variational equation (2). Also, Henderson [6]
proved some fairly complete analogues of the Peano Theorem for conjugate-type BVP’s
and right focal point BVP’s. And Hankerson [2], in his dissertation, and Peterson [12] de-
voted some study to differentiation of solutions of finite difference equations with respect
to boundary values.

In this work, we follow the path of Henderson [6] and establish complete analogues
of the Peano Theorem for a family of boundary value problems for (1). Our choice of
problems for this consideration is a family of boundary value problems for (1) that have
been studied extensively by Henderson [5] for uniqueness, existence, and optimality.

In Section 2, we state Peano’s Theorem for (1). We then list the boundary value
problems for (1) for which we are interested in proving analogues of Peano’s Theorem.
The proofs of these analogues for boundary value problems depend first on uniqueness
of solutions conditions, which we enumerate as additional assumptions on (1).

In Section 3, for one of our boundary value problems, we state, without proof, a
theorem concerning continuity of solutions with respect to boundary conditions. We then
prove a theorem concerning differentiation of solutions, for that boundary value problem,
with respect to boundary conditions (both boundary points and boundary values), which
1s a complete analogue of Peano’s Theorem.

In Section 4, we state, without proof, a couple of theorems concerning differentiation
of solutions with respect to boundary conditions along with corresponding theorems on
continuous dependence of solutions with respect to boundary conditions.

2. A Theorem by Peano

We begin by stating a theorem due to Peano for initial value problems.

Theorem 2.1 (Peano) Let zo € (a,b) and y(z) = y(z; zo, c1, 2, ¢3) denote the
solution of (1) satisfying the initial conditions y(zo) = c1,¥'(20) = ¢2, and y"' () = c3
and let (a,w) C (a,b) be the mazimal interval of existence of y(z). Then
(a) -gf;, gcy;, a%y; ezxist on (a,w) and o; = 583:,1 <1< 3, are solutions of the variational

equation (2) along y(z) satisfying the initial conditions

al(l'o) = 1,(1’1(3:0) = O,C!;_l(.’lfo) a 0’
a2(zo) = 0, o4 (z0) = 1,05(z0) = 0,

a3(zo) = 0,a5(zo) = 0, (zo) = 1.
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(b) 5‘% ezists on (o, w) and f = 5% is the solution of the variational equation (2) along
y(z) satlisfying the initial conditions

B(zo) = =¢'(z0),  B(z0) = —1"(z0),  B"(z0) = —y""(z0).

(6) 725 (2) = —'(20) 32 (2) = " (20) 2L () — ¥ (20) 2L (a).
With respect to the third-order differential equation (1), we will be concerned with
analogues of Theorem 2.1 for BVP’s satisfying the following types of boundary conditions:

y(z1) = y1,¥'(z2) = ¥2,¥'(23) =ys, a<z1<z3<2z3< b, 3)
y(Il) = yl,y'(xl) = y2,y'(-’£2) =yY3, a<z<zT2<hb, (4)
y(z1) = yl,y'(wz) = yz,y"(xz) =Y a<z<zTy<b. (5)

Remark. Henderson [5] has studied BVP’s for (1) satisfying the above types of
conditions for uniqueness, existence, and optimality.
Our analogues will depend on uniqueness assumptions for each respective boundary
value problem above. Specifically, we will have need of the following assumptions:
(i) Given a < 21 < 23 < 23 < b, if y(z1) = 2(z1),y'(22) = 2'(22), and ¥/ (z3) = 2(z3),
where y(z) and 2(z) are solutions of (1), then y(z) = z(z) on [zy, z3].
(iv) Given a < 23 < 22 < b, if y(z;) = 2(21), ¥'(21) = Z'(z1), and y'(z3) = 2’(z2), where
y(z) and z(z) are solutions of (1), then y(z) = z(z) on [z, z].
(v) Given a < z; < 23 < b, if y(z1) = 2(21),¥(z2) = 2'(23), and y"(z,) = 2"(z5),
where y(z) and 2(z) are solutions of (1), then y(z) = z(z) on [z}, zJ].
We will also have need of similar uniqueness assumptions on (2) along solutions y(z)
of (1):
(iii') Given a < z; < z3 < z3 < b, and a solution y(z) of (1), if u(zy) = 0,u'(z2) = 0,
and u'(z3) = 0, where u(z) is a solution of (2) along y(z), then u(z) = 0 on [z1, r3).
(iv') Given a < z; < 23 < b, and a solution y(z) of (1), if u(2i) = Qu'(e) = 0, and
w/(z2) = 0, where u(z) is a solution of (2) along y(z), then u(z) = 0 on [z1, ).
(v') Given a < z1 < 22 < b, and a solution y(z) of (1), if u(z;) = 0,u'(z2) = 0, and
u"(z2) = 0, where u(z) is a solution of (2) along y(z), then u(z) = 0 on [z, z3].

3. An Analogue of Peano’s Theorem for BVP’s

We now prove an analogue of Peano’s Theorem for the BVP (1), (3) in the spirit of
results obtained by Henderson [6]. In order to do this, it first must the case that solutions
depend continuously on boundary conditions. So, we begin by stating, without proof,
such a theorem on continuous dependence. The proof of this theorem would follow along
the lines of the one given in [7].

Theorem 3.1. Assume (i), (i), and (ii1) are satisfied with respect to (1). Let u(z)
be a solution of (1) with mazimal interval of existence (o,w) C (a,b) and let a < z¢ <
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1 < T3 < 23 < 24 < w be given. Then there exists a 6 > 0 such that, for |z, — t;| <
6, |za—1ty| < 6, |z3—t3]| < 6, |u(z1)—wy| < &, |v/(22)—y2| < 8, and |u'(z3)—y3| < &, there is
a unigue solution us(z) of (1) whose mazimal interval of ezistence is (as,ws) D [zo, Z4)
and is such that us(t1) = y1,u;(t2) = yo,us(t3) = ys. Further, {ugj)(:c)} converges
uniformly to ul)(z), as 6 — 0, on [zo, 24], for each 7 =0,1,2.

Theorem 3.2. Assume (1), (it), and (iii) are salisfied. Also assume that the vari-
ational equation (2), along any solution y(z) of (1) satisfies (i1i') on (a,b). Let u(z) be
a solution of (1) with mazimal interval of ezistence (a,w) C (a,b). Let a < z1 < z3 <
z3 < w be given, so that u(z) = u(z; z1, z2, 23, u1, U2, u3z), where u(z;) = uy, v'(z2) = ua,

and u'(z3) = uz. Then

(a) b‘%%, %, 3%‘55 erist on (a,w) and y; = %,1 < i < 3, is the solution of (2) along

u(z) and satisfies the boundary conditions
yi(21) = Lyi(22) = 0,4 (zs) = 0,
va(21) = 0,85(22) = 1, ¢i5(zs) =0,
y3(21) = 0,45(z2) = 0, y3(z3) = 1.
(b) %‘:,i—“z, ;T“s exist on (a,w) and z; = 'g;—.-’l <1 < 3, is the solution of (2) along
u(z) and satisfies the boundary conditions
21(21) = —u'(24), 21 (x2) = 0,21 (23) =0,
22(21) = 0, 25(22) = —u"(22),23(z3) = 0,
z3(z1) = 0,23(z2) = 0,25(z3) = —u''(z3).

(c) The partial derivatives satisfy

8 Y
5;5"(-"5) =—u ($1)a—mu(x),

9 e < B
%;u(l’) =—u (-’Cz)a—uzu(w),

) i 0
B 2 = = g e

Proof. For part (a) we will give the argument for ;—J‘l, since the arguments for a":‘—"z

and (%‘; are similar. Let 6 > 0 be as in Theorem 3.1. Let 0 < |h| < & be given and define
'U.(.'L';SUI, Z2,T3,Uy + h) U2,U3) - u(:c;xl, I2,T3,U1, U2, U3)
h

Note that u(z1; 21, 2o, z3,u; + h,uz,u3) = uy + h, and u(zy; 21, 22, z3, u1, g, uz) = uy,
so that

Yin(z) =

u; +h — — —
yin(z1) = 1 : Uy g yih($2)= uzhuz uz — u3

h

=0, and yi,(z3) =

=0,
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for every h # 0.
Let

B2 = u'(-’cl;wl,l‘z, T3, U1, Uz, u3), B3 = u”(-’cl;ﬂil, L2, T3, U1,u2,u3),
€3 = €3(h) = u'(21; 1, 22, %3, Uy + h,uz,u3) — Pa,
and €3 = e3(h) = u''(z1; 21, T2, 3, U1 + h, ua, uz) — fBs.
By Theorem 3.1, €3 = €a2(h) — 0 and €3 = e3(h) — 0, as h — 0.
For notational purposes, given p € (a,b) and ¢1,¢2,¢c3 € R, let y(z;p,c1,c2,¢3)
denote the solution of (1) satisfying the initial conditions
y(p) = c1,¥'(p) = c2,¥"'(p) = ca.

‘Then by viewing the solutions u as solutions of initial value problems and using a tele-

scoping sum, we have
b

1
ylh(z) :E{U(Iﬂ, T1,Z2,T3, U1 + hs u2)u3) . U(ilf; Zy,Z2,%3, U1, U2, ’U3)}

1
2;;{3/(5'3;-’51,“1,“1 + h, B2 + €2, 05 + €3) — y(z; x1, u1, B2, B3)}

=711‘{[y(f€;21, uy + h, B2 + €2, 83 + €3) — y(z; 21, w1, B2 + €2, B3 + €3)]
+ [y(z; 21, w1, B2 + €2, B3 + €3) — y(z; 21, w1, P2, B3 + €3)]
+ [y(z; x1, u1, B2, B3 + €3) — y(z; z1, u1, B2, B3)]}-
By Theorem 2.1 and the Mean Value Theorem, we obtain

1 _

yin(z) ="‘;C¥1(z;y($;$1, uy + h, B2 + €32, 03 + €3))(u1 + b — uy)
1

+: Zaz(x; y(z; z1,u1, P2 + €2, B3 + €3)) (B2 + €2 — B2)

1
+ Eaa(m; y(z;z1,u1, P2, P83 + €))(Ps + €3 — B3),

where o;(z; y(+)),1 < i < 3, is the solution of the variational equation (2) along y(-) and

satisfies in each case
ey(z1) =1, aj(21) =0, af(z1) =0,

(12(1'1) = 0; alz(ml) = ]-1 a{ZI(xl) == O’
as(z1) =0, as(z1) =0, az(z1) = 1.
Furthermore, u; + h is between u; and u; + h, B2 + €; is between B2 and 3 + €2, and

Ps + €3 1s between 3 and f3 + €3. Now simplyifying,

yin(z) =a1(z;y(z;21,u1 + h, B2 + €2, B3 + €3))
€

+ Zag(asy(zs 1,1, B + G, o + )

€
+ f&g(x;y(m; Ty, u11ﬁ21ﬁ3 =+ E3))



838 RICK BRANTLEY AND JOHNNY HENDERSON

Thus, to show that limy_,, Y1n(z) exists, we show that limy_ 2 exists, and limy_, 2
exists.
Recalling that y{,(z2) = y{,(z3) = 0, we can write

- CY;(.’EQ; y(:c;xl) u; + E,ﬂ:! + €2, 183 S 63))
€ pa—
:falz(l‘z; y(z;21,u1, B2 + &, B3 + €3))
6 —
G 2 "’?aé(l'z;y(l';.’l.'l,ul, 182:[33 e 63)))

and _
— o (23; y(z; 21, u1 + b, B + €2, Bs + €3))

€ —
=7§0/2($3; y(z;21,u1, B + €2, B3 + €3))
€
+ —ay(za;y(w; 21, w1, Ba, B + E)).

This gives us a system of two equations in the two unkonwns £ and $*. By Cramer’s

Rule

—ay(z2;9(-)  a5(z2;y(-))
& _ |7e(5u()) es(esv() | pya)
R D(h) = D(h)’
ay(z2; () —ai(z2y(-))
es _ |22(#59() —ei(es9() | py(a)
h D(h) = D(h)’
provided
0# D(h) =

oy (22 y(2; 21, uy, Bs + €, 85 + €3)) az(z2;y(z; 21, uy, Pa, Ba +€3))
ay(z3; y(2; 21, u1, B2 + €2, B3 + €3)) as(z3; y(z;21,u1, P2, s + €3)) |

Now ag(z; y(z; z,, u1, P2, 33)) and a;;(:c;y(z;xl,ul,ﬂp_,ﬁ;;)) are both zero at z = z,. We
claim that no nontrivial combination Acy(z;y(z; 21,4y, B2,03)) + Bas(z; y(z;z1, uy, Bo,
B3)) has derivative that vanishes at both z — zy and z = z3. To see this, suppose
Aasy(z; y(z)) +Baz(z;y(z)) has derivative equal to zero at z — z2 and z = z3 and that
not both A and B are zero. Then by condition (iii"), Aas(z;y(z)) + Bas(z; y(z)) = 0.

Now, since ary(z; y(z)) and az(z; y(z)) are nontrivial solutions of (2), then ay(z; y(z))
= kas(z;y(z)), for some k # 0. But ay(z1;4(2)) = 1, ka(z;;y(2)) = k- 0, which is a
contradiction. So there is no nontrivial linear combination Aay(z;y(z)) + Bas(z; y(z))
that has derivative equal to zero at £ = z, and z = z3. This is equivalent to

0# D= 0"2(172;3/(-’0;-"31,111,[32,/33)) ag(z2; y(z; 21, uy, B2, fs))
' af?(‘r3;y(x;xl,u1:/32$ﬂ3)) a.{:}(x:i;y(z;xl)uliﬁQhBS))-
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And by Theorem 3.1, D(h) # 0 for h sufficiently small. In fact, limy_,q D(h) = D.
Hence, taking limits, we have
€2 ; Dz(h) Do €3 Dg(h) D3

’El_’n'é 7 = ’11_% D(h) ) = constant, and ’El_l"% ED—(hj- = D = constant .

As a result of this,

y1n(2) =a1(z;y(z; 21, u1 + k, B2 + €2, B3 + €3))
Ds(h)
D(R)
Ds(h)
D(h)

az(z; y(z; z1,u1, P2 + €2, B3 + €3))

-+ as(z; y(z;z1,u1, B, B3 + €3)),

and limp,_,o y14(z) exists since the limit on the righthand side of the equation exists. Let
v1(z) = limp—0 y1r(z). Note that by the construction of yin(z),

Ou
yl(z) = __(13;171,1:2,1:3,111, U2, u3)-

3u1

In particular, we now have the existence of 585‘1—. Furthermore,

v (z) ='}1_r.r(1) yin(z)
= ’111_{% oy (z; y(z; 21, w1 + h, B2 + €2, B3 + €3))

. Ds(h)

+ R S

. Ds(h)
=¥

as(z; y(z; 21, u1, P2 + €2, 83 + €3))

as(z; y(z; 21, u1, P2, B3 + €3)),

which implies that
y1(z) =a1(z; y(z; 1,41, B2, B3))

D
ES 32012(1753/(1'37’1’ up, ﬂz,ﬁS))

D.
+ ﬁaa(-’c;y(-’ﬂ;rl, uy, B2, B83))-

So, y1(z) is the solution of (2) along y(z; z1, u1, B2, f3) = u(z; z1, z2, 3, u1, uz, u3), since
ai(z), ax(z), as(z) are all solutions of the linear homogeneous variational equation (2)
along u(z).

For the boundary conditions, first

yi(z1) = lim yip(z1) = lim 1 = 1.
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And from the beginning part of this proof, we also have
'(z2) = lim ¢/ =lim 0 =0, and
vi(z2) = lim y14(22) = lim
! = lim ¥/ =lim0=0.
y1(23) = lim y1,(23) = lim
This completes the argument for Eaul,'

In part (b) of the theorem, we will produce the details for -;T“l and a%—% and omit

the argument for 53333-, since it is similar to a%f—‘;. First, we show the existence of 6%’—‘1—. Let

6 > 0 be given as in Theorem 3.1, choose h # 0 with |h| < §, and define

u(z; 21 + h, 29, T3, u1, uz, uz) — u(z; 2y, 20, 23, U, ug, U3)

h

zlh(a:) =

Note that z1,(z3) = $2042 = (, for every h # 0, and z15(z3) = Y2342 = 0, for every
h #0.

y ] . :
Let ;32 =u (zlyzlazZ) T3, UI,’U,Q,'U,a), and

" .
/33 =u (1:1,3:1, Z2,%3, U1, U2, U3).
Remark. u = U(.’E]_; Z1,%2,Z3, Uy, U, U3)
and uy = u(z; + h;z; + h, 29, z3, Uy, Uz, U3z).

Also let
€2 :62(}") = ul(xl + h;zl + h,$2,$3,'U1,UQ, U3) - ﬂ2) and
€3 =e3(h) = u"(z1 + h;z1 + h, 29, 3, u1, us, u3) — fOs.

By Theorem 3.1, €3 = €3(h) — 0 and €3 = e3(h) — 0, as h — 0. As in part (a), let
y(z;p,¢1, €2, c3) denote the solution of (1) satisfying the initial conditions

y(p) =c1, ¥'(p) = c2, ¥'(p) = c3,

where p € (a,b) and ¢y, cq,c3 € R.
Then, viewing the solutions u as solutions of initial value problems and using a
telescoping sum,

1 4
Z]_h(fl:) :,—l'{u(xu z; + h:£2)£37 Ui, Uz, u3) - U(IE;iC]_, T2,Z3,U1,Us, U3)}
) , _
=7{y(@; 21+ h,u1, B + €2, Bz + €3) — y(z;21,u1, B2, B3)}
h

1
Zz{[y(z; Tr+h,uy, By + €2, 83 + €3) — y(z; 21, uy, B2 + €2, B3 + €3)]

+ (521, u1, B2 + €2, B3 + €3) — y(z; 21, uy, Bo, Bs + €3)]
. + [y(z;xlaulaﬂ27ﬁ3 + 63) - y(x;zls Ui, ﬁ?:ﬁ:i)]}'



SOME ANALOGUES OF A THEOREM OF PEANO 91
By Theorem 2.1 and the Mean Value Theorem,
() =3 8@ u(ws 21 + By us, Ba + 2, o+ 0))(e1 +h—21)
3 %02(-’5; y(z; z1,u1, B2 + €2, B3 + €3)) (B2 + €2 — P2)
. 3 l013(-’5; y(z; z1,u1, P2, B3 + €3))(B3 + €3 — Bs3),

where % is between 0 and h, € is between 0 and €2, €3 is between 0 and €3, and B(z;y(-))
is the solution of the variational equation (2) along y(z;z1 + h,uy, B2 + €2,03 + €3)
and satisfies the initial conditions 3®(z; + h) = —y(+(zy +h),i =0,1,2, and where
as(z; y(+)) and @s(z; y()) are solutions of (2) along y(-), and satisfy the initial conditions

as(zy) = 0,05(z1) = 1,&"(21) = 0,
as(z1) = 0,04(z1) = 0,053(21) = 1.
By simplifying the last expression for élh(x), we have
z1n(z) =B(z; y(z; 21 + by u1, B2 + €2, 03 + €3))
+ %a2($;y(1731’51, uy, B2 + €2, P05 + €3))

€ —
+ —-3—a3(:l:;y(a:;:c1, ul:ﬂ?aﬂS =% E3))-

€
To show that lmézlh exists, it suffices to show that llrl’(l) f and hm-}: exist.

Recall that 2, (z3) = 0 and 2}, (z3) = 0, for every h # 0. Using this fact, we obtain
two equations in two unknowns:

— B'(z2;y(z; 71 + h,uy, B2 + €2, B3 + €3))

2%05(”%3’(”;“’1, u1, P2 + €2, B3 + €3)) + %aé(xz;y(m; z1,u1, P2, B3 + €3)),
— B'(z3;y(z; 21 + h,u1, B2 + €3, 03 + €3))

:%alz(xa;y(x;m, uy, P2 + €2, B3 +€3)) + %ag(%; y(z; z1,u1, B2, B3 + E3))-

We can determine €* and $* from Cramer’s Rule by

—B'(z259() 322 9())

. —F'(z3;9()) @5(239())| _ Dy(h) A
B ag(zay()) ah(amu()|  PA)
af(zs;y(-) as(z3y(+)
a’z(-’”z;y(‘)) —B'(z2;y(-))
g _ oy(z39()) —B'(z39()) | Ds(h)

R D(h) D(h)’
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provided D(h) # 0, and where y(-) denotes the solutions of (1) from above, and again we
are suppressing the variables. Now, as(z; y(z;z1, u,, B2, P2)) and az(z; y(z;zy, u, Ba, B
)) are both zero at z = z,, and as a consequence any linear combination is zero at z = z;.
It folows from (iii’) that no nontrivial linear combination Aay(z; y(z; 21, uy, Pa, B3)) +
Bas(z; y(x; 1, u1, B2, B3)) has derivative equal to 0 at z = zo and ¢ = z3. This is
equivalent to

i - a’2(x2;y(x;z1:'ul)ﬁ2yﬁ3)) aé(‘rz;y(z;zlyul)ﬂ2aﬂ3)) :/:0
ay(zs;y(z; 21, u1, Pa,B3))  al(z3; y(z; z1, u1, B2, Ba)) '

By Theorem 3.1, D(h) # 0 for h sufficiently small. In fact, &irr(l)D(h) = D. This implies

5 62(’1) . D2(h) Dg " €3 : D3(h) .D3
limy_q = ,lm% D(h) D = cons ant, and limy_,g A Lim D =D &

constant. Returning to z;5(z), we now have

z1n(z) =B(z; y(z; 21 + E, u1, P2 + €2, f3 + €3))
Dy(h)
D(h)
Ds(h)
D(h)

+ as(z;y(z; 21, Uy, Bo + €, B + €3))

+

as(z;y(z; 21, u1, Ba, B + €3)),
and hence limy_,0 z15(z) exists. Let lims_, o z14(2) = z1(z). In particular,

o)
zi{z) = 6—a:1u($;$1, $2,$3,U1,U2,U§),
because of the construction of z1n(z). Since
z1(z) :gl_% z10(2)
. ' D
=p(z;y(z; 21, u1, B2, B3)) + —5202(1?;3/(58; z1,u1, B2, F3))
D
4 ']_—)éas(-’ﬂ;y(r;ml, uy, B2, B3)),

we have z;(z) is the solution of the variational equation (2) along y(z) = y(z;z1, us, B,
Ps) because B, aa, a3 are solutions of (2) along y(z). Further,

1) =Bas 1(=) + Tea(es o) + Bas(ar; y(2))

/ D D3
=={oi] + =)+ 30)

= - u'(a:l).
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And again from an earlier part of this proof,
21(22) = lim 27;,(z2) = lim 0 =0,
z1(3) = lim 2, (23) = lim 0 = 0.

Note that above we use y(z;z1,u1, B2, 03) = u(z; z1, 22, T3, U1, Uz, U3)-
So, z1(z) = g%u(:c;xl,xg, T3, U1, Ug, us) is the solution of the variational equation
(2) along u(z) = u(z;z1, x2, £3,u1, Uz, u3) and satisfies

z1(z1) = —u(zy)
z1(22) =10
zi(z3) = 0.
For the next part of (b), we show that (-%"; exists on (a,w), and that z; = a%‘—‘; is the
solution of the variational equation (2) along u(z) and satisfies the boundary conditions
z5(z1) = 0, 25(z2) = —u"(z2), 25(z3) = 0.

Let § > 0 be given as in Theorem 3.1. Choose h # 0 with |h| < 6 and define

_u(z;z1, 22 + h, 23, u1, Uz, uz) — u(z; T1, T2, T3, U1, Ua, U3)
Zgh(.'l:) = E .

Note that zop(z1) = ¥5% = 0, for every h # 0, and 25,(z3) = *23** = 0, for every
h # 0. Let

B =u(z2; z1, 2, T3, U1, U, uz), and
Bs =u"(z2; z1, z2, 23, U1, Uz, Uz).
Also let ¢; = €;(h) = u(zs + h;z1, T2 + h, 23, U1, Ug, uz) — 1, and
e3 = ea(h) = u'’(z2 + h; 1, T2 + h, 23, u1, Uz, u3) — fa.

By Theorem 3.1, ¢; = €;(h) — 0 and €3 = €3(h) — 0, as h — 0.
Now, given p € (a,b) and ¢;,ca,c3 € R, let y(z) = y(z;p,c1,c2,c3) denote the
solution of (1) satisfying the initial conditions

y(p) = 1,y (p) = c2, and y"'(p) = ca.

Again, viewing the solutions u as solutions of initial value problems and using a telescop-
ing sum,

Z'zh(l‘) Z%{U(x;ml, zo+ h, T3, Uy, U2, Us) - U(f;-’El, Zy,T3,U1, U, Us)}
=%{y(:c;x2 + h, 1 + €1,uz, B3 + €3) — y(z; z2, P, u2, f3)}
—‘:%{[y(:c;:z:g + h, B1 + €1, u2, B3 + €3) — y(z; 22, f1 + €1, u2, P5 + €3)]

+ ‘il;[y(-’ﬂ;xz,ﬂl + €1, ug, B3 + €3) — y(z; x2, P1,uz2, B3 + €3)]

+ %[y(x; T2, P1,uz, B3 + €3) — y(z; z2, B1,uz,B3)}.
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By Theorem 2.1 and the Mean Value Theorem,
1 o
z2n() :Eﬁ(x;y(x;xz + h, 1 + €1,uz2, B3 + €3))(z2 + h — z3)
1 =
+ 501(-"3; y(z; 22,1 + €1, uz, f3 + €3))(B1 + €1 — B1)

+ %013(1?; y(x; 22, B, U2, B3 + €3))(Bs + €3 — B3),

where f(z;y(-)) is a solution of the variational equation (2) along the solution y(-) of (1)
and satisfies the initial conditions

B(zz+h)=—y(z2+h)
B'(z2+h) = —y'(z2+ h),
B"(z2 + k) = —y"(z2 + h).

Also, o;1(z;y(-)) and a3(z;y(-)) are solutions to the variational equation (2) along y(-)
of (1) and satisfy the initial conditions

ai(z2) = 1,04(z2) = 0,07 (z2) = 0,

az(z2) = 0,a3(z2) = 0,a5(z2) =1,
where & is between 0 and h,€; is between 0 and ¢;,7 = 1,3. So,

- . € _
zon(z) =B(z; y(z;22 + h, By + €1, us, Bz + €3)) + —hlal(:z:;y(z;a:g, Br+ €, uz,P5 + €3))
€ .
+ fas(r; y(z; 2, B1, u2,P3 + €3)).

To show that limy_,¢ z24(z) exists, it again suffices to show that limj,_. St and
limp_,o §* exist. Recall that zp(z1) = 24;,(23) = 0, for every h # 0. This gives the
system of two equations in two unknowns:

- €
—B(z1;y(x; 22 + h, P1 + €1, uz, B3 + €3)) =F101(-’31; Y(z; 29, B1 + €1, u2, P53 + €3))
€3

h
- € _
~B'(z3;y(z; T2 + h, B1 + €1, uz, B3 + €3)) =310/1(1‘3; Y(z; z2, f1 + €1,u2, B3 + €3))

+ ——a3(z1;y(z; z2, B1, uz, B3 + €3)), and

€ -
+ faé(iﬂa; y(x) x2)ﬂ1)u2’ :B3 + 6-3))'

Again, using Cramer’s Rule, we solve for 5 and $* by

—B(z1;y("))  as(z1; ()
—B'(z3;9(-)) 3(239()) | _ Dy(h)

ai(z1;9(1)  as(zi;y() D(h)’
ai(z3; ()  ablzs;y(-))

=2
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and
a1(z1;9(-))  —B(zi;9(:) |
es | 2=s9() =P (239())|  pyn)
h D(h) D(h)’
provided D(h) # 0. Here, y(-) denotes the solutions of (1) with respect to'their initial
conditions as previously given. '
The usual argument can be made that D(h) # 0, for A small, and with limy,_,q D(h)
= D, for the appropriate D, we have

by B o g 2A0) . Dy
h—0 h  h—0 D(h) D
. €3 _ . Da(h)_gg
MR % TR Dm - D

= constant, and

constant .

This now gives us

wa0(2) = B(wi() + Palein() + B azsal)

and so limj_,q 225(z) exists.
Further, because of the definition of zy;(z),

’}i_l,l% zon(z) = C,)a—;(-’v;-’ﬂl, 32, T3, U1, U2,U3) = 23(z).
That is,
D
z2(z) =P(z; y(z; 22, P1, ua, B3)) + —171011(-’!3;3}(27; T2, P1,u2, P3))

D
+ —DE'QB(:E; y(-’f?, Za, ﬁl ) u21183))-

Hence, z3(z) is a solution to the variational equation (2) along y(z;z2,B1,uz,f3) =
u(z; 21, 22, T3, U1, ua, u3), because B, ay, and g are.
Moreover,

z2(z1) = lim zpp(21) = lim 0 =0,
Z;(-'B:z) = ﬁ'(xz; y(z;-'ﬂzyﬁl;uz,ﬁs)) = —y"(Iz;xz,ﬂl,ui,ﬂa)
= — u"(z3; 21, T2, 23, u1, Uy, u3), and
24(25) = Jim 24, (s5) = lim 0 = 0.

This completes the arguments for 6%"—2. As remarked earlier in this proof, the arguments

for -(%”: are completely analogous. This completes (b).
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For part (c) of the theorem, assume that parts (a) and (b) are satisfied. In particu-
lar, we note that z;(z), z3(z), 23(z), y1(z), y2(z), and ys(z) are all solutions of the same
variational equation (2). Now, observe the boundary conditions that z;(z) and y(z)
satisfy:

21(z1) = — w(21)(1) = —'(z1)y1(z1),
21(22) = — ¥/(21)(0) = —v'(21)y](22),
21(23) = — w/(21)(0) = —v'(21)y}(23).

Hence, by (iil'), z1(z) = —u/(21)y1(z), or specifically, fﬁ(m) - -—u’(:z:l)g‘—“l(x).

Similarly, zo(z) and y,(z) satisfy the boundary conditions,

2y(21) = — u"(22)(0) = —u"(z2)y2(z1),
z3(22) = — u"(22)(1) = —u"(z2)yh(z2),

z3(23) = — u”(22)(0) = —u"(z2)yy(z3).

Again, by (iii’), z3(z) = —u"(z2)y2(z), or equivalently, 5‘9;‘—2(:8) = —u”(zz)%(x).
Finally,
z3(21) = — u"(23)(0) = —u"(z3)ys(z1),

73(22) = — u"(23)(0) = —u"(z3)y3(<2),

73(23) = — u"(23)(1) = —u"(23)y3(23),

which by (iii’), gives us %‘;(z) = —u"(x3)§—t:2(x). This completes the proof.

4. Other Analogues of Peano’s Theorem

For the BVP’s (1), (4), we state, without proof, first a theorem dealing with continu-
ous dependence on boundary conditions, followed by a theorem concerning differentiation
with respect to boundary conditions. Proof of the theorem on continuous dependence
follows alorig the lines in [7], and the proof of the differentiation theorem closely follows
that of Theorem 3.1.

Theorem 4.1 Assume that (i), (i1), and (iv) are satisfied with respect to (1). Let
u(z) be a solution of (1) with mazimal interval of ezistence (a,w) C (a,bd) and let a <
To < 23 < Z2 < 23 < w be given. Then there exists a § > 0 such that, for lz1 — 4] <
6, |z2 — 12| < 8, |u(z1) — 1] < 6, [w/(z1) — ya| < 6, and |u'(z2) — ys| < &, there is a unique
solution us(z) of (1) whose mazimal interval of ezistence is (as,ws) D [zo, 3], and is
such that us(t1) = y1,uj(t1) = yo, us(t2) = ys. Moreover, {ugj)(z)} converges uniformly
to u)(z) as § — 0 on [z, z3], for each j = 0, 1.2,

Theorem 4.2 Assume (1), (ii), and (iv) are satisfied. Also assume that the varia-
tional equaiion (2) along all solutions y(z) of (1) satisfies (iv') on (a,b). Let u(z) be a
solution of (1) with mazimal interval of existence (o,w) C (a,b). Leta < 1 < 73 < w
be given so that u(z) = u(z;zy, zo, uy, uz,u3), where u(zy) = uy,v'(z,) = uy, and
u'(z2) = uz. Then
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(a) ;—:1’ z?Tu,: 5%“‘ ezist on (a,w) and y; = (-;9“ 1 < i< 3, is the solution of (2) along

u(z) and satisfies the boundary conditions
vi(z1) =1,v1(21) = 0,33(22) = 0,
y2(z1) =0,y5(21) = 1, y5(22) = 0,
y3(1:1) =0,y:’3($1) = Oiy;}(mZ) =1

(b) ;%_‘—1-, 5%‘% ezist on (a,w) and z; = %,1 < i < 2, is the solution of (2) along u(x)
and satisfies the boundary conditions :
21(z1) = = v(21), 21 (21) = —u"(21), 21(22) = 0,
z3(21) =0, 25(2z1) = 0, 23(22) = —u"(z2)-

(c) The partial derivatives satisfy
Ou ; Ou " du du ” Ou
e o e ol 9 il F = o8
So(@) =~ (1) (@) — (1) (@), and 5 o(2) =~ (@) 5 (o).
We conclude this paper by stating further analogues of Theorems 3.1 and 3.2 for
BVP’s (1), (5).

Theorem 4.3. Assume (i), (ii), and (v) are satisfied with respect to (1). Let u(z) be
a solution of (1) with mazimal interval of ezistence (a,w) C (a,b) and letax < zo < 73 <
z9 < 23 < w be given. Then there exists a & > 0 such that, for |z, — 11| < é,|z2 — t2] <
8, lu(z1) — y1| < 8, |u'(z2) — y2| < &, and |u”(x2) — y3| < 8, there is a unique solution
us(z) of (1) whose mazimal interval of ezistence is (aé,w“ D [zo,z3] and is such that
us(t1) = y1,u5(t2) = ya, and v”’(t2) = ys. Further, {uéJ (z)} converges uniformly to
uU)(z), as § — 0 on [z, z3], for each j =0,1,2.

Theorem 4.4. Assume (1), (ii) and (v) are satisfied. Also assume that the varia-
tional equation (2), along any solution y(z) of (1), satisfies (v') on (a,b). Let u(x) be a
solution of (1) with mazimal interval of ezxistence (a,w) C (a,b). Let a < 71 < z3 < w

be given, so that u(z) = u(z;z1,z2, U1, uz, uz), where u(zy) = uy,u'(xz) = uy, and

u'’(z2) = uzg. Then

(a) 561—1‘1;, 5%“;, 5%—‘— exist on (a,w) and y; = au v 1 <1< 3, is the solution of (2) along

u(z) and satisfies the boundary condilions
yl(‘vl) = 1,y1(132) = 0’3/11(1:2) =0,
Y2(21) = 0,y5(22) = Lyz(22) =0,
y3(z1) = 0,¥5(z2) = 0,95 (x2) = 1.
(b) é)aTu,’ 6;1—“2 erist on (o,w) and z; = g;-‘j,l < i <2, is the solution of (2) along u(z)
and satisfies the boundary condilions
z1(z1) = —u'(z1), 21(z2) = 0,27 (z2) = 0,

z23(z1) = 0, 25(22) = —u"(22), 25 (22) = —u""(22).
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(c) The partial derivatives satisfy
L TX S . ] L PRSI L . TS )
5o () = (2 (o), and T(2) = —u(a2) p () — u(a) S ()
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