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ON THE TOTAL CURVATURE OF SURFACES IMMERSED 
IN EUCLIDEAN SPACES OF DIMENSION HIGHER THAN FOUR 

YONG-SOO PYO AND YONG-TAE SHIN 

1. Introciuction 

The total absolute curvature r(M) of a smoothly immersed n-submanifold M of a 
Euclidean (n + N)-spacc En+N was first studied by S.S.Chern and R.K.Lashof ([5]) and 
then by N.H.Kuiper ([6]) through the Lipschitz-Killing curvature I<(x, e) defined by the 
dual map v* of the Gauss map v: Bv - s;+N-l of the unit normal bundle Bv over M 
into the unit (n + N - 1)-sphere s~+N-l of the center at the origin in En+N at each 
point ( x, e) of the bundle Bv such that 

v"'dun+N-1 = I<(x,e)duN-1Adv, (1.1) 

where dv and dum are the volume elements of M and an m-sphere sm, respectively. 
The geometric meaning of the Lipschitz-Killing curvature I< ( x, e) is described in 

detail by Y.T.Shin ([8]) as a generalization of the Gauss-Kronecker c·urvature of a hy 
persurface M in En+l or the Gauss curvature of M in E3. The total absolute curvature 
K*(x) = fsN-1 I K(x, e) I duN-1 at each point x of M is defined as the integral of 
the absolute value of the Lipschitz-Killing curvature K(x,e) over each fiber of the unit 
normal bundle Bv over M, and the total absolute curvature r(M) = JM K*(x)dv of M 
as the integral of /{* ( x) over M if it exists. 

One of results Chern-Lashof and Kuiper proved in their first papers, applying the 
Morse inequality ([7]), is 

r(M) 2: Cn+N-if3(M), (1.2) 

where Cn+N-l is the volume of (n + N - 1)-sphere sn+N-l and /3(M) is the sum of 
the betti numbers of M. The right-hand side of (1.2) depends on the coefficient field. If 
the equality sign holds in (1.2) with the real field as coefficient field, then M has zero 
torsion. And we know the Gauss-Bonnet theorem for a compact surface M in Em 

L G dv = 21rx(M), 

where G is the Gauss curvature and x(M) is the Euler characteristic of M. 

(1.3) 
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Some of the results we have proved in this paper ar~ the following. 
H lvf is a compact flat surface in Em with .\2 :S 0, tJ-ien we have 

(1.4) 

Let M be a compact surface in E5• Then we have 

(1.5) 

Concering the total absolute curvature r(M) and the total mean curvature JM o:2dv of 
a compact surface in E5 with -'1 ~ o; we have proved the inequality 

(1.6) 

Let M be a flat surface in E5 with· ,\2 ~ 0. Then we have . 

(1.7) 

2. Preliminaries 

Let M be a surface i_n a Euclidean m-space Em, m ~ 5. We choose a local field of 
orthonormal frames e1, e2, ... , em in Em such that, restricted to M, e1, e2 are tangent to 
Mand e3, ... , em are normal to M. Let w1 ,w2, · · · ,wm be the field of dual frame. Then 
the structure equations of Em are given by 

dwA = - L wAnAwB, 
B 

A B 0 wn+wA=' 

dwA n = - LwAcAwc B, 
C 

We restrict these forms to M. Then w3 

Since 

A, B, C = I, 2, · · ·, m. 

···=Wm = 0. 

i, j, k 1, 2, r, s, t 3, 4, , m, 

by Cartan's lemma, we may write 

h1:. 
Z) 
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We call h = L .. h'i1· wi wi er the second fundamental form of M. The mean cur- r,, ,J 
vature vector H is given by 

r 

They are generalized cases of the surfaces in E3• 

If H = 0, then M is called a minimal surface. In [10], it is proved that there does not 
exist a closed minimal submanifold in a Euclidean space. 

The Ga11,ss curvature G and the mean curvature a are defined respectively by 
m 

r=3 

1 m 

a = 2 ( I: ( h;:1 + h;2?) t. 
r=3 

(2.1) 

For a normal vector e 
A(x,e) at (x,e) is given by 

I:;1=3 arer at x in M, the second fundamental tensor 

m 

A(x,e) = L arhij· 
r=3 

The Lipschitz-Killing curvature I<(x,e) is defined by 

J{ ( x, e ) = det ( A ( x, e ) ) 
m 1n m 

(I:atht2)2. 
t=3 r=3 s=3 

For each x in M, we denote by T;- the normal space at x. We define a linear mapping 
'Y from T;- into the space of all symmetric matrices of order 2 by 

m m 

'Y(L arer) = L arA(x, er). 
r=3 

Then, since dimT; = dim ker 1 + dim Im 1, 

dim ker 1 2: m - 5. 

We choose e3, e4, ... , em at x. in such a way that e6, ... , em E ker 1. Then for any unit 
normal vector e = Lr cos Orer at x, the Lipschitz-Killing curvature K(x,e) at (x,e) is 
given by 

K(x, e) = <let (A(x, e)) 
m 

= <let (L hij cos Br) 

5 5 

= (L h~l COS Or) (L= hh COS Os) 
r=3 

5 

<I: hi2 cos 8t)2• 

t=3 

(2.2) 
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The right hand side of (2.3) is a quadratic form on cos (}r. Hence, by choosing a suitable 
unit orthogonal normal vectors e3, e4, e5 at x ,· we may write 

K(x,e) = ..\1(x) cos2B3 + ..\2(x) cos2B4 + ,\3(x) cos2B5, 
..\1(x) 2: ..\2(x) 2: ,\3(x). (2.3) 

From now on, we choose such a frame unless otherwise stated. 
From (2.1), we obtain 

G = ..\1 + ..\2 + ,\3 everywhere on M. 

Let Cm be the volume of the unit m-sphere sm. Then we know that 
2 7r}(m+l) 

r(!(m+l))' 

(2.4) 

(2.5) 

where r is the Gamma function. 

By spherical integration ([9]), we obtain the following equations (2.6) and (2.7). 

1 I 2 2 2Cm+2 cos Br - cos B$ I du = ') ' 
5m 7r 

r f:. s, (2.6) 

where du is the volume element of the unit m-sphere sm. 
{ cos2 Or du = Cm+2 

ls= 21r 
(2.7) 

3. Main Results 

We begin with the following lemma which is crucial for our argument. 

Lemma 3.1 .. Let M be a surface in Em, m 2: 5. Then ,\3 ~ 0 everywhere on M. 

Proof. Let e be a unit normal vector at x E M which is perpendicular to the mean 
curvature vector H. Then 

H ·e 
1 2 L (h~l + h;2) COS Or 

r 

0, 

where e = Lr cos Orer. Hence 

5 5 5 5 cI: h~l cos Or + L 1i;2 cos ()$ )2 = ( L h~l cos Br)+ ( L 1i;2 cos B$ )2 
r=3 s:3 r=3 $=3 

5 5 

+ 2( L h~l COS Br)( L h;2 COS B$) = 0. 
r=3 -'=3 
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Therefore the Lipschitz-Killing curvature K(x,e) at (x,e) is given by 

5· 5 5 

J{ ( X' e ) = ( L h ~ 1 cos Or ) ( L h;2 cos e 3 ) - ( L hi 2 cos Oi) 2 < 0. 
r=3 

Thus, from view points of (2.3), we complete the proof. 

Theorem 3.2. Let M be a compact surface in Em with .\3 = 0. Then M is 
homeomorphic to a 2-sphere. 

Proof. Let Sx be the unit hypersphere of Tf and let da be the volume element of 
Sx. From (2.3) and (2.7), we have 

K*(x) = f I A1(x) cos2 03 + A2(x) cos2 04 I da lsz: 
= (A1(x) + -'2(x)) C~;1 = C;;1 G(x), 

where Cm-l denotes the volume of the unit (m - !)-sphere. Hence the total absolute 
curvature r(M) of M iii given by 

r(M) = Cm-l [ G(x) dv 
211" }M 

= Cm-1x(M) 2: Cm_if3(M) 

by (1.2) and (1.3), where x(M) denotes the Euler characteristic of M. 'I'herefore x(M) 2: 
/3(M). Since x(M) :S /3(M), x(M) = /3(M). Thus, by the arguments in the iw~quality 
(1.2), M has zero torsion and x(M) = 2. Hence M. is homeomorphic to a 2-sphere. 

Lemma 3.3. If M is a compact flat surface in Em with .\2 S 0, then we have 

[ 11"2 lM A1(x) dv 2: 2 /3(M). 

Proof. Since A1 = -A2 - A3, 
K(x, e) = >-2(x)(cos2 04 - cos2 03) + A3(x)(cos2 Os - cos2 03) . 

. Hence 

K*(x) < - A2(x) r I cos2 04 - cos2 03 I ls~ 
- (>-2(x) + A3(x)) 2Cm-l 

11" 

dc, - A3( X) r I cos2 85 - cos2 03 I da ls z: 
2A1(x) Cm;l' 

11" 
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by (2.6). Therefore, by (1.2), 

2Cm-1 1 Cm_ifJ(M) ::; r(M) :S 2 .-\1(x)dv. 
7f' M 

Thus 

Lemma 3.4. Let M be a surface in Em. Then we have a2 2: ,\1. 
Proof. 

4a
2 = (hf1)2 + (h~2)2 + (h11)2 + (hi2)2 + (h~1)2 + (h~2)2 

+ 2(hf2)2 + 2(h12)2 + 2(hf2)2 + 2G 
2: 2hf1h~2 - 2ht11ii2 - 2hf1h~2 + 2(hf2)2 + 2(h12)2 + 2(hf2)2 + 2G 
2: 2.-\1 - 2.\2 - 2.-\3 + 2G = 4.-\1. 

Theorem 3.5. Let M be a compact fiat surface in Em with A2 < 0. Then we have 

/ 7r2 JM a2 
dv 2: 2 /J(M). 

Proof. By Lemma 3.3 and Lemma 3.4, 

Lemma 3.6. Let M be a surface in E5• Then we have 

41r K*(x) ::; 3G(x) - 81r ,\3(x). 

The equality sign holds when and only when ,\1(x) = ..\2(x) = ..\3(x) or A3(x) = 0. 
Proof. Since :E~=3 cos2 (Jr = 1, by (2.3), 

I{ ( x , e) = ,\ 1 ( x) cos 2 0 3 + ,\ 2 ( x) cos 2 0 4 + ,\ 3 ( x) ( 1 - cos2 () 3 - cos 2 8 4) 
= (..\1(x) - >.3(x)) cos2 03 + (>.2(x) - ,\3(x)) cos2 01 + >.3(x). 

By (2.5) and (2. 7), 
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Therefore 

I<*(x) · 41r 41r 
~ (..\1(x)- ,\3(x))3 + (..\2(x) - A3(x))3 - ,\3(x)41r 

41r = -G(x) - 81r ,\3(x). 
3 

411" 
If K*(x) = 3G(x) - 81r,\3(x), then 

I K(x, e) I= (..\1(x) - A3(x)) cos2 B3 + (,\2(x) - ,\3(x)) cos2 B4 - ..\3(x) 

The converse of this is trivial. 
From Lemma 3.6 and (1.3), we obtain the following. 

Theorem 3. 7. Let M be a compact surface in E5. Then we have 

where x(M) is the Euler characteristic of M. 

Lemma 3.8. Let M be a surface in E5 with ,\1 2: 0. Then we have 

The equality sign holds when and only when ,\1 ( x) = 0. 
Proof. Since E:=3 cos2 Br = 1, 

K(x,e) = .-\1(x)(l - cos2B4 - cos2B5) + ..\2(x)cos204 + ,\3(x)cos205 
= ..\1(x) + (..\2(x) - ..\1(x))cos2B4 + (.-\3(x) - .-\1(x))cos205. 

Hence 
. C4 C4 

~ ..\1(x)C2 - (.-\1(x) + ..\2(x) + .-\3(x))27r + 3.-\1(x)
2
7r 

41r = 81r..\1(x) - 3G(x). 

If the equality holds, then we must have 

K*(x) 

for all 04 and B5• Therefore 
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But the second condition also implies ,\1(x) = 0, since ,\1(x) 2: 0 and ..\3(x) :S 0. 
The converse of this is trivial. 

Theorem 3.9. Let M be a compact surface in E5 with ,\1 2: 0. Then we have 

f o:2 dv ~ -2
1 

(3r(M) + 871"2 x(M)). j M 411" 

Proof. From Lemma :1.4 and Lemma 3.8, 

l o:2 dv ~ l ..\1(x) dv 
~ 2. f (I{*(x) + 411" G(x))dv 

811" lM 3 
1 871"2 . = 811"(r(M) + 3x(M)). 

Lemma 3.10. Let ./11 be a surface in Em. Then we have 

Proof. 

10:
2 = (hf 1)2 + (h~2)2 + (ht1>2 + (h12>2 + (hf 1>2 + (h~2)2 

+ 2(hf 2)2 + 2(hf2)2 + 2(hf2)2 + 2G 
2: 2hf1h~2 + 21it1h~2 - 2hr1h~2 + 2(hf2)2 + 2(ht2)2 + 2(hr2>2 + 2c 
2: 2,\1 + 2>-2 - 2,\3 + 2G 
= 4(..\1 + Az). 

Lemma 3.11. Let M be a surface in E5 with A2 2: 0. Then we have 

' 471" 
Ii *(x) :S 41r..\2(x) + 3(A1(x) - A3(x)). 

The equality sign holds when and only when .\1(x) = .\2(x) = 0 or ..\2(x) = A3(x) = 0. 

Proof. K(x, e) = -'1 (x) cos2 ()3 + -'2(x )(1 - cos2 03 - cos2 85) + .\3(x) cos2 ()5 
= A2(x) + (.\1(x) - >-2(x)) cos2 ()3 + (.\3(x) - .\2(x)) cos2 ()5_ 

Hence 

K*(x) S-'2(x)C2 + C.\1(x) - -'2(x)) 4; + (.\2(x) - .\3(x)) ~7T 

41r 
· =411".\2(x) + 3(..\1(x) - .\3(x)). 
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41r 
If J<"'(x) = 41r..\2(x) + 3(A1(x) - ,\3(x)), then 

I K(x,e) I= ..\2(x) + (..\1(x) - -X2(x))cos283 + (..\2(x) 

121 

for all 83, 85. Therefore 

But the second condition implies ..\2 ( x) 
The converse of this trivial. 

Theorem 3.12. Let M be a fiat surface in E5 with ,\2 > 0. Then we have 

JM a2 dv 2: i!1r r(M). 

>.3(x) = 0, since ,\2(x) 2: 0 and J\3(x) < 0. 

Proof. Since ,\3 

I<"'(x) 41r :S 41r..\2(x) + 3(2.-\i(x) + .-\2(x)) 
81r = 3(.-\i(x) + 2,\2(x)) 
l61r = -
3
-(..\1(x) + ..\2(x)) 

by Lemma 3.11. From Lemma 3.10, 

L a2 dv 2: l (.-\1(x) + A2(x)) dv 
3 { 81r > 167r JM(J(*(x) + 3-\i(x)) dv 

> 6
3 T(M), since ..\1 (x) > 0. 

1 7r 
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