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ON THE TOTAL CURVATURE OF SURFACES IMMERSED
IN EUCLIDEAN SPACES OF DIMENSION HIGHER THAN FOUR

YONG-SOO PYO AND YONG-TAE SHIN

1. Introauction

The total absolute curvature 7(M) of a smoothly immersed n-submanifold M of a
Euclidean (n + N)-space E™V was first studied by S.S.Chern and R.K.Lashof ([5]) and
then by N.H.Kuiper ([6]) through the Lipschitz-Killing curvature K(z,e) defined by the
dual map ©* of the Gauss map ¥ : B, — S§T¥ =1 of the unit normal bundle B, over M
into the unit (n + N — 1)-sphere SF¥N=1 of the center at the origin in E"*V at each

point (z, e) of the bundle B, such that
v dopen-1 = K(z,e)don-1Adv, (1.1)

where dv and do,, are the volume elements of M and an m-sphere S™, respectively.

The geometric meaning of the Lipschitz-Killing curvature K(z,e) is described in
detail by Y.T.Shin ([8]) as a generalization of the Gauss-Kronecker curvature of a hy-
persurface M in E™t! or the Gauss curvature of M in E3. The total absolute curvature
K*(z) = [on-1 | K(z,€) | don_1 at each point z of M is defined as the integral of
the absolute value of the Lipschitz-Killing curvature K(z,e) over each fiber of the unit
normal bundle B, over M, and the total absolute curvature (M) = [,, K*(z)dv of M
as the integral of K*(z) over M if it exists.

One of results Chern-Lashof and Kuiper proved in their first papers, applying the
Morse inequality ([7]), is

(M) 2 Cayn-18(M), (1.2)

where Cp4n_1 is the volume of (n + N — 1)-sphere S*"*V-1 and B(M) is the sum of
the betti numbers of M. The right-hand side of (1.2) depends on the coefficient field. If
the equality sign holds in (1.2) with the real field as coefficient field, then M has zero
torsion. And we know the Gauss-Bonnet theorem for a compact surface M in E™

/ Gdv = 2nz(M), (1.3)
M

where G is the Gauss curvature and (M) is the Euler characteristic of M.
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Some of the results we have proved in this paper are the following.
it M 1s a compact flat surface in E™ with A, < 0, then we have

2
/ a’dv > p(M). (1.4)
M 2
Let M be a compact surface in E°. Then we have

(M) < §7r2x(M) - 87r/M As(z) dv. (1.5)

Concering the total absolute curvature 7(M) and the total mean curvature [,, a2dv of
a compact surface in E® with A\; > 0, we have proved the inequality

/ aldv > L(31'(M) + 8wy (M)). (1.6)
M 24w
Let M be a flat surface in E® with A3 > 0. Then we have

3
/Ma2dv 2 se—n(M). (1.7)

2. Preliminaries

Let M be a surface in a Euclidean m-space E™, m > 5. We choose a local field of

orthonormal frames e, €3, ..., e, in E™ such that, restricted to M, e, e, are tangent to
M and es,..., e, are normal to M. Let w!,w?,--- ,w™ be the field of dual frame. Then
the structure equations of E™ are given by
dvt = — ZwABAwB,
B
wAB + wBA = 0,
dwip = — ZwAcAwCB, ABC =12 ---,m.
= ,
We restrict these forms to M. Then w® = ... = w™ = 0.
Since
0 = dof = _ZwriAwii i)j1k: 1,2) r,s,t=3,4,---,m,
i

by Cartan’s lemma, we may write

W = Y R, R = R
7
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Wecallh = 3° ;. hj; w'wie, the second fundamental form of M. The mean cur-
vature vector H is given by

| 1 r T
H = 3 Z(hn + his)er.

They are generalized cases of the surfaces in E3.
If H = 0, then M is called a minimal surface. In [10], it is proved that there does not
exist a closed minimal submanifold in a Euclidean space.

The Gauss curvature G and the mean curvature  are defined respectively by

G = ) (hiyh3, — hiyhly),
r=3

1, < . i
o« =5 (A1 + h5a))5. (2.1)
r=3 .
For a normal vector e = 2:":3 are, at ¢ in M, the second fundamental tensor

A(z,e) at (z,e) is given by
m
Alg.e) = E ah;.

r=3

The Lipschitz-Killing curvature K(z,e) is defined by
K(z,e) =det (A(z,e))

= (Z G ’i1)(z ashy) — (Z athiy ).
r=3 s=3 t=3

For each z in M, we denote by T3} the normal space at z. We define a linear mapping
v from T- into the space of all symmetric matrices of order 2 by

7(2 Grly) = Z a.A(z,e;).
r=3 r=3

Then, since dimTy = dim ker ¥ + dim Im 7,
dim ker ¥ > m—5.

We choose e3,e4,...,6, at £ in such a way that eg,...,e,, € ker 4. Then for any unit
normal vector e = ) _cos 0,¢, at z, the Lipschitz-Killing curvature K(z,e) at (z,e) is
given by

K(z,e) = det (A(x,e))

m
= det (Z hi; cos 6;)
r=3

5 5 5
= () hiicos 0,) (D h3ycos 6,) — (D hiycos 6,)° (2.2)
p=g =3 1=3
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The right hand side of (2.3) is a quadratic form on cos 8,.. Hence, by choosing a suitable
unit orthogonal normal vectors ez, €4, e5 at z, we may write

K(z,e) = A(z) cos? 03 + Aq(z) cos?ly + A3(z) cos? 05,
M(z) 2 Az(z) 2 As(). (2:3)

From now on, we choose such a frame unless otherwise stated.
From (2.1), we obtain

G = M + A2 + A3 everywhere on M. (2.4)

Let C,, be the volume of the unit m-sphere S™. Then we know that

2 W%(m"'l)

T MG+

(2.5)

where T is the Gamma function.

By spherical integration ([9]), we obtain the following equations (2.6) and (2.7).

/ | cos?8, — cos?b, |do = QC";H, r#s, (2.6)
m w
where do is the volume element of the unit m-sphere S™.
C
2 — e
/m cos® b, do = o (2.7)

3. Main Results

We begin with the following lemma which is crucial for our argument.
Lemma 3.1.. Lel M be a surface in E™, m > 5. Then A3 < 0 everywhere on M.

Proof. Let e be a unit normal vector at z € M which is perpendicular to the mean
curvature vector H. Then

1 r
H.e = 5‘;@11 + h},) cos 6, = 0,

where e = )

, cosf.e.. Hence

Zh'1c050 +Zh’2c0s9) = Zhllcosﬂ)+(2h22c059

= 2(2 hi, cos 6, )(Z hiacos ;) = 0.

r=3
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Therefore the Lipschitz-Killing curvature K(z,e) at (z,e) is given by

|4

5° 5 5
Kiwe) = (Z hi, cos 0, )(Z h., cos 6, ) — (Z hi, cosf )? < 0.
r=3 5=3

t=3

Thus, from view points of (2.3), we complete the proof.

Theorem 3.2. Let M be a compact surface in E™ with A3 = 0. Then M 1s
homeomorphic to a 2-sphere.

Proof. Let S, be the unit hypersphere of T and let do be the volume element of
Sz. From (2.3) and (2.7), we have

K'(z) = [9 | Ar(z) cos?B3 + Ay(z) cos®Oy | do

Cm-—l
2-1G(a)

= (@) + M) 2t =

where C,,_; denotes the volume of the unit (m — 1)-sphere. Hence the total absolute
curvature 7(M) of M is given by

C'm— 1
2T M

= Cm-—lX(M) Z Cm—l:B(M)

(M)

G(z) dv

by (1.2) and (1.3), where x(M) denotes the Euler characteristic of M. Therefore x(M) >
B(M). Since x(M) < B(M), x(M) = B(M). Thus, by the arguments in the incquality
(1.2), M has zero torsion and x(M) = 2. Hence M is homeomorphic to a 2-sphere.

Lemma 3.3. If M is a compact flat surface in E™ with Ay < 0, then we have
52
/ M) dv > T p(M).
M 2

Proof. Since Ay = —X2 — A3,
K(z,e) = Aa(z)(cos® 84 — cos® 03) + Aa(z)(cos? 05 — cos® 03).

Hence

K*(z) < — Aa(z) | cos? 04 — cos® 0 | do — Ag(:c)/ | cos? 85 — cos® 05 | do
S» Sy

= = (@) + Xa(@) 22 = any(a)

w2

C1m— 1
7!'2

)
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by (2.6). Therefore, by (1.2),

. A
Cm-1B(M) < (M) < =5 : /M A(z)dv.

Thus
71.2
/ M(z)dv > T ).
M 2

Lemma 3.4. Let M be a surface in E™. Then we have a® > ).

Proof.

do® = (h3))? + (h3:)" + (A1) + (h1)? + (h3)? + (h3,)?
+ 2(h;)? + 2(h%y)? + 2(k3,)? + 2G
> 2h%,h3, — 2k} R3, — 2h31h3, + 2(h3,)? + 2(h12)* + 2(R3,)? + 2G
>2)1 — 2X; — 2)3 + 2G = 4),.

Theorem 3.5. Let M be a compact flat surface in E™ with Ay < 0. Then we have
2 m
a“dv > — B(M).
M 2
Proof. By Lemma 3.3 and Lemma 3.4,

2
/Mazdv > /AlAl(x)dv > Tﬁ(M)

Lemma 3.6. Let M be a surface in E®. Then we have
; 4r
K*z) < -—?:—G(z) — 87 A3(z).

The equality sign holds when and only when A(z) = Aa(z) = A3(z) or A3(z) = 0.
Proof. Since £3_,cos26, = 1, by (2.3),

K(z,e) =X;(z)cos® 65 + A2(z) cos? 0, + A3(z)(1 = cos? B3 — cos® 64)
=(A1(z) - A3(z)) cos? B3 + (A2(z) — As3(z)) cos? B4 + Az(z).

By (2.5) and (2.7),
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Therefore

K*(z) < (Mi(2) - /\3(3))4—?,7[ + (A2(z) - Aa(x))%” — A3(z) 4r

= %{G(:D) — 87 A3(x)

If K*(z) = %G(z‘) — 87A3(z), then

| K(z,€) | = (M(2) = As(2)) cos? 03 + (Aa(z) — A3(z)) cos? 85 — As(z)

for all 83, 64. Hence
A1(z) = Az(z) = A3(z) or A3(z) = 0.

The converse of this is trivial.
From Lemma 3.6 and (1.3), we obtain the following.

Theorem 3.7. Let M be a compact surface in E°. Then we have

(M) < g-wzx(M) - SWAIA3(x)dv,

where x(M) is the Euler characteristic of M.
Lemma 3.8. Let M be a surface in E® with A\; > 0. Then we have

K*(z) < 87Ai(z) - [—1310(:1:).
The equality sign holds when and only when A(z) = 0.
Proof. Since ¥3_5cos?8, =1,

K(z,e) = A(x)(1 — cos®0; — cos? 05) + Ag(z) cos? By + Aa(z) cos? b5
= i(z) + (A2(2) — Ai(2)) cos? 05 + (Aa(z) — Ai(z)) cos? bs.
Hence .
* C4 C4
K (:c) < Al(x)CQ - ()\l(m) + /\2(.’13) + /\3(1‘))5‘: -+ 3/\1(1’)5;
e by ] %”G(x).
If the equality holds, then we must have
| K(z,e) | = Ai(z) + (M(z) — Aa(z))cos® 04 + (Ai(x) — A3(z)) cos? O5
for all 64 and 05. Therefore

A1(z) = 0or Ai(z) = Ao(z) = A3(2).

119
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But the second condition also implies A, (z) = 0, since A1(z) > 0 and A3(z) < 0.
The converse of this is trivial.

Theorem 3.9. Let M be a compact surface in E® with Ay > 0. Then we have
1
/ a’dv > ——(37(M) + 8x% x(M)).

Proof. From Lemma 3.4 and Lemma 3.8,

/azdv > / Ai(z)dv
M M

> 5 [ 6@ + Te@)a
= Ly + 3 ).
8w 3

Lemma 3.10. Let M be a surface in E™. Then we have

a? > M+ Ao,

Proof.
40® = (h3)” + (h%,)® + (h$)? + (h32)* + (h$1)® + (h3,)?
+ 2(h35)? + 2(h1y)? + 2(h3,)? + 2G
> 2h31h3y + 2h%1h3, — 25 K3, + 2(h12)” + 2(h},)* + 2(h3,)? + 2G
> 2A1 e 2/\2 — 2A3 + 2G

Lemma 3.11. Let M be a surface in ES with A2 > 0. Then we have
i 4
K*(z) < 4mhy(z) + —3—(/\1(3) ~ Asz(z)).

The equality sign holds when and only when Ai(z) = Aa(z) = 0 or Ay(z) = As(z) = 0.

Proof. K(z,e) =X;(z)cos?8; + A2(2)(1 - cos? 03 — cos? 05) + A3(z) cos? 05
=A2(z) + (A1(2) — Aa(z)) cos? 03 + (A3(z) — A2(2)) cos? 5.

Hence
4

T
3

K*(2) Sa(2)0r + (@) = Xa(2) T + (ha(z) - A=)

- =4mdg(z) + ‘[g—w(/\l(-’ﬂ) = A3(z)).
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4w
If K* (.’l:) = 47r/\2(z:) + ?(/\1(1}) - /\3(.’17)), then

| K(z,e) | = A?(z:) + (A1(z) — Az(2)) cos® 3 + (Aa(z) — /\3(1:)) cos? B
for all 83, 5. Therefore
A(z) = A(z) = 0or Aa(z) = A3(z).

But the second condition implies A2(z) = Asz(z) = 0, since A\p(z) > 0 and Az(z) < 0.
The converse of this trivial.
Theorem 3.12. Let M be a flat surface in E® with \s > 0. Then we have

3
fipetdv > Té;T(M)

Proof. Since A3 = —A; — A,
x 4T
K*(z) <4mdq(z) + —?;-(2)\1(1:) + A2(z))

= -83—7r(/\1(.’l:) + 2/\2(1‘))

167 8w
= 3~ (M(2) + Ae(2)) - ?/\1(2:),

by Lemma 3.11. From Lemma 3.10,

foatan > [ (o) + dafa)) do

o -I_Z_W/M(K*(x) + 8?71-/\1(.’8)) dv

3 :
> Té.—;T(M), since A1(z) > 0.
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