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UNIFIED CONTACT STRUCTURE

B.B. SINHA AND R.N. YADAV

Abstract. A necessary and sufficient condition that a € manifold to admits
anunified contact structure is established. A condition is obtained so that it be-
comes P-Sasakian. A linear connection in it is defined so its distributions are
parallel.

1. Introduction

If, on a manifold M, there exists a tensor field ¢ of type (1,1), r vector fields
€1,€2,...,& and r 1-forms 5!, - -, 5" such that

Wa(fﬁ) = 63 ) a),B € (T) = {17_"')7'} (11)

¢* = a*{I — 1" Q&} (1.2)

where a®b, denote ) a®b, where ‘a’ is a complex constant and I denotes identity oper-
ator

o¢ =0, ae(r) (13)

$(E) =0, ae(r). (1.4)

Then 37 = (¢,€a;1%)ag(r) is called an unfield contact structure on M and M is an
unified contact manifold.
If the structure ¢ is compatible with the Riemannian metric g, i.e.

9(¢X,6Y) = {g(X,Y) = D n*(X)n*(¥)}. (1.5)
o
For any vectors X and Y. Then a? = %1. In case of a?> = —1, the structure ¢
1s almost contact and skew-symmetric. In case of a®? = 1, the structure ¢ 1s almost

paracontact and symmetric. If ¢ is parallel with respect to the Riemannian connection,
then (g, #) is Sasakian or para-contact structure respectively.
If one put the condition

9(6X,8Y) = Mg(X,Y) — Y *(X)n*(V)} (1.6)
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in place of the compatibility (1.5), then X is positive because the metric g is positive
definite, and A*> = a* or A = |a?| by means of (1.6) and the structure condition (1.2).
An unified contact manifold M always admits the following complementary distri-

butions.

Dt ={X; ¢(X) =
D™ ={X; ¢(X) =
D’ ={X; ¢(X) =

we define operators

1 1

é1 =§{I + ;d’ — 1* @&}
1 1 .
¢2 =§{I . a—¢ - 1" @&}

L
¢3 = {I - _(-I,E(ﬁ }7
They have following properties
¢1 + ¢2 + 43

¢ = ¢1, b3 = ¢o,

aX},

—-(ZX},

0},

— Sl e, A
- 2{a2¢ + a¢})

1 Py 1
5{;_2.(#2 - Z¢}:

1,

¢§ = ¢3:

Pr10¢2 = ¢20d1 = 1043 = ¢30¢1 = Pa0¢3 = ¢30 ¢

and moreover,

podr =¢r10¢ = a¢y,

'—a'(th’

0.

(1.7)
(1.8)
(1.9)

(1.10)
(1.11)

(1.12)

(1.13)

(1.14)
(1.15)

(1.16)
(1.17)
(1.18)

By (1.16), (1.17), (1.18) the distributions D*, D~ and D° may be expressed as

pogr = ¢ao¢d =

pods = ¢zo¢d =
follows

Dt ={X; ¢:+X

D™ ={X; ¢2X

D° ={X; ¢sX

Thus we have Lemma,

X}

= X}

0}

(1.19)

Lemma 1 [3]. The distributions DY, D=, D° are generated by the projection

- operalors ¢y, ¢2, ¢3 respectively.
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Theorem 1. The necessary and sufficient condition for M admits an unified contact
siructure is that there ezists three complementary distributions Dy, Dy, D3 of dimension
p, q, r respectively, withp + ¢ + r = n = dimM.

Proof. The necessary condition immediately follows from Lemma 1. Now sup-
pose that there are three complementary distributions D;, D,, D3 of dimension p,q,r
respectively, with p+ ¢+ r =dim M =n.

For any X € M, we have T M = Dyz + Dyx + D3z. Let

{61,...,€P,ep+1 = El,...,ep+q e Eq,ep+q+1 = fl,...,en o Er}

be a basis of T, M, where{e;;i € (P)} is a basis for Dyz, {€;t € (¢)} is a basis for D,z,
and {£i,...,& } is a basis for Dsz.
Now let {el,-++,eP,ePtt = @l ... ePt1 = gl Pt1tl = pl. ... " = 5} bea

basis of cotangent space T, M such that

é(ej) = &, i,j€(n) (1.20)
which gives,
fRer + Qe + 1°®&, = 1, (1.21)
where
Let us put

¢ = a{e*@ex + & @7}, ¢ = %1, ke(p), te(g)

Then by virtue of (1.20) and (1.21), we get
(&) = &

and
¢? = a*{"F Q@ er + B QE},

or

¢2 = az{l = 770®5a}

Thus M admits an unified contact structure

( ¢, 8a, 0" )ae(r)

Hence the proof.
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2. On unified contact manifold M, with structure >, = (#:€ar 1™ )ae(r)

We define two operators

P =1IQ®I — ¢1®¢1 — $2®@¢2 — ¢3® ¢3 (2.1)
and
Q=¢10¢1 + $2®@¢2 + ¢33 &2
with properties
P+ Q =.1, P? = P, Q? = Q, PQ = QP = 0. (2.3)

Lemma 2. [2]. If A is a projection operators, i.e. A2 = Aand B = I — A,
then all the solutions of the equation Az = y are of the form z = ¥ + Bw, where w is
orbitrary.

Definition. A distribution D on a manifold M is said to be parallel with respect to
a given connection I'. If, for every vector fields Y and X which belongs to the distribution
D, the vector field Vy X belongs to the distribution D, where V is covariant derivative
with respect to the connection T.

Proposition 1. [3]. The distribution D¥ given by (1.7) is parallel with respect to
a conneciion ', iff

Vér0o¢4; = 0 (2.4)

Proposition 2. [3]. The distribution D~ is parallel with respect to a connection T’
if
V¢2 OQSQ = 0 (25)

Proposition 3. [3]. The distribution D° is parallel with respect to a connection T
of
Visady = D (2.7)

Now if we assume that V is an 3 - connection, then from (1.10), (1.11), (1.12) we get
V¢ =0, Vg2 = 0, Vgs = 0.

Theorem 2. IfI‘ is an ) - connection on an unified contact manifold M, then the
distribution Dt D=, D° given by (1.7), (1.8) and (1.9) are parallel with respect to this
connection.

Proof. By virtue of proposition 1, 2, and 3 we obtain the required proof.
Now we shall find all connections.of the form

VX = Vx + Ax (2.8)
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with respect to which the distributions D*, D=, D° given by (1.7), (1.8) and (1.9) are

parallel, where V is the co-derivative with respect to any orbitrary connection I on an

unified contact manifold M and A is a tensor field of type (1,2), with AxY = A(X,Y).
Now for any vector Y and for any tensor field f of type (1.1)

(Vxf)Y) =Vx(fY) — f(VxY)
=Vx(fY) + AxfY — fVxY — fAxY,
Vxf =(Vxf)Y + Axof — foAx. (2.9)

Now suppose that the distributions Dt, D=, D° are parallel with respect to V, from
proposition 1, 2 and 3, [3] we get

Vx¢ro¢1 = 0, Vxésogs =0, Vx¢zogs = 0.
Now by virtue of (2.8) and (2.9) we have

Vx¢r0¢1 + Axd? — é1Ax¢1 = 0,
Vxéao¢s + Axd3 — ¢2Ax¢2 = 0,
Vx¢sods + Axd3 — ¢sAxés = 0.

Now adding these equations and making use of (1.13) and (1.14) we get

Vx¢r10¢1 + Vxga0ds + Vxdszods + Ax
— ¢1Ax b1 — d2Axd2 — P3Axé3s = 0.

Using (2.2) we get
Vx¢i10¢1 + Vxdaods + Vxgzods + PAx = 0.

This equation is equivalent to

PAx = ¢1Vx¢1 + ¢2V¢a + ¢3Vxés.

Hence, in virtue of lemma 2, we obtain

Ax = ¢1Vxé1 + 62Vxda + ¢3Vxds + QSx
where Sx is an orbitrary tensor field of type (1,2) with SxY = S(X,Y).
Thus we have,

Theorem 3. If, on an unified contact manifold M with a structure y, =
(8,60, 1%)ae(r) there exists any linear connection T' then distributions DY, D=, D° given
by (1.7), (1.8), (1.9) respectively are parallel with respect to every connection T' given by

Vx = Vx + 61Vxé1 + ¢2Vxds + 63Vixds + QSx
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3. An unified Contact Riemannian manifold of P-Sasakian type [4]

Suppose that M is an unified contact Riemannian manifold with a structure 3 =
(D,6x, n%, 9)ae(r)- We define the following tensor fields of type (2.2).

F = %{I®I+n°’®fa®1 + I®n* @&,
-1 8Ler O ~ 404 . (1)
and
H = %{I@I—h"@&@I - 1917 ®&,
+ RO @ + ai2¢®¢} (3.2)

with properties

Il
o

F+H=1I®I, HH=H FF=F FH = HF (3.3)

we introduce

L=H-~4g¢ (3.4)
a )

Now we define a symmetric tensor field ¢ of type (0,2) as follows:
¢(X,Y) = g(¢X,Y)

Definition. An unified contact Riemannian manifold M , with a structure ) =
(b,€a, 0%, 9)ae(r) is said to be of unified contact type of the following condition is satisfied:

20(X,Y) = (Vxn*)Y + (Vyr®)X forall a€(r) (3.5)

If, moreover, all 7* are closed, then since dn® = 0 is equivalent to (Va®)¥Y =
(Vyn®)X, the condition (3.5) is reduced to

B(X,Y) = (Vxn™)Y, forall ac(r) (3.6)
From n%(X) = g(X,&,), « € (r) we have
(Vxn®)Y = ¢(Vx&.,Y)
and then (3.6) is equivalent to

X = Vxé&, for all a € (r) (3.7)
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now we prove the following.
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Theorem 4. Let M be an unified contact Riemannian manifold of unified contact

type with structure (9,&q, ”ge(r)' If
(i) all n® are closed, and

(ii) The tensor field ¢ satisfies the condition LV z¢ = 0.
Then

Vzé(X,Y) = —a® Y " (X)(Y,2) ~ Y (V)1 (2)]
a B
- &) _n*(V)e(X,2) - Y PX)P(2),
a B

Proof. Since n* are closed then (3.6) is satisfied, we have
$($X,Y) = a’[g(X,Y) = Y _n"(X)m*(V)),
a

Vzé(X,Y) = 9((Vz ¢)X’ ¥

From (3.9), we have
Vz$($X,Y) = a’{Vz9(X,Y) = (Vzn*)(X) 3 _n*(Y)
~ (Vzn*)(Y) )_ 1" (X)},
Putting ¢y instead of Y into (3.11), and making use of (3.6), we get
V(X 4Y) = a®{=Vz4(X,Y) ~ 3 _n°(Y)é(Z,X)
= D n*(X)4(Z,¢Y))

From (3.6) and (3.10), we have

Vzd(X,la) = 9((V28(X,&a) = —9(Vzéa,$X) = —¢(Z,6X)
and
Vzé(lara) = 0
The condition (ii) is equivalent

0 = (LVz¢)(X,Y)
= SVZHKY) = V2o (X)aY) — Vi 8(X, (V)
+ V29" (Xa, P(V)es) — V2 4(6X,6Y))
= 2{V24(X,Y) = 1*(X)Vz 6(6a,Y) — 1°(¥)V2 4(X, )

+ X (V)V2 8(Earls) — V2 (6X,6Y))

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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On account of (3.12), (3.13) and (3.14) we have

Vz4(X,Y) = = 300°(Y)$(Z,6X) — 3 0*(X)#(Z,4Y) (3.15)

Now using (3.9) in (3.15), we get
Vz¢(X)Y) = —a® Y n*(Y)[9(X,2) - D P (X)nP(2)]
o B
-~ () (%, 2) - PP (2)
a ]

Hence the theorem.

Definition. An unifined contact Riemannian manifold M, with structure

Z = (¢:fa: naag)ae(r)
satisfying the conditions (3.6) and (3.8) is said to be of P-Sasakian type.
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