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SOME REMARKS ON THE FINITENESS CONDITIONS 
OF RINGS 

AHMED A. M. KAMAL 

Abstract. The aim of this paper is to study the finiteness of rings. We prove 
that if A is a regular left-self-injective ring, then A is of type III (purely infinite) 
implies that E(A[x]) is, and A contains an abelian idempotent if and only if E(A[x]) 
contains an abelian idempotent. Also we prove that. 

If A is a regular left self-injective ring and J is a left ideal in A[x] such that 
C(J) is an essential left ideal in A, then there exists a countably generated left ideal 
J' in A[x] such that C(J') is an essential left ideal in A, and if J' is an essential 
left ideal in A[x], then J is an essential left ideal in A[x]. 

1. Introduction 

As special case of the work in [6], we have that "A regular left self-injective ring A 
is of type I, I1, 100 if and only if E(A[x]) is of the same respective type. fo this paper we 
are interested in study the relation between the finiteness of the regular left self-injective 
rings and the finiteness of the injective envelope of their polynomial rings. 

Throughout this paper all rings are associative with unit. A ring A is regular pro 
vided that for every x E A, there exists y E A such that x y x = x. A ring A is unit 
regular provided that, for each x E A, there is an invertable element u E A such that 
x = x u x. A regular ring is abelian provided all idempotents in A are central. A ring 
A is called left self-injective if AA is injective A-module. A module M is directly finite 
if M is not isomorphic to any proper direct summand o.f itself and a ring A is directly 
finite if AA is directly finite A-module and it is directly infinite if it is not directly finite. 
An idempotent e in a ring A is called faithful in A if O is the only central idempotent 
of A which is orthogonal to e. An idempotent, e in a regular ring A is called abelian 
(directly finite) idempotent if e A e is abelian regular (directly finite) ring. A regular, 
left self-injective ring is said to be purely infinite if it contains no nonzero directly finite 
central idempotent. And it is said to be of type II if it contains a faithful directly finite 
idempotent but it contains no nonzero abelian idempotents. Moreover it is called of type 
II f (1100) if it is of type II and directly finite (purely infinite). And it is called of type 
III if it contains no nonzero directly finite idempotents. 
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A ring A is said to be a Baer ring if every left (right) annihilator is. of the form 
Ae (eA), e is an idempotent in A. The central·cover of an element x EA, written C(x), 
is the smallest central idempotent e in A satisfying ex = x. By the injective invelope of 
a ring A we mean the injective envelope of it as a left module over itself and we denoted 
it by E(A). Finally the set of all central idempotents in a ring A is denoted by B(A). 

2. Preliminaries 

In this section we collect some results and a consequences of them, will be needed 
in this paper. 

(2.1) Let A be a Baer ring, e be an idempotent in A and f be an idempotent in 
e A e. If/ is a directly finite idempotent in e A e, then f is a directly finite idempotent 
in A. 

(2.2) Let e, f be idempotents in a Baer ring A. Then the following conditions are 
equivalent 
(i) A e is isomorphic to A f as a left A-modules 
(ii) e A is isomorphic to / A as a right A-modules 
(iii) There exist elements x and y such that x e A f, y f A e, x y = e and y x = f 

Two idempotent e and fin a Baer ring A are called equivalent and denoted bye"' f 
if they satisfy the equivalence conditions (2.2). 

(2.3) A Baer ring A is directly finite if and only if for every idempotent e E A, e "' I 
implies e = I. 

(2.4) Let A be a Baer ring with no nonzero nilpotent ideals. If e = e2 E A and 
/ E B(eAe), then C(f) e = f 

The proof of 2.1, 2.2, 2.3 and 2.4 can be found in [8] 
Notice that a regular ring is a Baer ring if and only if the lattice of principal left 

(ring) ideals of it is complete and hence every regular left (ring) self-injective ring is a 
Baer ring. Therefore (2.1), (2.2), (2.3) and (2.4) are satisfied for regular left self-injective 
rmgs. 

(2.5) Let A be a left nonsingular ring, N be a submodule of the left A-module M. 
Then N is essential in 111 (N :S e M) if and only if N x-1 is an essential left ideal in A 
foreachxEM,whereNx-1 = {a EA: ax EN}. 

The proof of (2.5) can be in [5]. 
A consequence of (2.5) is that if I is essential left ideal of a left nonsingular ring A, 

then for each b EA, there exists an essential left ideal I{ of A such that O f [{ b C I. 
(2.6) Let A be a regular, left self-injective ring, and let { Ji} be an independent 

family of left ideals of A. Then there exist orthogonal idempotents ei E A such that each 
Ji :'.S .e A ei. If the Ji are also principal, then each Ji = A ei. 

The proof of (2.6) can be found in [2]. 
Let A be a regular left self-injective ring and J be a left ideal in A. If {J(i} is a 

maximal independent family of principal left ideals of A such that J{i c I for each i, 
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then $Ki ~ e I. By using (2.6) we can find an orthogonal idempotents {ei} such that 
A ei = Ki for each i .. Therefore $A ei ~ e I. On the other hand E(AI) is a direct 
summand in A which implies the existance of an idempotent e E A such that I :'.S e A e 
Moreover e is unique. 

(2.7) Every regular, left self-injective ring satisfies general comparability. 
The proof of (2.7) can be found in [9] 
(2.8) If A is a unit-regular ring, then every· finitely generated projective A-module 

is directly finite, consequently, Mn(A) is directly finite for all n 
The proof of (2.8) can be found in [4]. 
(2.9) If A is a directly finite regular ring satisfying general comparability, then A is 

unit-regular. 
The proof of (2.9) can be found in [10]. 
From (2.7) and (2.9) a directly finite regular left self-injective ring is a unit-regular. 

Conversely if A is a unit-regular left self-injective, then AA is a finitely generated non 
singular left A-module, which implies that AA is projective, hence (2.8) shows that A is 
a directly finite. 

(2.10) Let A be a semiprime, left nonsingular ring and e be an idempotent of A. 
Then e E(A)e is the infoctive envelope of e A e 

The proof of 2.10 can be found in [I] 
(2.11) Let A be a regular, left self-injective ring. If A is directly finite, then every 

nonzero ideal of A contains a nonzero central idempotent. 
(2.12) For a regular left self-injective ring A the following conditions are equivalent. 

(i) A is purely infinite 
(ii) nAA .:SAA for some integer n 2: 2 
(iii) nAA ~ AA for all positive integer n 
(iv) E(xo AA) ~ AA 

The proof of (2.11) and (2.12) can be found in [9] 
(2.13) Let A be a regular left self-injective ring, u E Aut(A) and D beau-derivation 

of A. Then B(E(A[X,u,D])) = (B(A))<7, where (B(A))<7 = {e E B(A) : u(e) = e}. 
(2.14) If A is an abelian regular ring, then E(A[X, DJ) is an abelian regular ring. 
The proof of (2.13) and (2.14) can be found in [6]. 

3. Finiteness conditions of rings 

Notice first that, if A is a left nonsingular ring, then A[x] is left nonsingular and 
hence E(A[X]) is a regular left self-injective ring. 

Proposition 3.1. If A is a regular left self-injective ring of type III, then E(A[XJ) 
is of type I I I. 

Proof. Assume that E(A[X]) is not of type I I I hence there exists a non zero 
directly finite idempotent f in E(A[X]), which implies that E(A[X])J is directly finite 
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and I = I = E(A[XJ) f n A[X] is a non zero left ideal in A[X], since A is a regular 
ring, then there exists a non zero polynomial pin I with minimal longth and p = e xn + 
an-l xn-l + · · · + a0. Moreover p = ep = e xn + e an-I xn-l + · · · + ao, e == e2 EA 
we define 

cp : A[X] -+ A[X]P 
q-+q·P 

It is clear that cp is an cpimorphism with ~er cp = Ann (P) = A[X](l-e), which implies 
that A[X]P '.:::::'. A[X]e, hence E(A[X])e '.:::::'. E(A[X]P) ~ E(A[X])f, which implies that 
E(A[X])e is directly finite, therefore A e is directly finite and hence e is a directly finite 
idempotent in A which is a contradiction. 

Proposition 3.2. Let A be a regular left self-injective ring. If A is purely infinite, 
then E(A[XJ) is purely infinite. 

Proof. From (2.13), we have B(E(A[XJ)). = B(A), and hence the proof of the 
proposition is clear. 

Recal that if A is a Baer ring and e = e2 EA is a nonzero idempotent, then A is of 
type I I l implies that e A e is of type I I I ( see [8]). Therefore this result is also true for 
regular left self-injective rings. 

Example 3.3. This example shows that the previous result is not true for purely 
infinite regular left self-injective rings. Let I{ be a field and A == EndK (KN), then A 
is a purely infinite regular left self-injective ring. We define Po : KN -+ K, P

0 
is a 

projection and Po A Po '.:::::'. I( ·is directly finite. 

Proposition 3.4. Let A be a regular left self-injective ring and f be a nonzero 
central idempotent in A. If A is purely infinite, then f A f is purely infinite. 

Proof. Since A is purely infinite ring, then (2.12) implies that A'.:::::'. E(EBiAei) with 
A '.:::::'. Aei for each i E N and the er are idempotents in A. By using (2.2), we have 
that, for each i E N, there exist Xi E Aei, Yi E ei A such that Xi Yi = i and Yi Xi == ei. 
Which implies that (f xd) (/yd) = f, (fyd)(f xd) = ed with f xf E / Aed = Aed 
and fyf E ed A, hence Af '.:::::'. Aed for each i E N. Since A is injective, there exists 
an idempotent h in A such that E( EBiAei) '.:::::'. Ah hence A '.:::::'. Ah, which implies that 
Af '.:::::'.Ah/therefore Af '.:::::'. E(EBiAed). 

Condition * We say that a ring A satisfies condition * if for each sequence e1, e2, ... , 
en, ... of nonzero idempotents in A, there exists k E N such that C( ek) E ek-1 A ek-1, 
where C( ek) is the central cover of ek in A. 

Notice that, every division ring satisfies condition *. Also there exists a regular left 
self-injective ring which does not satisfy condition * as the following example shows. 

, 

Example 3.5. Let 1{ be a field and A == Endk (KN) then A is a regular left 
self-injective ring: 
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Let {fn· : n E N} be a base of I{ N as a vector space over J{, we defin~ V
0 
= J{ N, Vi = 

EBnEN (fin K), V2 = EBneN (/22n K), · · ·, Vp = EBneN (/2.,.n K), then Vo 2 V1 2 Vi 2 
... Vn 2 ... , let Pn : Vo -+ Vn be the projections from Vo into Vn for each n E N, then 
P1, P2, ... , Pn, ... is a sequence of idempotents in A and {O, 1} is the set of all central 
idempotents in A. 

Proposition 3.6. If A is a regular left self-injective ring such that E(A[X]) satisfies 
condition *, then A is purely infinite implies that E(A[X]) is of type I I I. 

Proof. Assume that E(A[XJ) is not of type I I I, hence E(A[X]) contains a di 
rectly finite idempotent say e1. Therefore (2.11) implies that every nonzero ideal in 
e1 E(A[X])e1 contains a nonzero central idempotent in e1 E(A[X])e1• Since every reg 
ular ring is a semiprime, then by using (2.4), there exists a central idempotent e

2 
in 

e1 E(A[XJ)e1 such that C(e2)e1 = e2, hence e2E(A[X])e2 = e1 C(e2)E(A[X])C(e2)e1 
~ e1 E(A[X])e1• Therefore e2 E(A[X])e2 is a directly finite regular left self-injective 
ring, which implies the existance of an idempotent e3 E e2 E(A[X]) e2 which is central 
in e2 E(A[X])e2 and directly finite in E(A[X]). And so on, we obtain a sequence of 
idempotents e1, e2, ... , en, ... in E(A[XJ) such that, each ei is directly finite in E(A[X]) 
and each ei is central in ei-I E(A[XJ) ei-I · Therefore there exists ek for some k E N, 
such that C(ek) is contained in ek-I E(A[X])ek-I and ek = C(ek)ek-1 · Moreover 
C(e.1;)(ek-1E(A[X])e.1;_1)C(ek) = ekE(A[X])ek, which implies that C(e.1;) is a directly 
finite idempotent in ek_1E(A[X]) ek-I· Therefore (2.4) implies that C(ek) is;,:,_ central 
directly finite idempotent in E(A[X]), moreover (2.13) implies that C(ek) is a central 
directly finite idempoten in A which is a contradiction. 

Remark 3.7. The proof of proposition 3.6 shows that, if E(A[X]) satisfies the 
hypothesis of the proposition, then E(A[XJ) contains directly finite idempotent, implies 
that it contains a central directly finite idempotent. 

Notice that for unit-regular ring, the statement A is directly finite implies that E(A) 
is directly finite is not always true as the following example shows. 

Example 3.8. Let K be a field, then M2n (K) is a regular directly finite ring for 
each n E N. For each n EN, we identify for each element X in M2n(K), the element 

( ! 1) in M2n+1 (I<) and hence J\f2n(K) ~ M2n+1 (I<) ~ · · · for each n E N. Since 

the direct limit of regular rings is a regular ring, and also the direct limit of directly finite 
rings is a directly finite ring, then A= lim ..... M2n (K) is a regular directly finite ring. But 
the left injective envelope of A and the right injective envelope of A are different, both 
of which are of type III (see [3] theorem Il.3.1) Therefore E(A) is not directly finite. 

Proposition 3.9. If A is a left non singular ring such that Mn(A) is directly infinite 
for some n E N, n 2: 2, then E(A) is a directly infinite. 

Proof. Since A is left nonsingular, then the maximal left quotient ring Q(A) is 
regular left self-injective ring. If E(A) is directly finite, then Q(A) is also directly finite 
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and hence unit-regular. Therefore (2.8) implies that Mn(Q(A)) is directly finite for each 
n E N, n 2: 2, whence Mn(A) is directly finite for each n E N, n 2: 2, which is a 
contradiction. 

If A = Jim M2n (E) as in example 3.8, then A[X] is directly finite, but E(A[X]) is 
not directly finite. We discuss now that, if A is directly finite regular left self-injective 
ring, is E(A[X]) is directly finite. 

Theorem 3.10. If A is a nonsingular ring, then E(A[X]) is directly infinite if and 
only if there exists left ideals I and J in A[X] such that I~ J, I ~e A[X] and J f:.e A[X] 
as left A[X]-modules. 

Proof. Notice first that E(A[X]) is a Baer ring 
(1) Assume that, there exist left ideals I, J in ~[X] such that I ~ J, I ~e A[X] and 
J 1:.e A[X] as left A[X]-modules. Hence E(I) and E(J) are direct summands of E(A[X]), 
moreover I ~e A[X] implies that E(J) = E(A[X]), also E(J) = E(A[x]) f for some 
nonzero idempotent f in E(A[X]) with f f; 1. But I ~ J implies that E(I) ~ E(J), 
hence f ......, I. Therefore (2.3) shows that E(A[X]) is a directly infinite ring. 
(2) Assume that E(A[X]) = B is directly infinite then there exists idempotent f in B 
such that f ......, 1 and O # f f; 1. Therefore there exists an isomorphism ¢ : Bf -. B of 
left B-modules. We have that Bf n A[X] ~e Bf as left A[X]-modules, since ¢ is an 
isomorphism, ¢(Bf n A[X]) ~e B, which implies that 

¢(Bf n A[x]) n A[X] ~e A[X] 

Also we have that ¢(Bf n A[X]) n A[x] ~e B. Since ¢-1 is an isomorphism, then 

J = ¢-1(¢(B fnA[X]nA[X]) ~e Bf. 

Now 
J ~ ¢-1(¢(BfnA[x]))n¢-1(A[x]) 

~ (BJnA[X])nBJ 
~ A[X] 

also J n (B(l - !) n A[X]) ~(Bf n A[X]) n (B(l - !) n A[X]) ~Bf n B(l - !) = 0, 
therefore J is not an essential left ideal in A[X], conversly, from (*) we have that I = 
¢(J) =¢(Bf n A[x]) n A[X] ~e A[X], also we have Jt/J.!.f I= ¢(J) is an isomorphism of 
left A[X] - modules. 

Remarks 3.11. As a special case of [7], if I is a left (right, two sided) ideal in A[X], 
then Cn(I) = {O # a EA : 3P = axn + G;i-1. xn-l + · · · + ao, PE J}U{O} is a left 
(right, two sided) ideal in A for each n EN. Moreover Cn(I) C Cn+i(J) for each n EN, 
which implies that C(J) = Un EN, Cn(I) is a left (right, two sided) ideal in A. Notice 
that, if J is an essential left. (right, two sided) ideal in A[X], then Cn(I) so is. But if A 
is a nonsinguar ring and I is a eft (right) ideal in A[X] such that C0(J) is an essential 
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in A, then I is an essential in A[X]. Moreover the converse is not true. ·Finally, if A is a 
semiprime ring and I is. a two sided ideal in A[X], then I is an essentiai in A[X] if and 
only if C[I] is an essenqal .in A. 

Now let A be a ~¢gtilar left seft-injective ring and J be a left ideal in A(X] such that 
C(J) = UneNCn(JJ<e A. 

We shall construct a left ideal J* in A[X] such that J* ~ J as follows. Since C0(J) 
is a left ideal in A, there exists an idempotent e0 and orthogonal idempotents {fio} ioEio 
in A such that $i0EJ0A/i0 ~e Co(J) <e Aeo. Also since C0(J) ~ C1(J), there exists an 
idempotent e1 and orthogonal idempotents {/i1 }i1e1r in A such that If n Io = <P and 

Similarly Co(J) ~ C1(J) ~ C2(J) ~ · · · ~ Cn(J) ~ · · · implies that ($i0e10Afi0) EB 
(EBi1E!f Afii) $···EB ($inEl~Afin) ~e Cn(J) ~e Aen for each n. Note also that Io ; 
Ji; I2 ~···~In ~···where In+1 = In U I~+1 and Inn I~+1 = <P, n = 0, 1, 2, · · · 

For each i E Un In, let m = min{k EN : i E If.} hence i = I:n E Im, implies that 
/i = fim E Cm(J), therefore there exists P = fiXm + am_1xm-l + · · · + ao E J, and we 
take Pi = Ji P E J. Now we define the left ideal J* as follows 

J* = L A[X] pi 
ieLJin 

Proposition 3.12. J* is an essential left ideal in J. 

Proof. To prove that, let for each p E N, Jp be that left ideal of A[X] generated 
by the polynomials of J of degree ~ p and 1; be the left ideal of A[X] generated by the 
polynomials Pi constructed above with degree ~ p. 

First. we shalJ prove that J0 <e Jo 
Notice that Jo = A[X]Co(J) and J0 = EBioEloA[X] /io. Let f E Jo, then / = bnXn + 
bn_1xn-1 + · · · + bo with O f. bi E Co(J), i = 0, 1, · · ·, n, since EBi000A fio ·~e Co(J) 
then for each bi, there exists an essential left ideal J{i of A such that O f. J{i bi ; 
EBi0e10A /i0• Since I{ = ni=ol{i ~e A and A is left and right nonsongular ring, then 
0 f. J{ bi ~ $i0Ef0A fi0 for each i = 0, 1, · · ·, n. Let O f. ~i bi E EBioEloA fio, ~i E J{ for 
each i = 0, 1, · · ·, n, which implies that O f. ~if = L7=o ~i bi Xi E EBi0e10A[X]fio = J0 
for each j = 0, 1, · · ·, n. Therefore J0 ~e Jo. 

NOw we shall prove that J* ~e J. Let Q E J, we use the induction on the degree of 
Q. If degree Q = 0, then Q = a E Co( J) ~ J0, since J0 ~e J0, we can find an essential 
left ideal J{ of A[X] such that O f. J{ a = J{ Q ~ 10 ~ J*. . , 
Suppose that this is true for any polynomial Q in J with degree less than or equal to 
n - 1. Let Q = anXn + a,,-1xn-l + · · · + ao E J with an f. 0, hence an E G'n(J). Let 
Po= inf{p EN: an E Cp(J)}, since EBi1A /ii ~e Cp0(J), where ij E U~!o It, hence there 
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exists).. EA such'that Of:. >..an E EBi1Afi1, ii E Uf!0lt Therefore >..an= LJ=oai;fii' 
where ii E U~~0It, and we can assume that i0 < i1 < i2 · · · < ik < Po- Since Pi

1 
= 

fi.Xi1 + li-ai 1Xi1_
1 + · · ·fi.ao E J* with Pi. = Ji.Pi., hence a

1
*-.Pi· E J* which ] J j- J ) J ) ) } 

implies that Q' = a;kpik + a-;k-1 xik-h-tpik-1 + • • • + a-;oxik-iopio is in J* with leading. 
coefficient LJ=o a7;Ji1, where ii E U~~0/e. Therefore Q1 = .\ Q - xn-ikQ' is of degree 
less than or equal to n - 1, which implies the existance of an essential left ideal L of 
A[X] s11ch that L Q' ~ J*, hence L).. Q ~ J*. Let J( be the complement of fA[X](A Q) 
in A[X], since A[X] is left and right nonsingular (See [6] lemma 3.1) then fA[xJ(.~ Q) is 
not essential in A[X]. Therefore J{ is a nonzero left ideal in A[X], which implies that 
L n J{ f:. 0, hence there exists O I= g E L n J{ such that O f. g>.. Q E LA Q. Therefore 
0 I- L).. Q ~ J* which implies that J* is an essential in J. 

Now we shall define other left ideal J' in A[X] such that J* is an essential in J' as 
follows. 

We have that ©i0e10A/i0 :'.Se Co(J) :'.Se Aeo, and since fA(eo) = A(l - eo), then 
( EBioE/o A/i0) EB f A ( eo) :'.Se A and we define a homomorphism of left A-modules 

such that <.p is the identity on EBioElo Afi0 and zero on fA(e0), since A is a left self 
injective, <.p can be extended to a homomrphism ·t.p*:A-+ A. Let Jo = <.p*(l) and put 
Po= Jo. 
For each i1 E IL Pi1 = li1 X + li1 a?1, we define two homomorphisms of left A-modules 

such that <.p is the identity on EBiiE/1 A /i1 and zero otherwise, but '1/J(/ii) = af
1 
for 

each i1 E /1 and zero on (EBioEio Alio) EB fA(ei),similarly <.p and 'lj; are extended to 
homomorphisms <.p* and 'lj;*, we let Ji= <.p*(l), a?= '1/J"'(l) and define P1 = Ji X + Ji a~. 
In general for each in E /~ we have that Pi,. = Ii,. xn + Ii,. a7,.-1xn-l + ... + !i,.a?,. 
we define homomorphisms of left A-modules 'Pi:(EBioEioA li

0
) EB (EBi

1
EJ~AliJ EB··· EB 

(EBi,.EJ~A Ii,.) EBfA(en)-+ A, i = 0, 1, · · ·, n as follows 'Pn is the identity homomorphisms 
at EBi,.E/,.A Ii,. and zero otherwise, but I.Pi (liJ = ai,. for each /i,. and for j = 0, I,···, n 
I and zero otherwise 'Pn and 'Pi, j . 0, I, · · · , n - I can be extended to homomorphism <.p~ 
and t.pJ, j = 0, I,···, n-1 from A into A, we define 'P](I) = at j = 0, · · ·, n-1, t.p~(l) = 
In, also we define Pn as the following Pn = In xn + In a~-l xn-l +···+In a::i X +Ina~ 
and we define J' = LneN A[X]Pn, which is countably generated left ideal in A[X]. 

Remarks 3.13. Notice that Ii,. fn = Ii,. <.p~(l) = 'Pn(/i,.) = Ji,. and Ii,. a~ = 
Ii,. 'Pj(l) = 'Pi (li.J = aL for each j = 0, 1, · · ·, n - 1, wich implies that Ii,. Pn = Pi,. for 
each n EN and since J* = LiiEu,.J,.. A[X]Pi1, we obtain that J* ~ J'. 
(2) It is dear that C(J') = UneNCn(l') = LnEN A In also k,, == Ii,. · fn, implies that 
©i,.Eu,.1,.A/i,. ~ C(J'). 
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(3) EBinEUnlnA fin <e C(J) <e A and EBinEUnln A fin ~ C(J') ~ A implies C(J') <e A 
and EBi,.EU,.lnA fin ~e C(J'). 

Propsition 3.14. J* is an essential left ideal in J'. 

Proof. Let Q = °'"'1~ 1 Q1· Pt. E J', where Pt.= ft- Xti + ft attj-lXti-1 + ... + w- J J J J J 

ft .at1. X + ft .a0t. for each j = 1, · · ·, k and assume that Q1· = a?n .Xmi + a!n ._1 Xmi-1 + 
JJ JJ . J J 

· · · + a10·, j = 1, · · ·, k. Now consider { a1q. }1q·~~·i·:::·:., since this family is contained in A 
- , , ' J 

and C( J) is an essential left ideal in A, we can find an essential left ideal /{ in A such that 
0 f. I( a{ ~ C( J) for each j = 1, 2, · · ·, k, q = 0, l, · · ·, mj. Hence O f. J{ a{ ~ C., ( J) for 
some s E N, which implies the existance of (Ji E A such that O f. (Ji Q j E ( C., ( J) )[ X], j = 
1, · · ·, k: Let (JjQj = L';io l{Xq with at least one element of b{ f. 0, denote it by dj, as 
happend before in proposition 3.12 we can find an essential left ideal L in A such that 
Lb{ <; EBi,El,A fi. and O f. L di for each j = 1, 2, · · ·, k. If Kj is the complement of 
fA(dj ftJ in A, then Kin L f. 0, which implies the existance of 'Yi E Kj n L such that 
0 f. ,.fi(dj ft)· Therefore Of. ,j(/3; Qi) E (EBi.EI. Afi,)[X] and (,j(/3j Qj))Pti i- 0 for 
each j = 1, 2, · · ·, k. But we have that Ji,. · fn = fin and Iii f~ = 0, j # n, moreover 
Ii,. a~ = fin a{.. for each ij E Un In. Therefore ( 'Yi /3j Qj )Pt; = Qj Pi;, Qj E A[X] and Pii 
is one of the generators of J*, for each j = 1, · · · , k, which implies that 'Yi /3j Q E J* for 
each j = 1, 2, · · ·, k. Hence J* ~e J'. 

Theorem 3.15. If A is a regular left self-injective ring and J is a left ideal in A[X] 
such that C( J) is an essential left ideal in A, then there exists a countably generated left 
ideal J' in A[X] such that C(J')is an essential left ideal in A and if J' is an essential 
left ideal in A[X], then J is an essential left ideal in A[ X]. 

Problem 1. Is J' is an essential left ideal in A[X]. 

Remark 3.16. Let A be a regular left self-injective ring and J be a left ideal of A. 
If the answer of problem 1 is affirmative, then C( J) is an essential left id~al in A, implies 
that J is an essential left ideal in A(X]. 

Problem 2. Let A be a regular left self-injective ring and I, J be left ideals in A[X] 
such that I~ J as a left A[X]-modules. Is C(J) ~ C(J) as left A-modules. 

Remark 3.17. Let A be a regular left slcf-injective ring. If the answer of problems 
1 and 2 are affirmative, then every directly finite idempotent in A is a directly finite 
idempotent in E(A[X]). 
Since if e is directly finite in A and e E(A[X]) e is directly infinite, then from theorem 
3.10 there exist two left ideals I and J in ( e A e )[X] such that I~ J, I <e ( e A e )[X] and 
J f:.e (eAe)[X] as left (eAe)[X]-modules, which implies that C(J) ~ C(J), C(I) ~e 

e A e and C( J) f:.e e A e as a left e A e-modules, but e A e is a left slef-injective, hence 
this is a contradiction with e A e is a directly finite ring. 
In particular for regular left self-inj~ctive ring A, A is a directly finite ring if and only if 
E(A[XJ) is a directly finite ring. 
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Proposition 3.18. If A is a regular left self-injective ring, then A contains abelian 
idempotents if and only if E(A[X]) contains abelian idempotents. 

Proof. Let f f. 0 be an abelian idempotent in E(A[X]), hence f E (A[X]) f is an 
abelian regular ring and I = E(A[X]) f n A[X] is a nonzero left ideal in A[X]. Let 
p E J, p = e xn + an-Ixn-l + · · · + ao with minimal length and e = e2 E A*, hence 
we have that A[X]P ~ A[X]e, .which implies that E(A[X]). e '.:!". E(A[X]P) ~ E(A[XJ)f. 
Therefore R(A[X])e is an abclian regular ring, hence e is an abelian idempotent in A. 
Conversely if e is an abelian idempotent in A, then e is an abelian idempotent in E(A[X]), 
by using (2.10) and (2.14). 

Remark 3.19. Let A be a regular left self-injective ring, if the answers of problems 
1 and 2 are affirmative, then 
(l)A is of type II if and only if E(A[X]) is of type II. 
(2)A is of type III if and only if E(A[XJ) is of type III. 
(3)A is a purely infinite ring if and only if E(A[XJ) is a purely infinite ring. 
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