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SOME REMARKS ON THE FINITENESS CONDITIONS
OF RINGS

AHMED A. M. KAMAL

Abstract. The aim of this paper is to study the finiteness of rings. We prove
that if A is a regular left-self-injective ring, then A is of type III (purely infinite)
implies that E(A[z]) is, and A contains an abelian idempotent if and only if E(A[z])
contains an abelian idempotent. Also we prove that.

If A is a regular left self-injective ring and J is a left ideal in Alz] such that
C(J) is an essential left ideal in A, then there exists a countably generated left ideal
J' in A[z] such that C(J’) is an essential left ideal in A, and if J’ is an essentjal
left ideal in A[z], then J is an essential left ideal in Alz].

1. Introduction

As special case of the work in [6], we have that A regular left self-injective ring A
1isof type I, Iy, I, if and only if E(A[z]) is of the same respective type. In this paper we
are interested in study the relation between the finiteness of the regular left self-injective
rings and the finiteness of the injective envelope of their polynomial rings.

Throughout this paper all rings are associative with unit. A ring A is regular pro-
vided that for every z € A, there exists Yy € A such that zyz = z. A ring A is unit-
regular provided that, for each £ € A, there is an invertable element u € A such that
T = zuz. A regular ring is abelian provided all idempotents in A are central. A ring
A is called left self-injective if 4 A is injective A-module. A module M is directly finite
if M is not isomorphic to ahy proper direct summand of itself and a ring A is directly
finite if 4 A is directly finite A-module and it is directly infinite if it is not directly finite.
An idempotent e in a ring A is called faithful in 4 if 0 is the only central idempotent
of A which is orthogonal to e. An idempotent, ¢ in a regular ring A is called abelian
(directly finite) idempotent if e A e is abelian regular (directly finite) ring. A regular,
left self-injective ring is said to be purely infinite if it contains no nonzero directly finite
central idempotent. And it is said to be of type II if it contains a faithful directly finite
idempotent but it contains no nonzero abelian idempotents. Moreover it is called of type
Iy (Il ) if it is of type II and directly finite (purely infinite). And it is called of type
IIT if it contains no nonzero directly finite idempotents.
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A 1ing A is said to be a Baer ring if every left (right) annihilator is of the form
Ae (eA), e is an idempotent in A. The central-cover of an element z € A, written C(z),
is the smallest central idempotent e in A satisfying ez = z. By the injective invelope of
a ring A we mean the injective envelope of it as a left module over itself and we denoted
it by E(A). Finally the set of all central idempotents in a ring A is denoted by B(A).

2. Preliminaries

In this section we collect some results and a consequences of them, will be needed
in this paper.

(2.1) Let A be a Baer ring, e be an idempotent in A and f be an idempotent in
eAe. If f is a directly finite idempotent in e Ae, then f is a directly finite idempotent
in A.

(2.2) Let e, f be idempotents in a Baer ring A. Then the following conditions are
equivalent

(1) Ae is isomorphic to A f as a left A-modules
(ii) e A is isomorphic to f A as a right A-modules
(iii) There exist elements z and y such that z eAf,yfAe, zy=candyz = f

Two idempotent e and f in a Baer ring A are called equivalent and denoted by ¢ ~ b 4
if they satisfy the equivalence conditions (2.2).

(2.3) A Baer ring A is directly finite if and only if for every idempotent e € 4, e ~ [
implies e = [.

(2.4) Let A be a Baer ring with no nonzero nilpotent ideals. If e = e? € A and
f € B(eAe), then C(f)e = f

The proof of 2.1, 2.2, 2.3 and 2.4 can be found in [8]

Notice that a regular ring is a Baer ring if and only if the lattice of principal left
(ring) ideals of it is complete and hence every regular left (ring) self-injective ring is a
Baer ring. Therefore (2.1), (2.2), (2.3) and (2.4) are satisfied for regular left self-injective
rings.

(2.5) Let A be a left nonsingular ring, N be a submodule of the left A-module M.
Then N is essential in M (N < ¢ M) ifand only if N z=! is an essential left ideal in A
for each z € M, where Nz2=! = {a€ A : az € N}

The proof of (2.5) can be in [5].

A consequence of (2.5) is that if ] is essential left ideal of a left nonsingular ring A,
then for each b € A, there exists an essential left ideal K of Asuch that 0 # K bC 1.

(2.6) Let A be a regular, left self-injective ring, and let {J;} be an independent
family of left ideals of A. Then there exist orthogonal idempotents e; € A such that each
Ji < ¢ Ae;. If the J; are also principal, then each J; = Ae;.

The proof of (2.6) can be found in [2].

Let A be a regular left self-injective ring and I be a left ideal in A. If {K;}is a
maximal independent family of principal left ideals of A such that K; C I for each i,
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then ®K; < .I. By using (2.6) we can find an orthogonal idempotents {e;} such that
Ae; = K; for each i. Therefore ®@Ae; < .I. On the other hand E(4I) is a direct
summand in A which implies the existance of an idempotent e € A such that I < . Ae
Moreover e is unique.

(2.7) Every regular, left self-injective ring satisfies general comparability.

The proof of (2.7) can be found in [9]

(2.8) If A is a unit-regular ring, then every finitely generated projective A-module
is directly finite, consequently, M, (A) is directly finite for all n

The proof of (2.8) can be found in [4].

(2.9) If A is a directly finite regular ring satisfying general comparability, then A is
unit-regular.

The proof of (2.9) can be found in [10].

From (2.7) and (2.9) a directly finite regular left self-injective ring is a unit-regular.
Conversely if A is a unit-regular left self-injective, then 4 A is a finitely generated non-
singular left A-module, which implies that 4 A is projective, hence (2.8) shows that A is
a directly finite.

(2.10) Let A be a semiprime, left nonsingular ring and e be an idempotent of A.
Then e E(A)e is the injective envelope of e Ae

The proof of 2.10 can be found in [1]

(2.11) Let A be a regular, left self-injective ring. If A is directly finite, then every
nonzero ideal of A contains a nonzero central idempotent.

(2.12) For a regular left self-injective ring A the following conditions are equivalent.

(i) A is purely infinite

(ii) nA4 < A4 for some integer n > 2
(iii) nA4 ~ A4 for all positive integer n
(iv) E(xo, A4) =~ A4

The proof of (2.11) and (2.12) can be found in [9]

(2.13) Let A be a regular left self-injective ring, o € Aut(A4) and D be a o-derivation
of A. Then B(E(A[X,0,D])) = (B(A))?, where (B(A))? = {e € B(A) : o(e) = e}.

(2.14) If A is an abelian regular ring, then E(A[X, D)) is an abelian regular ring.

The proof of (2.13) and (2.14) can be found in [6].

3. Finiteness conditions of rings
Notice first that, if A is a left nonsingular ring, then A[z] is left nonsingular and

hence E(A[X]) is a regular left self-injective ring.

Proposition 3.1. If A is a regular left self-injective ring of type I11, then E(A[X])
s of type I11.

Proof. Assume that E(A[X]) is not of type III hence there exists a non zero
directly finite idempotent f in E(A[X]), which implies that E(A[X])f is directly finite
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and I = I = E(A[X]) f N A[X] is a non zero left ideal in A[X], since A is a regular
ring, then there exists a non zero polynomial p in I with minimal longthand p = e X" +
Ap_1 X" 14 ... 4 qp. Moreoverp = ep = e X" +ea, 1 X1+ 4 ag,e=¢e2ec A4
we define

¢ A[X] — A[X]P

g - gq-P

It is clear that ¢ is an epimorphism with Kerp = Ann(P) = A[X](1—e), which implies
that A[X]P ~ A[X]e, hence E(A[X])e ~ E(A[X]P) C E(A[X])f, which implies that
E(A[X])e is directly finite, therefore A e is directly finite and hence ¢ is a directly finite
idempotent in A which is a contradiction. .

Proposition 3.2. Let A be a regular left self-injective ring. If A is purely infinite,
then E(A[X]) is purely infinite.

Proof. From (2.13), we have B(E(A[X])) = B(A), and hence the proof of the
proposition is clear. A

Recal that if 4 is a Baer ring and e = e2 € A is a nonzero idempotent, then A is of
type I1I implies that e Ae is of type I1T (see [8]). Therefore this result is also true for
regular left self-injective rings.

Example 3.3. This example shows that the previous result is not true for purely
infinite regular left self-injective rings. Let K be a field and A = Endg (KV ), then A4
1s a purely infinite regular left self-injective ring. We define P, : KN - K , Pyis a
projection and Py A Py ~ K'is directly finite.

Proposition 3.4. Let A be a regular left self-injective ring and f be a nonzero
central idempotent in A. If A is purely infinite, then f A f is purely infinite.

Proof. Since A is purely infinite ring, then (2.12) implies that A ~ E(®;Ae;) with
A =~ Ae; for each i € N and the el are idempotents in A. By using (2.2), we have
that, for each i € N, there exist z; € Aei,y; € e; A such that z;y; = 1 and y;z; = e;.
Which implies that (fz:f) (fyif) = ¥, (fuif)(fzif) = e;f with fzf € fAe;f = Ae;f
and fyf € e;fA, hence Af =~ Ae;f for each i € N. Since A is injective, there exists
an idempotent A in A such that E(®iAe;) ~ Ah hence A ~ Ah, which implies that
Af >~ Ahf therefore Af ~ E(&; Ae; f).

Condition * We say that a ring A satisfies condition * if for each sequence ey, e, . ..,
€n, - .. of nonzero idempotents in A, there exists k € N such that Cler) € ex—1 Aeg_;,
where C(ey) is the central cover of ex in A.

Notice that, every division ring satisfies condition *. Also there exists a regular left
self-injective ring which does not satisfy condition * as the following example shows.

Example 3.5. Let K be a field and A = Endi (KV) then A is a regular left
self-injective ring.
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Let {f, : n € N} be a base of K™ as a vector space over K, we define V, = Y. B =
@nEN (on I{), I/2 = enGN (f?’n I{):-"a Vp — @nGN (fZPn I\,); thcn VO 2 Vl Q V2 2
Vo 2 ...,1et P 1 Vo — V, be the projections from V; into Va for each n € N, then
Py, Py,...,P,,...Iis a sequence of idempotents in A and {0,1} is the set of all central
idempotents in A.

Proposition 3.6. If A is a regular left self-injective ring such that E(A[X]) satisfies
condition ¥, then A is purely infinite implies that E(A[X]) is of type III.

Proof. Assume that E(A[X]) is not of type ITI, hence E(A[X]) contains a di-
rectly finite idempotent say e;. Therefore (2.11) implies that every nonzero ideal in
e1 E(A[X])e1 contains a nonzero central idempotent in e; E(A[X])e1. Since every reg-
ular ring is a semiprime, then by using (2.4), there exists a central idempotent e, in
e1 E(A[X])e1 such that C(es)e; = ey, hence e2E(A[X])e2 = e1 C(ea) E(A[X])C(e3)e,
C e1E(A[X])er. Therefore e; E(A[X])es is a directly finite regular left self-injective
ring, which implies the existance of an idempotent e5 € e, E(A[X])es which is central
in ez E(A[X])e, and directly finite in E(A[X]). And so on, we obtain a sequence of
idempotents ey, ez,...,€en, ... in E(A[X]) such that, each ¢; is directly finite in E(A[X)])
and each e; is central in e;_; E(A[X])e;—1. Therefore there exists er for some k € N,
such that C(ex) is contained in e;_; E(A[X])er—1 and e = C(er)ex—1. Moreover
Cler)(er-1E(A[X])ex—1)Cler) = ex E(A[X])e, which implies that C(e;) is a directly
finite idempotent in e;_; E(A[X]) ex_;. Therefore (2.4) implies that C(e;) is = central
directly finite idempotent in E(A[X]), moreover (2.13) implies that C(ey) is a central
directly finite idempoten in A which is a contradiction.

Remark 3.7. The proof of proposition 3.6 shows that, if E(A[X]) satisfies the
hypothesis of the proposition, then E(A[X]) contains directly finite idempotent, implies
that it contains a central directly finite idempotent.

Notice that for unit-regular ring, the statement A is directly finite implies that E(A)
i1s directly finite is not always true as the following example shows.

Example 3.8. Let K be a field, then M3n(K) is a regular directly finite ring for
each n € N. For each n € N, we identify for each element X in M3 (K), the element

(}(f )2.) in Mjn+1(K) and hence Maa(K) C Myn41(K) C - for each n € N. Since

the direct limit of regular rings is a regular ring, and also the direct limit of directly finite
rings is a directly finite ring, then A = lim_, M3~ (K) is a regular directly finite ring. But
the left injective envelope of A and the right injective envelope of A are different, both
of which are of type III (see [3] theorem I1.3.1) Therefore E(A) is not directly finite.

Proposition 3.9. If A is a left non singular ring such that M, (A) s directly infinite
for some n € N, n> 2, then E(A) is a directly infinite. ’

Proof. Since A is left nonsingular, then the maximal left quotient ring Q(A) is
regular left self-injective ring. If E(A) is directly finite, then Q(A) is also directly finite
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and hence unit-regular. Therefore (2.8) implies that M, (Q(A)) is directly finite for each
n € N,n > 2, whence M,(A) is directly finite for each n € N, n > 2, which is a
contradiction.

If A =1imM>~(E) as in example 3.8, then A[X] is directly finite, but E(A[X]) is
not directly finite. We discuss now that, if A is directly finite regular left self-injective
ring, is £ (A[X]) is directly finite.

Theorem 3.10. If A is a nonsingular ring, then E(A[X]) is directly infinite if and
only if there exists left ideals I and J in A[X] such that I ~ J, I <, A[X] and J £. A[X]
as left A[X]-modules. :

Proof. Notice first that EF(A[X]) is a Baer ring

(1) Assume that, there exist left ideals I, J in A[X] such that I ~ J, I <, A[X] and
J £ A[X] as left A[X]-modules. Hence E(I) and E(J) are direct summands of E(A[X]),
moreover I <. A[X] implies that E(I) = E(A[X]), also E(J) = E(A[z]) f for some
nonzero idempotent f in E(A[X]) with f # 1. But I ~ J implies that E(I) =~ E(J),
hence f ~ 1. Therefore (2.3) shows that E(A[X]) is a directly infinite ring.

(2) Assume that E(A[X]) = B is directly infinite then there exists idempotent f in B
such that f ~ 1 and 0 # f # 1. Therefore there exists an isomorphism ¢ : B f — B of
left B-modules. We have that B f N A[X] <, B f as left A[X]-modules, since 9 is an
isomorphism, ¥(Bf N A[X]) <. B, which implies that

Y(BfNAfz]) N A[X] <. A[X] (*)
Also we have that (B f N A[X]) N A[z] <. B. Since ¢~! is an isomorphism, then
J = ¢ (Y(BfNAX]INA[X]) <. B.

Now
J C ¢ (%(BfnAlz]) Ny1(Alz])
C(BfNAX)NBf
C A[X]

also JN(B(1 - f)NA[X]) C (B fnA[X])n (B(1-f)NA[X])CBfnBQ1-f) =0,
therefore J is not an essential left ideal in A[X], conversly, from (*) we have that I =
¥(J) = %(B f N Alz]) N A[X] <. A[X], also we have J*/ T = ¥(J) is an isomorphism of
left A[X] — modules.

Remarks 3.11. As a special case of [7], if I is a left (right, two sided) ideal in AlX],
then Co(I) = {0 #£a€ A:3P = aX" 4 qa,_; - X"-! + - -+ ag, P € I}U{0} is a left
(right, two sided) ideal in A for each n € N. Morcover Cn(I) C Cpt1(I) for each n € N,
which implies that C(I) = Unen,Cn(I) is a left (right, two sided) ideal in A. Notice
that, if 7 is an essential left (right, two sided) ideal in A[X], then C,(I) so is. But if A
is a nonsinguar ring and I is a eft (right) ideal in A[X] such that Cy(I) is an essential
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in A, then I is an essential in A[X]. Moreover the converse is not true. Finally, if 4 is a
semiprime ring and [ is a two sided ideal in A[X], then I is an essential in A[X] if and
only if C[I] is an essential in A.

Now let A be a regular left seft-injective ring and J be a left ideal in A[X] such that
C(J) = UnenCn(J) <. A.

We shall construct a left ideal J* in A[X] such that J* C J as follows. Since Cy(J)
is a left ideal in A, there exists an idempotent eg and orthogonal idempotents {fio }ioe s
in A such that @;,er,Afi, <e Co(J) <. Aeg. Also since Cy(J) C C1(J), there exists an
idempotent e; and orthogonal idempotents {f;, };,er in A such that I7 N Ip = ¢ and

(.@ Afio) ©® ( ©® Afi1) <e CI(J) <e Aeg
ig€lo i1€1]

Similarly Co(J) C Ci(J) € Cao(J) C -+ C Cpn(J) C --- implies that (Bi,er,Afi,) D
(@i,eni Afi,)) ® - @ (Dier,Afi,) <e Cn(J) <. Aey for each n. Note also that Iy C
LCLC---CI,C---wherelnyy =L, UL, ,and I, NI, =¢,n=0,1,2,.--

For each i € Up I, let m = min{k € N : ¢ € I} hence i = I}, € I, implies that
fi = fi,, € Cr(J), therefore there exists P = f; X™ + a1 X™ 1 4.+ ap € J, and we
take P; = f; P € J. Now we define the left ideal J* as follows

JU= Y. AX]P
ie|J1I.

Proposition 3.12. J* is an essential left ideal in J.

Proof. To prove that, let for each p € N, J, be that left ideal of A[X] generated
by the polynomials of J of degree < p and J; be the left ideal of A[X] generated by the
polynomials P; constructed above with degree < p.

First. we shall prove that J§ <. Jy

Notice that Jo = A[X]Co(J) and J§ = ®iper, A[X] fi,- Let f € Jo, then f = b, X" +
bp_1 X" 4 ... 4+ b with 0 # b; € Co(J),i = 0,1,---,n, since @i er, A fi, <o Co(J)
then for each b;, there exists an essential left ideal K; of A such that 0 # K;b; C
Dicelo A fio- Since K = N_yK; <. A and A is left and right nonsongular ring, then
0 # Kb; C Pioer, A fi, for each i = 0,1,---,n. Let 0 #&b; € Bioer, A fiy, & € K for
each i = 0,1,---,n, which implies that 0 # & f = 31 & b; X' € @iper, A[X]fio = J3
for each j = 0,1,---,n. Therefore J§ <. Jo.

‘ NOw we shall prove that J* <. J. Let Q € J, we use the induction on the degree of
Q. If degree @ = 0, then Q = a € Co(J) C Jo, since J§ <. Jo, we can find an essential
left ideal K of A[X] suchthat 0 # Ka=KQ C J; C J*. :
Suppose that this is true for any polynomial Q in J with degree less than or eq&al to
n—1 Let Q =a, X"+ an_1 X" 1 +-.-4ag € J with a, # 0, hence a, € C,,(J). Let
po = inf{p € N : a, € Cy(J)}, since @;;A fi;, <. Cp,(J), where i; € U;%, I, hence there
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exists A € A such that 0 % Aa, € ®i;A fi;, i; € U2, I, Therefore Aa, = Z"czo az'j B

where i; € UJ2 I, and we can assume that o <1 <ig--- < i < po. SiJnce P =
finij 4 fi,-a.'j_,Xi"_l + -+ fi;a0 € J* with P;; = fi;P;;, hence a;.P;; € J* which
implies that Q' = a; P, + a;?‘k_lX"k_""—‘F',-k_l 4+ + a;’o)(""“"“}'*‘,-0 is in J* with leading
coefficient E;:O a;, fi;, where i; € Up° I,. Therefore Q; = AQ — X" Q' is of degree
less than or equal to n — 1, which implies the existance of an essential left ideal I of
A[X] such that LQ’ C J*, hence L\ Q@ C J*. Let K be the complement of Lax1(AQ)
in A[X], since A[X] is left and right nonsingular (See [6] lemma 3.1) then Laix1(A Q) is
not essential in A[X]. Therefore K is a nonzero left ideal in A[X], which implies that
LN K # 0, hence there exists 0 # g € L N K such that 0 # 9gAQ € LA Q. Therefore
0# LAQ C J* which implies that J* is an essential in J.

Now we shall define other left ideal J’ in A[X] such that J* is an essential in J’as
follows.
We have that @;,es,Afi, <e Co(J) <¢ Aeg, and since fa(eo) = A(1 — eo), then
(Bivero Afio) ® La(eo) <. A and we define a homomorphism of left A-modules

p: (2% Afiy) @ La(eg) — A

such that ¢ is the identity on @ioer, Afi, and zero on £4(ep), since A is a left self-
injective, ¢ can be extended to a homomrphism ¢*: A — A. Let Jfo = ¢*(1) and put
Po = fo.

Foreach iy € I}, P;, = fi, X + f,-la?l, we define two homomorphisms of left A-modules

¢ and : (z %}Af,-u) & ( GEBI,Afil) DLla(er) — A

such that ¢ is the identity on ®i,er, A fi, and zero otherwise, but Y(fi,) = af for
each 73 € I; and zero on (Biver, A fiy) ® €4(e1),similarly ¢ and 9 are extended to
homomorphisms ¢* and ¥*, we let f; = ©*(1), a} = ¥*(1) and define P, = f, X + f1 a3.
In general for each i, € I’ we have that P, = fi, X"+ f;, a;‘n_lX”“1 Fesi b ad
we define homomorphisms of left A-modules @it (Bigero A fiy) @ (®iennAfi)® - @
(@inGI;A fi,)®Lla(en) = A, i = 0,1,---,n as follows ¢, is the identity homomorphisms
at i, er,4 fi, and zero otherwise, but el h. )= a{n for each f;, andforj =0,1,-.. n—
1 and zero otherwise ¢,, and ®j, 3 =0,1,---,n—1 can be extended to homomorphism ¢*
and 7,7 =0,1,---,n—1 from A into A, we define Pil)=dl,j= 0,---,n—1,p%(1) =
[, also we define P, as the following P, = f, X" 4 §, ap~lX"=ly...4f a6l X+ fnal
and we define J' = 37\ A[X]P,, which is countably gencrated left ideal in A[X].

Remarks 3.13. Notice that Bislu = i, en(l) = ou(fi) = fi, and f; o) =
finoi(1) = 0i(fi,) = a{n for each j = 0,1,--.,n — 1, wich implies that f; P, = F;, for
each n € N and since J* = eI A[X]P;;, we obtain that J* C J.

(2) It is clear that C(J) = UnenCr(J') = > nen A fn also Jin. = fi, - fn, implies that
Bineu,.1,Afi, CC(J").
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(3) GinecuaraAfi, <e C(J) <e A and @i, cu,1, Afi, € C(J') C A implies C(J') <, A
and &;,eu.r.4 fi, <e C(J).

Propsition 3.14. J* is an essential left ideal in J’.

Proof. Let Q = E;C_I Q; P; € J', where P;, = fi; XY + ftja:j—lxtj“‘l Juminsals
fi;ai; X + fi;af, for each j =1,---, k and assume that Q; = a,, X™ + afnj__l Xmi—14
Y a{), j=1,---,k. Now consider {a’é}gzé’j:::fm, since this family is contained in A
and C(J) is an essential left ideal in A, we can find an essential left ideal K in A such that
O£ Kag CC(J)foreach j=1,2,---,k, q= 0,1,---,m;. Hence 0 # Kaz C C,(J) for
some s € N,which implies the existance of §; € A such that 0 # B;Q; € (Cs(I))[X], 7=
L2925k, Let ;0 = Z;’:_fo b{I'Xq with at least one element ofb-z # 0, denote it by d;, as
happend before in proposition 3.12 we can find an essential left ideal L in A such that
Lb-; C ®i,er,Afi, and 0 # Ld; for each j = 1,2,.-- k. If K; 1s the complement of
24(d; fi;) in A, then K; N L # 0, which implies the existance of v; € K; N L such that
0 # 7i(d; fi;). Therefore 0 # ;(B; Q;) € (®i,e1, A £, )[X] and (7;(B; Q;))P,; # 0 for
each j = 1,2,--- k. But we have that f; - f, = fi, and fi. f, = 0, j # n, moreover
fin af, = fi,a], for each ij € Uy In. Therefore (v;5;Q;)P,; = Q;P;;, Q) € A[X] and P,
is one of the generators of J*, for each j = 1,---, k, which implies that v;3;Q € J* for
each j =1,2,--- k. Hence J* <, J'.

Theorem 3.15. If A is a regular left self-injective ring and J is a left ideal in A[X]
such that C(J) s an essential left ideal in A, then there exists a countably generated left
ideal J' in A[X] such that C(J')is an essential left ideal in A and if J' is an essential
left ideal in A[X], then J is an essential left ideal in A[X).

Problem 1. Is J' is an essential left ideal in A[X].

Remark 3.16. Let A be a regular left self-injective ring and J be a left ideal of A.
If the answer of problem 1 is affirmative, then C(J) is an essential left ideal in A, implies
that J is an essential left ideal in A[X].

Problem 2. Let A be a regular left self-injective ring and I, J be left ideals in A[X]
such that I =~ J as a left A[X]-modules. Is C(I) =~ C(J) as left A-modules.

Remark 3.17. Let A be a regular left slef-injective ring. If the answer of problems
1 and 2 are affirmative, then every directly finite idempotent in A is a directly finite
idempotent in F(A[X]).
Since if e is directly finite in A and e E(A[X])e is directly infinite, then from theorem
3.10 there exist two left ideals 7 and J in (e Ae)[X]such that I ~ J, I <, (e Ae)[X] and
J £e (e Ae)[X] as left (e Ae)[X]-modules, which implies that C(I) ~ C(J), C(I) <.
eAe and C(J) £ eAe as a left e Ae-modules, but e Ae is a left slef-injective, hence
this is a contradiction with e A e is a directly finite ring.
In particular for regular left self-injective ring A, A is a directly finite ring if and only if
E(A[X]) is a directly finite ring.
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Proposition 3.18. If A is a regular left self-injective ring, then A contains abelian
idempotents if and only if E(A[X]) contains abelian idempotents.

Proof. Let f # 0 be an abelian idempotent in E(A[X]), hence f E(A[X]) f is an
abelian regular ring and I = E(A[X]) f N A[X] is a nonzero left ideal in A[X]. Let
PELNPeeX™ bty i X% L a s + ao with minimal length and e = ¢2 € A*, hence
we have that A[X]P ~ A[X]e, which implies that E(A[X]).e ~ E(A[X]P) C E(A[X])f.
Therefore F(A[X])e is an abelian regular ring, hence e is an abelian idempotent in A.
Conversely if e is an abelian idempotent in A, then e is an abelian idempotent in E(A[X]),
by using (2.10) and (2.14).

Remark 3.19. Let A be a regular left self-injective ring, if the answers of problems
1 and 2 are affirmative, then
(1)A is of type II if and only if E(A[X]) is of type II.
(2)A is of type I1I if and only if E(A[X]) is of type III.
(3)A is a purely infinite ring if and only if E(A[X]) is a purely infinite ring.
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