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SOME INEQUALITIES AMONG GENERALIZED 
DIVERGENCE MEASURES 

I.J.TANEJA, L.PARDO AND M.L.MENENDEZ 

Abstract. Burbea and Rao [3,4) and Sgarro [11) established an inequality between 
two famous divergence measures i.e., Jeffreys [6) invariant function (J-divergence) 
and Sibson's [13) information radius (R-divergence). Taneja [14,16) generalized 
both these divergences (J and R) having two scalar parameters. In this paper, we 
have extended the inequality between the Rand J-divergences for two parametric 
cases. For one parametric generalizations of Rand J-divergences, the generalized 
inequalities are improved. 

I. Introduction 

Let 
n 

l:),,n = {p = (P1,P2, · · · ,Pn), Pi > 0, LPi = 1}, 
i=l 

n > 2 

be the set of all complete finite discrete probability distributions. 
Sil?son (13] introduced a measure of information for two probability distributions, 

called information radius given by 

R(PIIQ) t [PiLnpi + qiLnqi _ [Pi + qi]Ln[Pi + qin 
i=l 2 2 2 

(1) 

for all P, Q E l:).n· 

The measure (1) arises due to the concavity property of Shannon's entropy. Some 
times, it is called [3,4] the Jensen difference divergence measure. By simple calculations, 
we can write 

(2) 

for all P, Q E l:).n, where D(PIIU) is the well-known Kullback-Leiblcr's (7] directed di 
vergence, given by 

n 
p· D(PIIU) = LPi Ln-2. 

i=l Uj 
(3) 
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for .all P, U E 6n with U = (P~Q). A symmetric version of (3) known as ]-divergence 
(ref. Jeffreys [6]; Kullback and Leibler [7]) is given by 

J(PIIQ) = D(P!IQ) + D(Qlf P). (4) 
for all P, Q E 6n. 

Burbea and Rao [3,4] and Sgarro [11] established an inequality between the measures 
(1) and ( 4) given by 

J(PIIQ) 2: 4 R(Pl[Q) (5) 
for all P, Q E 6n. 

Recently, Taneja [_16] presented one and two parametric generalizations of the mea 
sure (2). The one and two parametric generalizations of the measure ( 4) are already 
given before by Taneja [14]. Some parametric generalizations of the measures (1) and 
( 4) are also studied by Burbea [1,2] and Burbea and Rao [3,4]. In the following two 
subsections we have specified some of these generalizations having one and two scalar 
parameters written in unified expressions. 

1.1. Unified (r,s)-Jensen Difference Divergence Measures 

For all P, Q E 6n, let us consider the following divergence measures: 

(r > 0, t = 1 and 2,) (6) 
defined by 

n ,-1 n ,-1 

lR:(PjjQ)=[2(s-l)J-l{[LPr[Pi;qi]l-r]~ + [Lqr(Pi;qi]l-r]~ _2}, 
i=l i:l 

n r r .!.=.!. 
2 R:(PIIQ) =(s _ 1)-1 { [ L [Pi ; qi] [Pi; qi] 1-rJ r-1 _ l }, 

i=l 

when r -f. 1, s -f. l, r > 0, 
with the boundary cases continuously extended by L'Hopital Rule: 

n 1 
Ri(PIIQ) =[2(s - l)J-1{expe f cs - 1) LPiLn [ .2Pi . J] 

· ~ . Pi + qi t=l 
n 2 . 

+ expe [cs - 1) LPiLn[ . Pi .J] - 2 }, (s -f. 1) 
i=l Pi.+ q, 

2
R1(PIIQ) =(s -1)-1{ expe [cs - 1) R(PIIQ)] - 1 }, (s -f. 1) 

n n . 1 R;(PIIQ) =(2(r _ I)tlLn{ [-LP[ [Pi; qi] 1-rJ [ L qf [Pi; qi J 1-rJ }, 
. i:1 i=l 

(r-f;l,r>O) 
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and 
n r r 

2 R:(PIIQ) = (r - 1r1Ln{ L [Pi+ qi ][Pi+ qi]l-r}, (r f. 1,r > O). 
i=l 2 2 

We call them the unified (r, s)-Jensen difference divergence measures. In particular, 
when r = s, we have 

l R!(PIIQ) = 2 R!(PIIQ) = R!(PIIQ) 
n s s = (s -1)-1{ L [Pi; qi J [Pi; qi]l-s _ 1 }, 
i=l 

sf. 1,s > 0 (7) 

It can easily be checked (ref. Taneja [16)) that the measures t R:(PIIQ) (t = 1 and 2) 
are nonnegative for all r > 0 and any s. For more properties of the measures given by 
(6) such as convexity, Schur-convexity, monotonicity with respect to parameters, data 
processing inequalities etc. refer to Menendez et al. [8]. 

All the measures appearing in (6) are. due to Taneja [16]. While, the measure (7) 
was studied before by Taneja [17). For applications of the measures (6) to comparison of 
experiments, Fisher measure of information and statistical pattern recognition refer to 
[8] [9] [19]. 

1.2. Unified (r,s)-J-Divergence Measures 
For all P, Q E b.n, let us consider the following divergence measures: 

( r > 0, t = 1 and 2), (8) . 
defined by 

n •-1 n a-1 
1 J:(PIIQ) =(s - 1)-l { [ LPi qf-r] ~ + [ LPf-r qi] r-l - 2 }, 

i=l i=l 
n r 1-r 1-r r .!.=.!. 

21:(PIIQ)=2(s-1)-l{[L[piqi ;Pi qinr-1 -1}, 
i=l 

when r f. 1, s f. 1, r > 0, 
with boundary cases: 

n 
1 Jt(PIIQ) = (s -1)-1{ expe [cs - 1) LPiLnP~J 

i=l qi 
n 

+expe[(s - l)Lq~Lnq~J-2},sf-l 
i=t Pi 

2 
J t ( P 11 Q) = 2 ( s - 1 )- 1 { exp e [ ( 8 ; 1 ) J ( P 11 Q)] - 1 } , s f. 1 

n n 
1 
J~(PIIQ) = (r - 1)-1Ln{ [ LPi qf~r] [ L qi pf ~r] }, r f. 1, r > 0 

i=l i=l 
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and 
21~(PIJQ) = 2(r-1)-1Ln{t [piqf-r ;P[-rqi]}, 

i=l 
r / l, r > 0 

We call them the unified (r, s)-J-divergence measures. In particular, when r = s, we 
have 

n 

= ( S - l )- l { L [Pi qJ-s + Pi-s qt] - 2}, S / l, S > 0 ( 9) 
i=l 

It can easily be checked (ref. Taneja (16]) that the measures t 1: (PIIQ) (t = 1 and 2) 
are nonnegative for all r > 0 and any s. For more properties of the measures given by (8) 
such as convexity, Schur-convexity, monotonicity with respect to parameters, generalized 
data processing inequalities etc. refer to Taneja et al. [18]. For applications of these 
measures (8) to comparison of experiments, Fisher measure of information and statistical 
pattern recognition refer to [15] [16). 

Most of the measures appearing in the unified expression (8) are due to Taneja [16], 
except the measures 1J;(PIIQ) and J:(PIIQ). The measure 1J;(PJIQ) is due to Burbea 
[2] and the measure 1:(PIIQ) is due to Burbea and Rao [3,4] and Rathie and Sheng [10]. 

In this paper our aim is to generalize the inequality (5) for the measures given by 
(6) and (8). Some mixed inequalities are also given. 

II. Inequalities for generalized divergence measures. 

In this section we generalize the inequality (5) for the measures (6) and (8). for one 
parametric generalizations of R and J, the general results are improved. 

Theorem 1. For all P, Q E 6n, we have 

(t 1 and 2) (10) 

for all r > 0 and any s. 
Proof. 
Case t = l. 
Let P = (P1, ... , Pn) E l:),,n and Q = ( q1, ... , qn) E 6n be two probability distribu 

tions. Then by using Jensen inequality, we can write 

1-r + 1-r Pi qi. 
2 

1 - r > l or 1 - r < 0 
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for all i = 1, 2, · · ·, n. Multiplying by p[ and summing over all i = 1, 2, ·. ·, n, we get 

n 
1 { n L Pi rP, -, + l-·

1 
s ~Pi rp,+ q,r-· 

·-1 2 Z-l 2 l 

0 < r < l 

S- n 2: .L Pi [Pi + qi] 1-r 
i.e., 

i=l 2 , r > 1 

![! + t C 1-, { ', f: Pi [p; + q;]1-, 
2 P, qi ] •=1 2 , 

0 < r < 1 

i=l n . . ~ L Pi [Pi + q; 1-, 

S1m1larly we ca i=l 2 J , 
r > 1 

' n get 

(11) 

l[ n { · n 2 I+~ qi pf-"] ', i~ qr(p;+ 2 qir-r 
1
-1 n. ' 

It is easy to h . 2: .L q[ [Pi+ qi]l-r 
c eek that •=1 " ' 

O<r<l 

r > 1 
(12) 

n { < 1 r 1-r - ' L Pi qi 2: 1, 
i=l 

D<r<l 
r>l (13) 

Also, it can easily be checked that if A 

A A+ 1 Th. . > -2-. 1s gives, 

< 1, then A < A + l and if A > I, then . 
2 - 

n 

LPiqf-r 
i:I 

O<r<l 

(14) 
1' > l 

From (11) and (14) we have 

O<r<l 

r > l 
(15) 

Similarly, from (12) we can get 

(16) 
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Raising both sides of (15) and (16) by s - 1 (1· f. 1, s f. 1), and adding we get 
r-1 

i=l i=l 

(0 < r f. I,s - 1 < 0) 
(17) 

(0 < r f. 1,s - 1 > 0) 

we get 
Subtracting 2 on both sides of (17), multiplying by (s - 1)-1 (sf. 1), and simplifying, 

(18) 
for all r > 0, s f. 1, r f. 1. 

Case t = 2. 
Adding (11) and (12), we get 

O<r<l 
(20) 

r > 1 

Similar to (13), we can check that 

{ 
::; 1, 
~ 1, 

O<r<l 
r > 1 (21) 

Again using the fact that, if A·::; 1, then A ::; A ; I and if A ~ 1, then A ~ A ; 1, from 
(21), we get 

0 < r < I 
(22) 

r > 1 

From (20) and (22), we get 

O<r<l 
(23) 

r > 1 
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Raising both sides of (23) by 
8 
- 

1
1 
(s "I l, r / l), we get 

r- 

(0 < r/ l,s - 1 < 0) 

(0 < r "I l,s- l < 0) 
(24) 

Subtracting 1 on both sides of (24), multiplying by (s - 1)-1 (s / 1) and simplifying we 
get 

(25) 
for r > 0, s "I l , r "I l. 

By continuous extensions (25) and (18) are valid for all r > 0 and any s. 
In particular, when r = s = l, then from theorem 1, we get 

J(PIIQ) ~ 2 R(PIIQ) (27) 

It is quite obvious that the inequality (5) is much better than the inequality (27). In the 
following theorem, we shall improve the results of theorem 1 in some particular cases i.e., 
when r = s and s = 1, r / l, and shall obtain the inequalities similar to (5). 

Theore1n 2. For all P, Q E 6n, we have 
(i) 1: (PIIQ) ~ 4 R!(PIIQ), s "I 1, s > 0 
(ii) 1J;(PIIQ) ~ 4 1 R;(PIIQ), 0 < r < 1 
(iii) 21:(PIIQ) ~ 4 2R;(PIIQ), 0 < r < 1 

Proof. (i) Replacing r by s in (20), we have 

0 < s < 1 

s > 1 

1.e., 

n . { ~ 2 [ t [ Pi + qJ ][ J\ + qi] 1-s _ l J, 
~ [ s l-s s l-s] l i=l 2 2 
L.J Pi qi + qi Pi - n ps + qs p· + q· 1 
i=l ~ 2 [ .I: [ i 2 i ][ i 2 i] -s - 1), 

i=l • 

Multipliying both sides of (28) by (s - It1 (s / I) and simplifying we get 

O<s<l 
(28) 

s > 1 

1:<~IIQ) ~ 2 R!(PIIQ), 

J;(PIIQ) ~ 4 R!(PIIQ), 

s # 1, s > 0 

s "I 1, s > 0 
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This completes the proof of part (i). 
(ii) We know that 

(At - 1)2 > 0 

this e;ives 

for all A > 0 

l. A - 2A~ + l > 0 
i.e., 

A+ 1 > 2Ai 
Let 

A 
n L Pi qJ-r, 

i=l 
r > 0 

then from (29), we have 

n 
""' r 1-r < l + L.-t Pi qi , 
i=l 

1' > 0 

Similarly, we can write 

n n 

2 [ L qi Pi-r] ! :S 1 + L qi Pi-r, 
i=l i=l 

r > 0 

From (11) and (30), we have 

0 < r < l 

Again, from (12) and (31), we have 

Taking log(.) on both sides of (32) and (33) and adding, we get 
l n n 
2Ln{[I:prq;-r] [Lq[pJ-r]} 

i=l i=l 
n n 

:S Ln{ [ LPi [Pi; qi rl-r] [ L qi [Pi! qi J 1-r] }, 
i=l i=l 

O<r<l 

Multiplying both sides of (34) by (r - 1)-1 (r -f; 1), and simplifying we get 

1 1 J;(PIIQ) 2: 21 R;(PIIQ), 0 < r < l 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 
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i.e., 
1 J;(PIIQ) ~ 4 1 R:(PIIQ), 0 < r < I 

This completes the proof of part (ii). 
(iii) In (29), let us take 

r > 0 

then from (12), we have 

n n 
2 [1 ""' [ r 1-r + r 1-rJ] ! < l 1 ""' [ r 1-r r .1-r] 2 LJ Pi qi qi Pi - + 2 L.....; P; qi + qi Pi , 

i=l i=l 
r > 0 (35) 

from (20) and (35}, we have 

n 

[ 1 ~ [ .1 n r + r 

2 -{;;: Pi qJ-r + qi pJ-r]] 2 :S ~ [Pi 
2 

qi] [Pi ; qi] 1-r, 0 < r < 1, (36) 

Taking log(.) on both s1des of (36) and multiplying by (r - 1)-1 (r f. 1), we get 

0 < r < 1 

This completes the proof of part (iii). Hence, completes the theorem. 

Theorem 3. The following mixed inequalities hold: 
(a) Fors~ r, we have 

(i) 11:(PIIQ) > 21: (PIIQ) ~ 2 2 R:(PIIQ), 
(ii) 11:(PIIQ) ~ 2 1 R:(PIIQ) ~ 2 2 R:(PIIQ), 

(b) For s :S r, we have 
(i) 2 J;(PIIQ) ~ 1J:(PIIQ) ~ 2 R:(PIIQ), 
(ii) 2J:(PIIQ) ~ 2 2R:(PIIQ) ~ 2 1R:(PIIQ), 

( c) For O < r < 1, we have 
(i) 1 J;(PflQ) ~ 2 J;(PIIQ) ~ 4 2 R~(PIIQ), 
(ii) 1 J;(PIIQ) ~ 4 1 J;(PIIQ) ~ 4 2 R:(PIIQ). 
Proof. We known that (ref. Taneja [16]) 

1 R3(PIIQ) { :S 2 R:(PIIQ), s < r 
r 2 2 R:(PIIQ), s > r 

and 
11:(PIIQ) { ~ 21:(PIIQ), s < r 

21: (PIIQ), s > r 
for all r > 0 and any s. 

(37) 

(38) 
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In view of the theorems 1 and 2, and the inequalities (37) and (38), the proof follows 
immediately. 
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