ON AN INTEGRAL INEQUALITY OF R.BELLMAN

HORST ALZER

Abstract. We prove: If u and v are non-negative, concave functions defined on $[0,1]$ satisfying

$$
\int_{0}^{1}(u(x))^{2 p} d x=\int_{0}^{1}(v(x))^{2 q} d x=1, \quad p>0, \quad q>0,
$$

then

$$
\int_{0}^{1}(u(x))^{p}(v(x))^{q} d x \geq \frac{2 \sqrt{(2 p+1)(2 q+1)}}{(p+1)(q+1)}-1 .
$$

1. Introduction.

The classical Cauchy-Schwarz inequality states that

$$
\begin{equation*}
\left[\int_{0}^{1} u(x) v(x) d x\right]^{2} \leq \int_{0}^{1}(u(x))^{2} d x \int_{0}^{1}(v(x))^{2} d x \tag{1.1}
\end{equation*}
$$

is valid for all functions u and v which are integrable on $[0,1]$. Extensions and variants of this result were published, for instance, in the monographs [1] and [4]. It is natural to ask for a converse of inequality (1.1); this means: Does there exist a constant $K>0$ such that

$$
\left[\int_{0}^{1} u(x) v(x) d x\right]^{2} \geq K \int_{0}^{1}(u(x))^{2} d x \int_{0}^{1}(v(x))^{2} d x
$$

holds?
In 1956 R. Bellman [2] (see also [1]) proved the following remarkable proposition which shows that under additional restrictions upon u and v the answer to this question is "yes":

Theorem 1. If u and v are concave functions defined on $[0,1]$ normalized by

$$
\begin{equation*}
\int_{0}^{1}(u(x))^{2} d x=\int_{0}^{1}(v(x))^{2} d x=1 \tag{1.2}
\end{equation*}
$$

and

$$
u(0)=u(1)=0, \quad v(0)=v(1)=0
$$

then

$$
\begin{equation*}
\int_{0}^{1} u(x) v(x) d x \geq \frac{1}{2} \tag{1.3}
\end{equation*}
$$

The constant $\frac{1}{2}$ is best possible.
Interesting extensions of Bellman's theorem can be found in [1], [2] and [5].
The aim of this paper is to present a new generalization and refinement of inequality (1.3) by applying a method which is different from the one used by Bellman.

2. The main resullt.

We start with a lemma which may be of interest in itself.
Lemma. Let u, v and w be integrable functions on $[0,1]$ satisfying

$$
\int_{0}^{1}(u(x))^{2} d x=\int_{0}^{1}(v(x))^{2} d x=1
$$

and

$$
\int_{0}^{1}(w(x))^{2} d x \neq 0
$$

then

$$
\begin{equation*}
\frac{1}{2}\left[1+\int_{0}^{1} u(x) v(x) d x\right] \geq \frac{\int_{0}^{1} u(x) w(x) d x \int_{0}^{1} v(x) w(x) d x}{\int_{0}^{1}(w(x))^{2} d x} \tag{2.1}
\end{equation*}
$$

Proof. Using Gram's determinant theorem [4] we get

$$
\left|\begin{array}{ccc}
\int_{0}^{1}(u(x))^{2} d x & \int_{0}^{1} u(x) v(x) d x & \int_{0}^{1} u(x) w(x) d x \\
\int_{0}^{1} v(x) u(x) d x & \int_{0}^{1}(v(x))^{2} d x & \int_{0}^{1} v(x) w(x) d x \\
\int_{0}^{1} w(x) u(x) d x & \int_{0}^{1} w(x) v(x) d x & \int_{0}^{1}(w(x))^{2} d x
\end{array}\right| \geq 0
$$

This leads to

$$
\begin{aligned}
& \int_{0}^{1}(w(x))^{2} d x\left[1-\left[\int_{0}^{1} u(x) v(x) d x\right]^{2}\right]+2 \int_{0}^{1} u(x) v(x) d x \int_{0}^{1} v(x) w(x) d x \int_{0}^{1} w(x) u(x) d x \\
& \geq\left[\int_{0}^{1} u(x) w(x) d x\right]^{2}+\left[\int_{0}^{1} v(x) w(x) d x\right]^{2} \\
& \geq 2 \int_{0}^{1} u(x) w(x) d x \int_{0}^{1} v(x) w(x) d x
\end{aligned}
$$

where the last inequality follows from the arithmetic mean - geometric mean inequality. Thus, we obtain

$$
\begin{aligned}
& \int_{0}^{1}(w(x))^{2} d x\left[1-\int_{0}^{1} u(x) v(x) d x\right]\left[1+\int_{0}^{1} u(x) v(x) d x\right] \\
\geq & 2 \int_{0}^{1} u(x) w(x) d x \int_{0}^{1} v(x) w(x) d x\left[1-\int_{0}^{1} u(x) v(x) d x\right]
\end{aligned}
$$

From (1.1) we conclude $\int_{0}^{1} u(x) v(x) d x \leq 1$, which yields

$$
\int_{0}^{1}(w(x))^{2} d x\left[1+\int_{0}^{1} u(x) v(x) d x\right] \geq 2 \int_{0}^{1} u(x) w(x) d x \int_{0}^{1} v(x) w(x) d x
$$

which we had to show.
Remarks.

1. Inequality (2.1) contains the Cauchy-Schwarz inequality as a special case. Indeed, set $u=v$ and let $\int_{0}^{1}(u(x))^{2} d x=c^{2} \neq 0$, then we have $\int_{0}^{1}\left(\frac{u(x)}{c}\right)^{2} d x=1$ and (2.1) becomes

$$
\begin{equation*}
\int_{0}^{1}(u(x))^{2} d x \int_{0}^{1}(w(x))^{2} d x \geq\left[\int_{0}^{1} u(x) w(x) d x\right]^{2} \tag{2.2}
\end{equation*}
$$

2. An application of the Lemma and of Tchebyschef's inequality [4] leads to the following sharpening of (2.2) with $u(x) \equiv 1$:
If w is a positive, integrable function and if v is a positive, monotonic function on $[0,1]$ satisfying $\int_{0}^{1}(v(x))^{2} d x=\int_{0}^{1}(v(x))^{-2} d x=1$, then

$$
\left[\int_{0}^{1} w(x) d x\right]^{2} \leq \int_{0}^{1} w(x) v(x) d x \int_{0}^{1} \frac{w(x)}{v(x)} d x \leq \int_{0}^{1}(w(x))^{2} d x
$$

Next we establish a new extension of inequality (1.3).
Theorem 2. If u and v are non-negative, concave functions defined on $[0,1]$ satisfying

$$
\int_{0}^{1}(u(x))^{2 p} d x=\int_{0}^{1}(v(x))^{2 q} d x=1, \quad p>0, \quad q>0
$$

then

$$
\begin{equation*}
\int_{0}^{1}(u(x))^{p}(v(x))^{q} d x \geq \frac{2 \sqrt{(2 p+1)(2 q+1)}}{(p+1)(q+1)}-1 \tag{2.3}
\end{equation*}
$$

Proof. If we replace in the Lemma u by u^{p} and v by v^{q}, and if we set $w(x) \equiv 1$, then inequality (2.1) becomes

$$
\begin{equation*}
\frac{1}{2}\left[1+\int_{0}^{1}(u(x))^{p}(v(x))^{q} d x\right] \geq \int_{0}^{1}(u(x))^{p} d x \int_{0}^{1}(v(x))^{q} d x \tag{2.4}
\end{equation*}
$$

Next we make use of following inequality due to L. Berwald [3], which is valid for nonnegative, concave functions u :
If $0<\alpha<\beta$, then

$$
\begin{equation*}
\left[(\beta+1) \int_{0}^{1}(u(x))^{\beta} d x\right]^{\frac{1}{\beta}} \leq\left[(\alpha+1) \int_{0}^{1}(u(x))^{\alpha} d x\right]^{\frac{1}{\alpha}} \tag{2.5}
\end{equation*}
$$

From (2.5) with $\alpha=p$ and $\beta=2 p$ we conclude:

$$
\left[(2 p+1) \int_{0}^{1}(u(x))^{2 p} d x\right]^{\frac{1}{2 p}} \leq\left[(p+1) \int_{0}^{1}(u(x))^{p} d x\right]^{\frac{1}{p}}
$$

which leads to

$$
\begin{equation*}
\int_{0}^{1}(u(x))^{p} d x \geq \frac{\sqrt{2 p+1}}{p+1} \tag{2.6}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{equation*}
\int_{0}^{1}(v(x))^{q} d x \geq \frac{\sqrt{2 q+1}}{q+1} \tag{2.7}
\end{equation*}
$$

such that the inequalities (2.4), (2.6) and (2.7) yield

$$
\frac{1}{2}\left[1+\int_{0}^{1}(u(x))^{p}(v(x))^{q} d x\right] \geq \frac{\sqrt{(2 p+1)(2 q+1)}}{(p+1)(q+1)}
$$

which proves Theorem 2.

Remarks.

1. Inequality (2.3) is in particular true if u and v are concave functions defined on $[0,1]$ satisfying $\int_{0}^{1}(u(x))^{2 p} d x=\int_{0}^{1}(v(x))^{2 q} d x=1$ and the boundary conditions $u(0)=u(1)=0$ and $v(0)=v(1)=0$.
2. We have also proved the following refined version of Bellman's inequality: If u and v are non-negative, concave functions defined on $[0,1]$ such that $\int_{0}^{1}(u(x))^{2} d x=$ $\int_{0}^{1}(v(x))^{2} d x=1$, then

$$
\int_{0}^{1} u(x) v(x) d x \geq 2 \int_{0}^{1} u(x) d x \int_{0}^{1} v(x) d x-1 \geq \frac{1}{2}
$$

It might be surprising that a generalization of the Cauchy - Schwarz inequality (the Lemma) plays a central role in a proof for Bellman's converse of this inequality.
3. Since the integral $\int_{0}^{1}(u(x))^{p}(v(x))^{q} d x$ is non-negative, inequality (2.3) is of interest only for positive values p and q such that

$$
\begin{equation*}
\frac{2 \sqrt{(2 p+1)(2 q+1)}}{(p+1)(q+1)}-1>0 \tag{2.8}
\end{equation*}
$$

A simple calculation yields that (2.8) is fulfilled for all points (p, q) of the first quadrant lying below the curve

$$
q=\frac{-p^{2}+6 p+3+4 \sqrt{(2 p+1)\left(-p^{2}+6 p+3\right)}}{(p+1)^{2}}
$$

The graph of this curve is shown in the figure below.

Acknowledgement. I am very grateful to Professor W.S. Verwoerd for providing the figure and to Frank Bullock for helpful discussions.

References

[1] E.F. Beckenbach and R. Bellman, "Inequalities," Springer, Berlin, 1983.
[2] R. Bellman, "Converses of Schwarz's inequality," Duke Math. J. 23(1956), 429-434.
[3] L. Berwald, "Verallgemeinerung eines Mittelwertsatzes von J. Favard für positive konkave Funktionen," Acta Math. 79(1947), 17-37.
[4] D.S. Mitrinović, "Analytic Inequalities," Springer, New York, 1970.
[5] C.-L. Wang, "An extension of a Bellman inequality," Utilitas Math. 8(1975), 251-256.

Department of Mathematics, Applied Mathematics and Astronomy, University of South Africa, Pretoria, Republic of South Africa.

