LYAPUNOV INEQUALITY FOR SYSTEM DISCONJUGACY OF EVEN ORDER DIFFERENTIAL EQUATIONS

SUI SUN CHENG

With respect to the following even order self-adjoint differential equation of order

$$
\begin{equation*}
(-1)^{n+1} x^{(2 n)}+p(t) x=0 \tag{1}
\end{equation*}
$$

where $p(t)$ is continuous in $(-\infty, \infty)$, two points a and $b(a<b)$ in an interval I are conjugate if there is a nontrivial solution $x(t)$ of (1) which has n-fold zeros at a and b. Equation (1) is said to be disconjugate on I if no two points of the interval I are conjugate. Various disconjugacy criteria were obtained. In particular, a classic result of Lyapunov-Beurling-Borg-Wintner $[1,3]$ states that when $n=1$, the Lyapunov inequality

$$
(b-a) \int_{a}^{b}|p(t)| \leq 4
$$

is a disconjugacy criterion for (1) on the interval $[a, b]$. For general n, Levin [4] and Reid
[5] stated that

$$
\begin{equation*}
(b-a)^{2 n-1} \int_{a}^{b}|p(t)| \leq 4^{2 n-1}(2 n-1)[(n-1)!]^{2} \tag{2}
\end{equation*}
$$

is a disconjugacy criterion for equation (1) in $[a, b]$.
The concept of conjugate points defined above is partly originated from boundary value problem involving equation (1) and boundary conditions of the form

$$
x^{(k)}(a)=0=x^{(k)}(b), \quad k=0,1, \cdots, n
$$

However, it is equally important to consider boundary conditions of the form

$$
\begin{equation*}
x^{(2 k)}(a)=0=x^{(2 k)}(b), \quad k=0,1, \cdots, n-1 \tag{3}
\end{equation*}
$$

in practice. In this note, we shall define the concept of system conjugate points originated from the above mentioned boundary conditions and derive a Lyapunov inequality which serves as a disconjugacy criterion similar to (2).

More specifically, we say that two points a and $b(a<b)$ in an interval are system conjugate if (1) has a nontrivial solution $x(t)$ which satisfies (3). We say that equation (1) is system disconjugate on an interval if no two points of I are system conjugate.

Assume that $x(t)$ is a nontrivial solution of (1) which satisfies (3). Then by means of the Green's function $G_{n}(t, s \mid a, b)$ for the system

$$
\begin{align*}
(-1)^{n} x^{(2 n)}(t) & =\delta(t-s) \tag{4a}\\
x^{(2 k)}(a) & =0 x^{(2 k)}(b), \quad k=0,1, \cdots, n-1 \tag{4b}
\end{align*}
$$

where δ is the Dirac delta function, $x(t)$ must satisfy the integral equation

$$
x(t)=\int_{a}^{b} G_{n}(t, s \mid a, b) p(s) x(s) d s
$$

It is well known that

$$
G_{n}(t, s \mid a, b)= \begin{cases}(b-t)(s-a) /(b-a) & a \leq s \leq t \leq b \tag{5}\\ (t-s)(b-s) /(b-a) & a \leq t \leq s \leq b\end{cases}
$$

and

$$
\begin{equation*}
G(t, s \mid a, b)=\int_{a}^{b} G_{1}(t, r \mid a, b) G_{n-1}(r, s \mid a, b) d r, \quad n=2,3, \cdots \tag{6}
\end{equation*}
$$

By (5) and (6), it is clear that $G_{n}(t, s \mid a, b)$ is continuous on $[a, b] \times[a, b]$ and positive in the interior of $[a, b] \times[a, b]$. We shall need to find the maximum of $G_{n}(t, s \mid a, b)$ over $[a, b] \times[a, b]$. In order to do this, we define [2] a sequence of polynomials $f_{1}, f_{2}, f_{3}, \ldots$ by means of the conditions

$$
\begin{align*}
f_{1}(x) & =\frac{x}{2} \tag{7}\\
f_{n}^{\prime}(x) & =f_{n-1}(x), \quad n>1 \tag{8}\\
f_{2 n-1}(-1) & =0, \quad n>1 \tag{9}\\
f_{2 n}(x) & =f_{2 n}(-x), \quad n \geq 1 \tag{10}
\end{align*}
$$

Denote the points $(-1,-1),(0,0),(1 .-1)$ and $(0,-2)$ by A, B, C and D respectively, and denote the parallelogram with vertices A, B, C and D by p. Let $H_{n}(u, v)$ be the function on P defined by

$$
H_{n}(u, v)= \begin{cases}(-1)^{n}\left[f_{2 n}(u)-f_{2 n}(v)\right] & \text { if }(u, v) \in \triangle A B C \tag{11}\\ (-1)^{n}\left[f_{2 n}(u)-f_{2 n}(-v-2)\right] & \text { if }(u, v) \in \triangle A D C\end{cases}
$$

Under the change of variables

$$
t=(u-v) / 2, \quad s=(u+v+2) / 2, \quad u=t+s-1, \quad v=s-t-1
$$

it is easily seen that P is transformed into $[0,1] \times[0,1]$. We may further verify by means of the uniqueness conditions [2] for Green's function that

$$
\begin{equation*}
G_{n}(t, s \mid 0,1)=H(t+s-1, s-t-1), \quad(t, s) \in[0,1] \times[0,1] \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{n}(t, s \mid a, b)=(b-a)^{2 n-1} G_{n}\left(\frac{t-a}{b-a}, \left.\frac{s-a}{b-a} \right\rvert\, 0,1\right), \quad(t, s) \in[0,1] \times[0,1] . \tag{13}
\end{equation*}
$$

In view of (13), we see that the maximum of $G_{n}(t, s \mid a, b)$ is an increasing function of b. Indeed, suppose $b<b^{\prime}$. Then for each $(t, s) \in[a, b] \times[a, b]$, letting

$$
t^{\prime}=a+\frac{b^{\prime}-a}{b-a}(t-a), \quad s^{\prime}=a+\frac{b^{\prime}-a}{b-a}(s-a)
$$

we have $\left(t^{\prime}, s^{\prime}\right) \in\left[a, b^{\prime}\right] \times\left[a, b^{\prime}\right]$ and

$$
\begin{aligned}
G_{n}(t, s \mid a, b) & =(b-a)^{2 n-1} G_{n}\left(\frac{t-a}{b-a}, \left.\frac{s-a}{b-a} \right\rvert\, 0,1\right) \\
& <\left(b^{\prime}-a\right)^{2 n-1} G_{n}\left(\frac{t^{\prime}-a}{b^{\prime}-a}, \left.\frac{s^{\prime}-a}{b^{\prime}-a} \right\rvert\, 0,1\right) \\
& =G_{n}\left(t^{\prime}, s^{\prime} \mid a, b^{\prime}\right) .
\end{aligned}
$$

Similarly, we can show that $G_{n}(t, s \mid a, b)$ is a decreasing function of a.
We can show further that the maximum of $G_{n}(t, s \mid a, b)$ over $[a, b] \times[a, b]$ is equal to $G_{n}\left(\frac{a+b}{2}, \left.\frac{a+b}{2} \right\rvert\, a, b\right)$. To see this, it suffices to show that the maximum of $H_{n}(u, v)$ is $H_{n}(0,-1)$. First observe by means of (10) and (11) that $H_{n}(u, v)$ is symmetric with respect to the line $u=0$ and the line $v=-1$. Let E be the point of intersection of the lines $u=0$ and $v=-1$. Then the maximum of $H_{n}(u, v)$ is equal to the maximum of $H_{n}(u, v)$ over the triangle $\triangle A B E$. It is known [2] that $(-1)^{n} f_{2 n}$ is a strictly increasing function on $[-1,0]$, thus for any $(u, v) \in \triangle A B E$, we have

$$
\begin{aligned}
H_{n}(0,-1) & =(-1)^{n}\left[f_{2 n}(0)-f_{2 n}(-1)\right] \\
& >(-1)^{n}\left[f_{2 n}(0)-f_{2 n}(v)\right] \\
& >(-1)^{n}\left[f_{2 n}(u)-f_{2 n}(v)\right] \\
& =H_{n}(u, v)
\end{aligned}
$$

as required.
We can now calculate systematically the maximum of $H_{n}(u, v)$. First, we deduce from (7)-(10) that

$$
\begin{equation*}
f_{2 n}(x)=c_{0} x^{2 n}+c_{1} x^{2 n-2}+\cdots+c_{n} x^{2}+c_{n+1} \tag{14}
\end{equation*}
$$

where $\operatorname{col}\left(c_{0}, c_{1}, \ldots, c_{n}\right)$ is the solution of

$$
\left[\begin{array}{ccccc}
2 n! & 0 & 0 & \cdots & 0 \tag{15}\\
2 n!/ 3! & (2 n-2)! & 0 & \cdots & 0 \\
2 n!/ 5! & (2 n-3)!/ 3! & (2 n-4)! & & \\
\cdots & \cdots & \cdots & & \\
\cdots & \cdots & \cdots & c_{0} \\
2 n!/(2 n-1)! & (2 n-2)!/(2 n-3)! & (2 n-4)!/(2 n-5)! & \cdots & 2!
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

Since

$$
H_{n}(0,-1)=(-1)^{n}\left[f_{2 n}(0)-f_{2 n}(-1)\right]=(-1)^{n+1}\left[c_{0}+c_{1}+\ldots,+c_{n}\right]
$$

we need to find $c_{0}+c_{1}+\ldots+c_{n}$ systematically. To do this, we let

$$
\begin{aligned}
& A_{0}=(2 n!), \quad A_{1}=\left[\begin{array}{cc}
2 n! & 0 \\
2 n!/ 3! & (2 n-2)!
\end{array}\right], \cdots, \\
& A_{n}=\text { the coefficient matrix in }(15)
\end{aligned}
$$

Also, let

$$
\begin{align*}
& M_{0}=1, \quad M_{1}=-2 n!/ 3!, \ldots \\
& M_{k}=\text { cofactor of the }(1,1+k)-\text { element of } A_{k} \tag{17}
\end{align*}
$$

Then it is easily seen by induction that

$$
\begin{equation*}
c_{0}+c_{1}+\ldots+c_{n}=\frac{1}{2}\left\{\frac{M_{0}}{\operatorname{det} A_{0}}+\frac{M_{1}}{\operatorname{det} A_{1}}+\cdots+\frac{M_{n}}{\operatorname{det} A_{n}}\right\} \tag{18}
\end{equation*}
$$

Since $M_{0}, M_{1}, \ldots, M_{n}$ are integers and $\operatorname{det} A_{0}=2 n!, \operatorname{det} A_{1}=2 n!(2 n-$ $2)!, \ldots, \operatorname{det} A_{n}=2 n!(2 n-1)!\cdots 2$!, taking common denominators $2 n!(2 n-2)!\cdots 2$! of the fractions in (18), we see that $c_{0}+c_{1}+\ldots+c_{n}$ is a rational number. As examples,

$$
H_{1}(0,-1)=1 / 4, H_{2}(0,-1)=1 / 48, H_{3}(0,-1)=1 / 480
$$

We are now ready to prove the following result.
Theorem. Let $A_{0}, A_{1}, \ldots, A_{n}$ and $M_{0}, M_{1}, \ldots, M_{n}$ be defined by (16) and (17) respectively. If

$$
\begin{equation*}
(b-a)^{2 n-1} \int_{a}^{b}|p(t)| \leq 2(-1)^{n+1}\left\{\frac{M_{0}}{\operatorname{det} A_{0}}+\frac{M_{1}}{\operatorname{det} A_{1}}+\cdots+\frac{M_{n}}{\operatorname{det} A_{n}}\right\}^{-1} \tag{19}
\end{equation*}
$$

then equation (1) is system disconjugate on $[a, b]$.

Proof. Suppose a^{\prime} and $b^{\prime}\left(a \leq a<b^{\prime} \leq b\right)$ are system conjugate points in $[a, b]$, and $x(t)$ is a solution of (1) such that $x^{(2 k)}\left(a^{\prime}\right) \stackrel{=}{=}=x^{(2 k)}\left(b^{\prime}\right)$ for $k=0,1,2, \cdots, n-1$, then

$$
x(t)=\int_{a^{\prime}}^{b^{\prime}} G_{n}\left(t, s \mid a^{\prime}, b^{\prime}\right) p(s) x(s) d s
$$

Let $x_{\max }=\max \left\{|x(t)|: a^{\prime} \leq t \leq b^{\prime}\right\}$, we will have

$$
x_{\max }<x_{\max } \max G_{n}\left(t, s \mid a^{\prime}, b^{\prime}\right) \int_{a^{\prime}}^{b^{\prime}}|p(s)| d s
$$

so that

$$
\int_{a}^{b}|p(s)| d s \geq \int_{a^{\prime}}^{b^{\prime}}|p(s)| d s>\frac{1}{\max G_{n}\left(t, s \mid a^{\prime}, b^{\prime}\right)} \geq \frac{1}{\max G_{n}(t, s \mid a, b)}
$$

as required. Q.E.D.
There is a final remark we can make. If we let $x(t)=G_{n}(t,(a+b) / 2 \mid a, b)$ and $p(t)$ be the generalized function defined by

$$
p(t)=\frac{(-1)^{n} x^{(2 n)}(t)}{x(t)}=\frac{\delta(t-(a+b) / 2)}{x(t)}
$$

then $x(t)$ is a solution of (1) and satisfies (3), furthermore,

$$
\int_{a}^{b}|p(s)| d s=\int_{a}^{b} \frac{\delta(t-(a+b) / 2)}{G_{n}(t,(a+b) / 2 \mid a, b)} d t=\frac{1}{G_{n}((a+b) / 2,(a+b) / 2 \mid a, b)}
$$

This shows that the inequality (19) is sharp, for we can use the standard approximation technique to construct sequences of continuous functions $\left\{x_{j}(t)\right\}$ and $\left\{p_{j}(t)\right\}$ such that

$$
\begin{aligned}
(-1)^{n+1} x_{j}^{(2 n)}+p_{j}(t) x_{j} & =0, \quad a \leq t \leq b \\
x_{j}^{(2 k)}(a) & =0=x_{j}^{(2 k)}(b), \quad k=0,1, \cdots, n-1,
\end{aligned}
$$

and

$$
\int_{a}^{b}\left|p_{j}(s)\right| d s \rightarrow \frac{1}{G_{n}((a+b) / 2,(a+b) / 2 \mid a, b)}
$$

References

[1] G. Borg, On a Liapounoff criterion of stability, Amer. J. Math., 71 (1949), 67-70.
[2] S. S. Cheng, Isoperimetric eigenvalue problem of even order differential equations, Pacific J. Math., 99(1982), 303-315.
[3] P. Hartman, Ordinary Differential Equations, 2nd edition, Birkhauser, Boston, 1982.
[4] A. J. Levin, Distribution of the zeros of a linear differential equation, Soviet Math. okl., 5(1964), 818-821.
[5] W. T. Reid, A generalized Liapunov inequality, J. Diff. Eq., 13(1973), 182-196.

