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LYAPUNOV INEQUALITY FOR SYSTEM DISCONJUGACY OF 
EVEN ORDER DIFFERENTIAL EQUATIONS 

SUI SUN CHENG 

2n With respect to the following even order self-adjoint differential equation of order 

(-1r+1 x(2n) + p(t)x = 0, 
(1) 

where p(t) is continuous in (-oo, oo), two points a and b (a < b) in an interval I are 
conjugate if there is a nontrivial solution x(t) of (1) which has n-fold zeros at a and 
b. Equation (1) is said to be disconjugate on I if no two points of the interval I are 
conjugate. Various disconjugacy criteria were obtained. In particular, a classic result of 
Lyapunov-Beurling-Borg-Wintner [1,3) states that when n = l, the Lyapunov inequality 

., 

( b - a) lb I P( t) I ~ 4 

is a disconjugacy criterion for (1) on the interval [a, b]. For general n, Levin [4] and Reid. 
[5) stated that 

(b - a)2n-1 lb I p(t) I~ 42n-1(2n - l)[(n - 1)!]2 (2) 

is a disconjugacy criterion for equation (1) in [a, bJ. 
The concept of conjugate points defined above is partly originated from boundary 

value problem involving equation (1) and boundary conditions of the form 

k = 0, l, · · ·, n. 

However, it is equally important to consider boundary conditions of the form 

k = 0,1, ... ,n-l (3) 

. in practice. In this note, we shall define the concept of system conjugate points originated 
from the above mentioned boundary conditions and derive a Lyapunov inequality which 
serves as a disconjugacy criterion similar to (2). 
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More specifically, we say that two points a and b ( a < b) in an interval are system 
conjugat.e if (1) has a nontrivial solution x(t) which satisfies (3). We say that equation 
(1) is system disconjugate on an interval if no two points of I are system conjugate. 

Assume that x(t) is a nontrivial solution of (1) which satisfies (3). Then by means 
of the Green's function G11(t, sla, b) for the system 

(- ltxC211\t) = 8(t - s) 
x(2k>(a) = ox(2k\b), k = 0, 1,· · · ,n - 1 

(1a) 
( 4b) 

where 8 is the Dirac delta function, x(t) must satisfy the integral equatiop 
> 
~ 

x(t) = lb Gn(t,sla.,b)p(s)x(s)ds.· 

It is well known that 

Gn(t, S I a, b) {
·(b - t)(s - a)/(b - a) 
(t - s)(b - s)/(b - a) 

a<s<t<b - - - (5) a<t<s<b - - - 
and 

b 

G(t, sla, b) = 1 G1(t, rla, b )Gn-1(1·, sla, b )dr, n = 2,3,· · · (6) 

lly (5) and (6), it is clear that Gn(t, sla, b) is continuous on [a, b] x [a, b] and positive 
in the interior of [a, b] x [a, b]. We shall need to find the maximum of Gn(t, sla, b) over 
[a, b] x [a, b]. In order to do this, we define [2] a sequence of polynomials Ji, h, h, · · · 
by means of the conditions 

X fi(x) = 2 (7) 

J:1(x) = fn-1(x), n > 1 (8) 
hn-1(-l) = 0, n > 1 (9) 

hn(x) = h,i(-x), n > 1. (10) 

Denote the points (-1, -1), (0, 0), (1. - 1) and (0, -2) by A, B, C and D respec­ 
tively, and denote the parallelogram with vertices A, B, C and D by p. Let Hn(u, v) be 
the function on P defined by 

{ 

( -1 r [hn ( U) - hn ( V)] 
Hn(u, v) = 

(-lt[hn(u) - hn(-v - 2)] 

U ndcr the change of variables 

if ( u, V) E /:,.ABC 

if ( u, V) E /:,.ADC 
(11) 

t=(u-v)/2, S = ( U + V + 2)/2, u = t + s - l, V = s-t-1, 
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it is easily seen that P is transformed into [O, 1] x [O, l]. We may further verify by means 
of the uniqueness conditions [2] for Green's function that 

Gn(t, s!O, 1) = H(t + s - 1, s - t - l), (t, s) E [0, 1] x [O, 1] (12) 

and 

2n-1 t - a S - a 
Gn(t,sla,b) = (b - a) Gn(b _ a' 1. _ I 0, 1), (t,s) E (0, l] x [0, l]. (13) 

In view of (13), we see that the maximum of Gn(t, sla, b) is an increasing function 
of b. Indeed, suppose b < b'. Then for each (t, s) E [a, b] x [a1 b], letting 

b' - a 
t' . a + 1. _ (t - a), 

we have (t', s') E [a, b1 x [a, b'] and 

s' = b' - a a + , (s - a), 

2n-1 t - a S - a 
Gn(t,s I a,b) = (b - a) Gn(b _ a' 1. _ I 0,1) 

ti I 

(b' - )2n-IG ( - a s - a I O 1) < a n b' 'b' ' - a - a 
= Gn(t', s' I a, b'). 

Similarly, we can show that Gn(t, sla, b) is a decreasing function of a. 
We can show further that the maximum of Gn(t,s!a,b) ovff [a,b] x [a,b] is equal 

to Gn ( a ; b, a ; b la, b). To see this, it suffices to show that the maximum of If n ( u, v) 
is Hn(O, -1). First observe by means of (10) and (11) that Hn( u, v) is symmetric with 
respect to the line u = 0 and the line v = - l. Let E be the point of intersection of the 
lines u = 0 and v = -1. Then the maximum of Hn(u,v) is equal to the maximum of 
H n ( u, v) over the triangle ti ABE. It is known [2] that ( -1 )" hn is a strictly increasing 
function on [-1,0], thus for any (u,v) E tiABE, we have 

Hn(O, -1) = (-lf[hn(O) - hn(-1)] 
> (-1)" [hn(O) - hn( V )] 
> ( -1 )" [hn ( U) - hn ( V) J 
= Hn(u, v) 

~s required. 
We can now calculate systematically the maximum of Hn(u, v). First, we deduce 

from (7)-(10) that 

hn(x) 2n 2n-2 + 2 + 
CoX + C1X + · · · C71X Cn+l (14) 
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where col(c0, c1, ... , en) is the solution of 

2n! 
2n!/3! 
2n!/5! 

0 
(2n - 2)! 

(2n - 3)!/3! 

0 
0 

(2n - 4)! 

0 
0 

1/2 
0 
0 

2n!/(2n - 1 )! (2n - 2)!/(2n - 3)! (2n - 1)!/(2n - 5)! · · · 2! 

Since 
0 
(15) 

Hn(O, -1) = (-It[hn(O) - hn(-1)] = (-lt+l[co + c1 + ... , +en], 
we need to find co + c1 + ... + Cn systematically. To do this, we Jet 

Ao = (2n!), [ 2n! 0 J 
Ai = 2n!/3! (2n - 2)! ' (16) 

An = the coefficient matrix in (15). 
Also, let 

Mo = 1, M1 = -2n!/3!, · · · 

Mk = cofactor of the (1, 1 + k) - element of Ak, 

Then it is easily seen by induction that 
(17) 

Since Mo, M1, ... , Mn are integers and detA0 = 2n!, detA
1 

= 2n!(2n - 
2)!, ... , detAn = 2n!(2n - l)! · · · 2!, taking common denominators 2n!(2n - 2)! · · · 2! of 
the fractions in (18), we see that co+ c1 + ... + en is a rational number. As examples, 

. _ ! Mo + M1 + ... + Mn } . co+ c1 + ... + Cn - 2 { detAo detA1 detAn (18) 

H1(0, -1) = 1/4, H2(0, -1) = 1/48, H3(0, -1) = 1/480. 

\Ve are now ready to prove the following result. 

Theorem. Let Ao, Ai, ... , An and 1110, Mi, ... , Mn be defined by (16) and {17) 
respectively. If 

(b-a)2n-1j'Jp(t)J:::; 2(-t)"+'{ Mo+ M, +, .. + Mn r', (19) 
a detAo detA1 detAn 

then equation {1} ·is system disconjugate on [a, bJ. 
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Proof. Suppose a' and b' ( a :5 a < b' :5 b) are system conjugate points in [a, b], and 
x(t) is a solution of (1) such that x(2k)(a1

) = 0 = xC2k)(b1) fork= 0, l, 2, ... , n - 1, then 
b' 

x(t) = 1 Gn(t, s I a', b')p(s)x(s)ds. 
a' 

Let Xmax = max{I x(t) I: a' :5 t < b'}, we will have 
b' 

Xmax < XmaxmaxGn(t,s I a',b')l I p(s) Ids, 
a' 

so that 

l
b I p(s) Ids> lb' I p(s) Ids> 1 > -·--1 

a - a' maxGn(t, s I a', b') - maxGn(t, s I a, b) 
as required. Q.Jj).D. 

There is a final remark we can make. If we let x(t) = Gn(t,(a + b)/2la,b) and p(t) 
be the generalized function defined by 

(-ltx(2n)(t) b(t - (a+ b)/2) 
P(1} = x(t) = x(t) ' 

then x(t) is a solution of (1) and satisfies (3), furthermore, 

l
blp(s)jds=lb b(t-(a+b)/2) dt= 1 . 

a a Gn(t,(a+b)/2la,b) Gn((a+b)/2,(a+b)/2la,b) 
This shows that the inequality (19) is sharp, for we can use the standard approximation 
technique to construct sequences of continuous functions {xj(t)} and {Pi(t)} such that 

= 0, 
=0 

a:5t:5b 
x;2k)(b), k O,J, ... ,n-1, 

and 

lb 1 
a I Pi ( S) I ds ._ ,.. 11 . " '" , " ·- , 
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