ON \mathbb{A} CONSEQUENCE OF MILIN'S INEQUALITY FOR FABER POLYNOMIALS

STEPHEN M.ZEMYAN

1. Introduction

Let S denote the class of all functions $f(z)$ which are analytic and univalent in the unit disk $U=\{z:|z|<1\}$ and are normalized so that $f(0)=0$ and $f^{\prime}(0)=1$. The logarithmic coefficients γ_{k} of $f(z)$ are defined by the relation

$$
\log \left[\frac{f(z)}{z}\right]=2 \sum_{1}^{\infty} \gamma_{k} z^{k}
$$

Louis de Branges [1, p. 146-150] proved the following inequalities, originally conjectured by Milin.

Theorem 1. Let $f \in S$ and let $\gamma_{k}(k=1,2, \cdots)$ be the logarithmic coefficients of f. Then, for every $n \geq 1$, we have

$$
\begin{equation*}
\sum_{k=1}^{n} k(n+1-k)\left|\gamma_{k}\right|^{2} \leq \sum_{k=1}^{n} \frac{n+1-k}{k} \tag{1}
\end{equation*}
$$

Equality holds if and only if $f(z)=z /(1-\eta z)^{2},|\eta|=1$.
In this paper, we shall show that this theorem easily implies a consequence for Faber polynomials, which suggests in turn a reasonable conjecture for them.

2. Faber Polynomials and the Class S_{p}

For $f \in S$, the functions $F_{k}(t)$ generated by the relation

$$
\log \left[\frac{f(z)}{z(1-t f(z))}\right]=\sum_{k=1}^{\infty} \frac{1}{k} F_{k}(t) z^{k}
$$

[^0]for z in a neighborhood of the origin (depending on t) are called the Faber Polynomials of $f(z)$.

We prove the following result:
Theorem 2. Let $f \in S$. If $F_{k}(t)$ are the Faber polynomials of f, and ω does not belong to the range of f, then

$$
\begin{equation*}
\sum_{k=1}^{N} \frac{N+1-k}{k}\left|F_{k}\left(\frac{1}{\omega}\right)\right|^{2} \leq 4 \sum_{k=1}^{N} \frac{N+1-k}{k} \tag{2}
\end{equation*}
$$

Equality holds if and only if $f(z)$ has the form

$$
f(z)=\frac{z}{1-2 \alpha \eta z+\eta^{2} z^{2}}
$$

for some $\eta,|\eta|=1$, and $\alpha \in[-1,+1]$.
Proof. Since $\omega \notin f(U)$, the function $g_{\omega}(z)=\frac{\omega f(z)}{(\omega-f(z))}$ belongs to the class S.

$$
\log \left[\frac{g_{\omega}(z)}{z}\right]=\log \left[\frac{f(z)}{z\left(1-\frac{f(z)}{\omega}\right)}\right]=2 \sum_{k=1}^{\infty}\left[\frac{1}{2 k} F_{k}\left(\frac{1}{\omega}\right)\right] z^{k}
$$

the logarithmic coefficients of $g_{\omega}(z)$ are determined. Applying Theorem 1 to g_{ω}, we obtain (2) above. Equality holds if and only if

$$
g_{\omega}(z)=\frac{\omega f(z)}{\omega-f(z)}=\frac{z}{(1-\eta z)^{2}}
$$

for some $\eta,|\eta|=1$. Such an $f(z)$ must have the form

$$
f(z)=\frac{z}{1-\left(2 \eta-\frac{1}{\omega}\right) z+\eta^{2} z^{2}} .
$$

Now, the product of the roots of the quadratic in the denominator has modulus equal to one; hence, both roots must be on the unit circle. If we denote these roots by $z_{1}=\bar{\eta} e^{i \theta}$
and $z_{2}=\bar{\eta} e^{-i \theta}$, then

$$
\begin{aligned}
1-\left(2 \eta-\frac{1}{\omega}\right) z+\eta^{2} z^{2} & =\left(1-\bar{z}_{1} z\right)\left(1-\bar{z}_{2} z\right) \\
& =1-2 \eta \cos \theta z+\eta^{2} z^{2}
\end{aligned}
$$

showing that the extremal function has specified form. This completes the proof of the theorem.

Remark. If $\omega \rightarrow \infty$ along some continuum, then $F_{k}\left(\frac{1}{\omega}\right) \rightarrow F_{k}(0)=2 k \gamma_{k}$; thus, the inequality of Theorem 2 implies the inequality of Theorem 1 .

Now let $0<p<1$. Suppose that we wish to maximize the nonlinear functional

$$
f \rightarrow \sum_{k=1}^{N} \frac{N+1-k}{k}\left|F_{k}\left(\frac{1}{f(p)}\right)\right|^{2}
$$

over the class S. Taking the Theorem 2 into consideration, the natural candiate for an extremal function would be given by

$$
\hat{f}(z)=\frac{z}{1-2 \alpha \eta z+\eta^{2} z^{2}}
$$

where $|\eta|=1$ and $\alpha \in[-1,+1]$. On one hand, for any function $f \in S$, the definition of Faber Polynomials gives us the relation

$$
\log \left[\frac{f(z)}{z\left(1-\frac{f(z)}{f(p)}\right)}\right]=\sum_{k=1}^{\infty} \frac{1}{k} F_{k}\left(\frac{1}{f(p)}\right) z^{k}
$$

where we have set $t=1 / f(p)$. On the other hand, for the function $\hat{f}(z)$, a short computation yields

$$
\log \left[\frac{\hat{f}(z)}{z\left(1-\frac{\hat{f}(z)}{\hat{f}(p)}\right)}\right]=\sum_{k=1}^{\infty} \frac{1}{k}\left(p^{k} \eta^{2 k}+\frac{1}{p^{k}}\right) z^{k}
$$

Since $\left|p^{k} \eta^{2 k}+\frac{1}{p^{k}}\right|=p^{k}+\frac{1}{p^{k}}$ only if $\eta= \pm 1$, we are naturally led to the following conjecture.

Conjecture I. Let $f \in S$ and $p \in(0,1)$. If $F_{k}(t)(k=1,2, \cdots)$ are the Faber polynomials of $f(z)$, then, for each $N \geq 1$, we have

$$
\begin{equation*}
\sum_{k=1}^{N} \frac{N+1-k}{k}\left|F_{k}\left(\frac{1}{f(p)}\right)\right|^{2} \leq \sum_{k=1}^{N} \frac{N+1-k}{k}\left(p^{k}+\frac{1}{p^{k}}\right)^{2} \tag{3}
\end{equation*}
$$

Equality holds if and only if

$$
f(z)=\frac{z}{1-2 \alpha z+z^{2}} \quad(\alpha \in[-1,+1])
$$

Remark. These conjectured inequalities may be viewed as an extension of the inequalities of Theorem 2. To see this, let $p_{n}=1-\frac{1}{n}(n=1,2, \cdots)$ and let $f \in S$. If the sequence $f\left(p_{n}\right)(n=1,2, \cdots)$ is unbounded, then there must exist a subsequence $f\left(p_{n_{j}}\right)(j=1,2, \cdots)$ such that $f\left(p_{n_{j}}\right) \rightarrow \infty$ as $j \rightarrow+\infty$. But then $F_{k}\left(\frac{1}{f\left(p_{n_{j}}\right)}\right) \rightarrow$ $F_{k}(0)=2 k \gamma_{k}$. If the sequence $f\left(p_{n}\right)$ is bounded, then there must exist a subsequence $f\left(p_{n_{j}}\right)(j=1,2, \cdots)$ which converges to some finite boundary point ω. But then we
would have $F_{k}\left(\frac{1}{f\left(p_{n_{j}}\right)}\right) \rightarrow F_{k}\left(\frac{1}{\omega}\right)$ as $j \rightarrow+\infty$. Replacing p with $p_{n_{j}}$ in (3) and then letting $j \rightarrow \infty$, we obtain the inequality of Theorem 2 , for some particular boundary point (∞ or ω). Thus, Conjecture I implies inequalities which are known to be true.

Now let $S_{p}(0<p<1)$ denote the class of meromorphic univalent functions $g(z)$ defined on the unit disk U and normalized so that $g(0)=0, g^{\prime}(0)=1$ and $g(p)=\infty$. We define the logarithmic coefficients of $g(z) \in S_{p}$ for z near the origin by the relation

$$
\log \left[\frac{g(z)}{z}\right]=2 \sum_{k=1}^{\infty} \delta_{k} z^{k}
$$

We observe that the logarithmic coefficients of any $g \in S_{p}$ may be expressed in terms of the Faber Polynomials of some $f \in S$. Indeed, for any $f \in S$, the function

$$
\begin{equation*}
g(z)=\frac{f(p) f(z)}{f(p)-f(z)} \tag{4}
\end{equation*}
$$

belongs to S_{p}, and

$$
\log \left[\frac{g(z)}{z}\right]=\log \left[\frac{f(z)}{z\left(1-\frac{f(z)}{f(p)}\right)}\right]=2 \sum_{k=1}^{\infty} \frac{1}{2 k} F_{k}\left(\frac{1}{f(p)}\right) z^{k}
$$

Conversely, for any $g \in S_{p}$, there always exists an $f \in S$ such that (4) holds. Specifically, we may define

$$
f(z)=\frac{c g(z)}{c+g(z)}
$$

where $g \in S_{p}$ and $-c \notin g(U)$. Elementary computations show that $f \in S$ and that $f(p)=+c$.

One function of particular importance, the "Koebe Function" for the class S_{p}, is given by

$$
K_{p}(z)=\frac{z}{(1-p z)\left(1-\frac{z}{p}\right)}
$$

The logarithmic coefficients of this function are easily computed to be

$$
\delta_{k}\left(K_{p}\right)=\frac{1}{2 k}\left(p^{k}+\frac{1}{p^{k}}\right)^{2} .
$$

We are thus naturally led to formulate a Milin Conjecture for the class S_{p} :
Conjecture II. Let $g \in S_{p}$ and let $\delta_{k}(k=1,2, \cdots)$ denote the logarithmic coefficients of g. Then, for each $N \geq 1$, we have

$$
\sum_{k=1}^{N} k(N+1-k)\left|\delta_{k}\right|^{2} \leq \frac{1}{4} \sum_{k=1}^{N} \frac{N+1-k}{k}\left(p^{k}+\frac{1}{p^{k}}\right)^{2}
$$

Equality holds if and only if $g(z)=K_{p}(z)$.
Remark 1. Conjectures I and II are equivalent.
Remark 2. If $N=1$, then Conjecture II becomes $\left|2 \delta_{1}\right|^{2} \leq p+\frac{1}{p}$ for any $g \in S_{p}$. If g has the Taylor expansion $g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots$ near the origin, then $b_{2}=2 \delta_{1}$; hence, we must show that $\left|b_{2}\right| \leq p+\frac{1}{p}$. Now Goodman [3] conjectured that for each $g \in S_{p}$, the coefficient inequalities

$$
\begin{equation*}
\left|b_{n}\right| \leq \frac{1-p^{2 n}}{p^{n-1}\left(1-p^{2}\right)} \tag{5}
\end{equation*}
$$

should hold for each $n \geq 2$. Jenkins [4] then proved that Goodman's Conjecture for the class S_{p} would be true if the Bieberbach Conjecture for the class S where true. Since the Bieberbach Conjecture has been established [1] as a consequence of Milin's Inequality, the Goodman Conjecture for the class S_{p} is also true. In particular, (5) becomes $\left|b_{2}\right| \leq p+\frac{1}{p}$ when $n=2$. Thus, Conjectures I and II are true if $N=1$.

References

[1] Louis de Branges, "A Proof of the Bieberbach Conjecture," Acta Math. 154(1985), 137-152.
[2] Peter L. Duren and Y. J. Leung, "Logarithmic Coefficients of Univalent Functions," J. Analyse Math. 36(1979), 36-43.
[3] A. W. Goodman, "Functions Typically Real and Meromorphic in the Unit Circle," Trans. Amer. Math. Soc. 81(1956), 92-105.
[4] J. A. Jenkins, "On a Conjecture of Goodman," Michigan Math. J., 9(1962), 25-27.

Department of Mathematics, The Pennsylvania State University, Mont Alto Campus, Mont Alto, Penn-
sylvania 17237 .

[^0]: AMS Classification: 30 C
 Key Words and Phrases: Univalent, logarithmic coefficients, Faber polynomials, Milin's Inequality, Koebe function.

