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ON A CONSEQUENCE OF MILIN’S INEQUALITY
FOR FABER POLYNOMIALS

STEPHEN M.ZEMYAN

1. Introduction

Let S denote the class of all functions f(z) which are analytic and univalent in the
unit disk U = {z : |2| < 1} and are normalized so that f(0) = 0 and f'(0) = 1. The
logarithmic coefficients v of f(z) are defined by the relation

log [f—(zz—)] = 23 st

1
Louis de Branges [1, p. 146-150] proved the following inequalities, originally conjectured
by Milin.

Theorem 1. Let f € S and let v (k = 1,2,---) be the logarithmic coefficients of
f. Then, for every n > 1, we have

n

- . 4 1=k
Sokn+1- k)|l Y (1)
k=1

k=1

Equality holds if and only if f(2) = 2/(1 — nz)?, |n| = 1.
In this paper, we shall show that this theorem easily implies a consequence for Faber
polynomials, which suggests in turn a reasonable conjecture for them.

2. Faber Polynomials and the Class S,

For f € S, the functions Fi(¢) generated by the relation

/()
sy =

e
Il
st
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for z iﬁ a neighborhood of the origin (depending on t) are called the Faber Polynomials
of f(z2).

We prove the following result:

Theorem 2. Let f € S. If Fi(t) are the Faber polynomials of f, and w does not
belong to the range of f, then '

N N

T I N31-—k

SRR B il ' R 2
k§=1: p le(.w)l < 4;:1: i (2)

Equality holds if and only if f(2) has the form

for somen, |n] = 1, and a € [—1,+1].
Proof. Since w ¢ f(U), the function gl gy = ((u—“’_iﬁ)m belongs to the class S.
Since
9(2)] _ f(z) % 1 by
]og[ z ] = log [2(1_ L%l)} N QI;[Qka(w)] ‘

the logarithmic coefficients of 9. (z) are determined. Applying Theorem 1 to g,, we
obtain (2) above. Equality holds if and only if

wf(z) _ ¥
w=f(z)  (1-n2)?

9u(z) =

for some 5, || = 1. Such an f(2z) must have the form

Now, the product of the roots of the quadratic in the denominator has modulus equal to
one; hence, both roots must be on the unit circle. If we denote these roots by z; = 7et?
and z3 = Fe~% then

1
1 - (29— u—))z +9%* = (1 —7212)(1 = Z22)
=1-2pcos 0z + n°2*

showing that the extremal function has specified form. This completes the proof of the
theorém. '

Remark. If v — o along some continuum, then Fi(2) — Fe(0) = 2k thus,
the inequality of Theorem 2 implies the inequality of Theorem 1.
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Now let 0 < p < 1. Suppose that we wish to maximize the nonlinear functional

YN N+1-—k 1
F = 3 Rl

k=1

over the class S. Taking the Theorem 2 into consideration, the natural candiate for an
extremal function would be given by

CZ
1 - 2anz + n322

fz) =

where |g] = 1 and @ € [~1,41]. On one hand, for any function f € S, the definition
of Faber Polynomials gives us the relation

where we have set ¢ = 1/f(p). On the other hand, for the function f(z), a short
computation yields

log[_f(zl__)] i pkn2k+ )k

Since |p*n%* + ﬁ,:l = p* + % only if n = %1, we are naturally led to the following
conjecture.

Conjecture I. Let f € Sand p € (0,1). If Fi(t) (¢ = 1,2,---) are the Faber
polynomials of f(z), then, for each N > 1, we have

S Y g, B ELI =k . Ly
Y IR F s Y6+ S0 3)

k=1 k=1
Equa;lity holds if and only if

f(z) =

z
1 — 20z + 22

(¢ € [-1,+1])

Remark. These conjectured inequaliﬁies may be viewed as an extension of the
inequalities of Theorem 2. To see this,let p, = 1 — 1 (n = 1,2,--)andlet f € S
If the sequence f(p,) (n = 1,2,---) is unbounded then there must exist a subsequence
f(pa;) (5 = 1,2,---) such that f(p.;) — o0 as j — +o0o. But then Fk(j—) —
Fi(0) = 2kv. If the sequence f(p,) is bounded, then there must exist a subsequence
F(pn;) (j = 1,2,---) which converges to some finite boundary point w. But then we
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would have Fk(f( ) — Fr(L) as j — +o0o. Replacing p with Pn; in (3) and then
letting j — oo, we obtam the inequality of Theorem 2, for some particular boundary
point (oo or w). Thus, Conjecture I implies inequalities which are known to be true.
Now let Sp (0 < p < 1) denote the class of meromorphic univalent functions 9(2)
defined on the unit disk U and normalized so that g(0) = 0, ¢’(0) = 1 and 9(p) = oo.
We define the logarithmic coefficients of g(z) € Sp for z near the origin by the relation

log [i(f—)} = 22 82

We observe that the logarithmic coefficients of any g € Sp may be expressed in terms of
the Faber Polynomials of some f € S. Indeed, for any f € S, the function

f(p)f(2)

%) = 0y - 1 ®)

belongs to Sy, and

log £ g(z )] = log | f(2) ]

k

f()

._MS

Conversely, for any g € Sp, there always exists an f € S such that (4) holds. Specifically,
we may define
_ _cg(2)
f (Z ) s c+ g( Z)

where ¢ € 'S, and —c ¢ g(U). Elementary computations show that f € S and that
f(p) = +e.
One function of particular importance, the “Koebe Function” for the class S’ is

given by
z

(1 —pz)(1 ~ &)

The logarithmic coefficients of this function are easily computed to be

Kp(z) =

1 1
u(Ky) = (0" + )"

We are thus naturally led to formulate a Milin Conjecture for the class S

Conjecture II. Let ¢ € S, and let 6§ (k = 1,2,--.) denote the logarithmic
coeflicients of g. Then, for each N > 1, we have

N

s B s 1
“EN+1 -k |6&[2< = oF + —=)2
k§=1i( +1 ,!kl_4§=i e+ )
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Equality holds if and only if 9(z) = Ky(z).
Remark 1. Conjectures I and II are equivalent.

Remark 2. If N = 1, then Conjecture II becomes 1261 < p + ‘l’ forany g € S,.
If g has the Taylor expansion g(z) = z + by22 + b323 + --. near the origin, then
by = 26;; hence, we must show that |by] < p + xl" Now Goodman [3] conjectured that
for each g € S;, the coefficient inequalities

1_p2n

bp | < —————
)

(5)

should hold for each n > 2. Jenkins [4] then proved that Goodman’s Conjecture for
the class S, would be true if the Bieberbach Conjecture for the class S where true.
Since the Bieberbach Conjecture has been established [1], as a consequence of Milin’s

Inequality, the Goodman Conjecture for the class Sp 1s also true. In particular, (5)

becomes |bs| < p + % when n = 2. Thus, Conjectures I and II are true if N = 1.
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