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ON THE MAXIMAL NUMBER OF NON-OVERLAPPING KLEIN

4-GROUPS INSIDE AN ELEMENTARY ABELIAN 2-GROUP

DAVID E. DOBBS

Abstract. Let G be a finite elementary abelian 2-group of order 2n, for some integer

n ≥ 2. Let bn be the maximal cardinality of a set S of subgroups of G such that

each member of S is isomorphic to the Klein 4-group and any two distinct members

of S meet only in 0. It is proved that bn+2 ≥ 4bn. Consequently, bn ≥ 2n−2 if n is

even, while bn ≥ 2n−3 if n is odd; these results are best possible since b2 = 1 = b3.

1. Introduction

On June 17, 2008, Jim Coykendall telephoned me to ask for help in proving a con-

jecture that had arisen in his ongoing collaboration with Sean Sather-Wagstaff on fan

graphs. To state the conjecture, we need the following notation and terminology. Let

G be a finite elementary abelian 2-group of order 2n, for some integer n ≥ 2; that is,

G is a direct sum of n copies of Z/2Z. Distinct subgroups H and K of G are said to

be non-overlapping if H ∩ K = 0. Let bn denote the maximal cardinality of a set S of

pairwise non-overlapping subgroups of G such that each member of S is isomorphic to

the Klein 4-group V (:= Z/2Z⊕Z/2Z). The conjecture states that bn ≥ 2n−2 − 2. Later

that day, I emailed Coykendall my proof that bn ≥ 2n−2 if n is even, while bn ≥ 2n−3 if

n is odd. I added that these results are best possible since b2 = 1 = b3. In particular, the

original conjecture failed if n = 3; and the bound for bn that I had proved for even n was

sharper than the bound in the original conjecture. Three days later, Coykendall replied

that he had intended the original conjecture only for n ≥ 4 and, for that context, he

had just finished proving the original conjecture, adding that this would be enough for

the graph-theoretic applications that he and Sather-Wagstaff envisaged. Given that our

methods were different and our results complemented one another, we agreed to publish

our work separately. This note combines the substance of my email message of June 17,

2008 (see Theorem 1 and Corollary 2 below) and a calculation sharpening the bound for

b5 that I made a few days later (see Remark 3 (b)).
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After the work on this note had been completed, I learned of some relevant work [1]

which was motivated, according to its authors, “by the design of noncoherent multiple-

antenna communication systems”. In [1, Corollary III.3], the estimation of bn was, in

effect, reinterpreted by viewing two-dimensional F2-subspaces of F2 ⊕ F2 as lines in an

associated projective space. One consequence of [1, Corollary III.3] is that if n is even,

then bn = (2n − 1)/3. For even n ≥ 4, this result is sharper than Corollary 2 (a) below

(and hence sharper than the result of Coykendall and Sather-Wagstaff). For odd n, the

authors of [1] refer readers to some computer-aided searches involving partial t-spreads.

After learning of [1], I have concluded that there are several reasons to publish the work

that is being reported on here. First, it is algorithmic: see the proof of Theorem 1, as

well as parts (b) and (c) of Remark 3. Second, the key step (Theorem 1) does not depend

on the parity of n. Third, in view of [1, Corollary III.3], we see that for even n, the factor

4 in the statement of Theorem 1 is of the right order of magnitude, as the best-possible

factor would be
2n+2 − 1

2n − 1
= 4 +

3

2n − 1
.

Fourth, our methods are more elementary, in the sense that they avoid any consideration

of projective geometry.

2. Results

Theorem 1. If n ≥ 2 is an integer, then bn+2 ≥ 4bn.

Proof. It will be convenient to consider G as the external direct sum of n + 2 copies

of Z/2Z. Let U denote the direct sum of the the first n copies of Z/2Z. As the direct

sum of the last two copies of Z/2Z can be identified with the Klein 4-group V , we have

G = U ⊕ V . It suffices to prove that if S is a set of cardinality N consisting of pairwise

non-overlapping subgroups of U which are each isomorphic to V , then one can construct

a set T of cardinality 4N consisting of pairwise non-overlapping subgroups of G which

are each isomorphic to V . We shall do this by showing that each W = {w1, w2, w3, 0} ∈ S

leads to four elements of the eventual set T . As we view U ⊆ G in the usual way, we

have W ⊆ G, and so it is natural to take the first of the members of T that arise from

W to be W itself.

To define the other three members of T that arise from W , we need the following

notation. Let the elements of V be denoted by a, b, c, 0. Note that 2a = 2b = 2c = 0,

while a + b = c, a + c = b, and b + c = a. Consider the following three subsets of G:

X := {w1 + a, w2 + b, w3 + c, 0}, Y := {w1 + b, w2 + c, w3 + a, 0},

and Z := {w1 + c, w2 + a, w3 + b, 0}. Note that 2w1 = 2w2 = 2w3 = 0, while w1 + w2 =

w3, w1 + w3 = w2, and w2 + w3 = w1. It is straightforward to check that X, Y and Z

are subgroups of G that are each isomorphic to V . For instance, to check that X has

cardinality 4, one would need to know, in particular, that w1 + a 6= w2 + b, and this
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follows since w1 −w2 = w3 ∈ W \ {0} and b− a = c ∈ V \ {0}. (One should perhaps add

that the last two coordinates of w3 are each 0, while this is not the case for c.) Using

similar reasoning, one can check that W, X, Y and Z are pairwise non-overlapping.

It remains to show that the result of constructing four non-overlapping subgroups

of G (each of which is isomorphic to V ) via each of the N members of S produces 4N

non-overlapping subgroups of G. Consider any nonzero element g = (g1, . . . , gn+2) of

one of these subgroups. Note that all the elements of members of S have their last two

coordinates equal to 0; and that all the elements of V have (when viewed in G) their

first n coordinates equal to 0. Thus, (g1, . . . , gn) is either 0 or an element of a uniquely

determined member, say W , of S (since the members of S are pairwise non-overlapping);

and (g1, g2) is a uniquely determined member of V . By knowing which element of W has

been added to which element of V to produce g, we then know exactly which one of the

sets W, X, Y, Z contains g. This completes the proof.

Corollary 2. Consider any integer n ≥ 2. Then:

(a) If n is even, then bn ≥ 2n−2.

(b) If n is odd, then bn ≥ 2n−3.

Proof. It is clear from the definition of bn that b2 = 1. To see that b3 = 1,

consider any isomorphic copy H of the Klein 4-group which is a subgroup of G = Z/2Z⊕

Z/2Z ⊕ Z/2Z. As H is an internal direct summand of G (by, for instance, vector space

considerations), we may take H = V = Z/2Z ⊕ Z/2Z and G = H ⊕ Z/2Z. Writing

the elements of Z/2Z as 0 and 1, note that there do not exist three distinct elements of

G of the form (z1, z2, 1) such that these elements, together with the zero element of G,

constitute a subgroup of G. Hence, there does not exist a subgroup K 6= H of G such

that K ∼= V and H ∩ K = 0. Thus b3 ≤ 1, with the reverse inequality holding by virtue

of H . This proves that b3 = 1. In view of Theorem 1, the assertions in (a) and (b) now

follow easily by induction.

Remark 3. (a) As we saw in the proof of Corollary 2 that b2 = 1 (resp., b3 = 1), it

follows that Corollary 2 (a) (resp., Corollary 2 (b)) is best possible.

(b) Corollary 2 (b) yields that b5 ≥ 4, while the result announced by Cokendall and

Sather-Wagstaff yields that b5 ≥ 25−2 − 2 = 6. One can do better, as we show next that

b5 ≥ 7.

We shall produce a set {W, X, Y, Z, N1, N2, N3} of seven pairwise distinct pairwise

non-overlapping subgroups of G (viewed as the external direct sum of five copies of

Z/2Z) which are each isomorphic to the Klein 4-group. The method of discovery is

hinted at in (c), and we leave to the reader the task of verifying that the set which is
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given below does have the asserted properties. The relevant definitions are as follows:

W := {(0, 0, 0, 0, 0), (0, 1, 0, 0, 0), (1, 0, 0, 0, 0), (1, 1, 0, 0, 0)};

X := {(0, 0, 0, 0, 0), (0, 1, 0, 1, 0), (1, 0, 1, 0, 0), (1, 1, 1, 1, 0)};

Y := {(0, 0, 0, 0, 0), (0, 1, 1, 0, 0), (1, 0, 1, 1, 0), (1, 1, 0, 1, 0)};

Z := {(0, 0, 0, 0, 0), (0, 1, 1, 1, 0), (1, 0, 0, 1, 0), (1, 1, 1, 0, 0)};

N1 := {(0, 0, 0, 0, 0), (0, 1, 0, 0, 1), (0, 1, 0, 1, 1), (0, 0, 0, 1, 0)};

N2 := {(0, 0, 0, 0, 0), (1, 0, 0, 0, 1), (1, 0, 1, 0, 1), (0, 0, 1, 0, 0)};

and

N3 := {(0, 0, 0, 0, 0), (0, 0, 1, 1, 1), (0, 0, 0, 0, 1), (0, 0, 1, 1, 0)}.

(c) It is natural to ask if b5 ≥ 8, as it would then follow (by reasoning as in the

proof of Corollary 2) that bn ≥ 2n−2 for all n ≥ 2. A laborious case analysis (which
is left to the reader) shows that the only impediment to proving that b5 ≥ 8 arises if

one has four non-overlapping copies of the Klein 4-group, say W = {w1, w2, w3, 0}, X =

{x1, x2, x3, 0}, Y and Z, inside Z/2Z⊕Z/2Z⊕Z/2Z⊕Z/2Z such that for each wi ∈ W ,

there exist a unique index j(i) such that wi + xj(i) 6∈ Y ∪ Z and {j(1), j(2), j(3)} =

{1, 2, 3}. Unfortunately, if one finds non-overlapping W, X, Y, Z by applying the reasoning
of Theorem 1 and Corollary 2 (a) to get that b4 = 4 and then augments {W, X, Y, Z}

as in the construction in the second paragraph of (b), one can check that the resulting

set {W, X, Y, Z, N1, N2, N3} does satisfy the above-noted “impediment”. However, a

computer search should easily settle the question of whether b5 ≥ 8 (or b7 ≥ 32 or
b9 ≥ 128 or · · · ). If any such search successfully finds an odd ν ≥ 5 such that bν ≥ 2ν−2,

then Corollary 2 could be strengthened to say that bn ≥ 2n−2 for all n ≥ ν.

(d) Apart from the specific question raised in (c), other related questions remain

open. For instance, one could replace Z/2Z with Z/mZ for any integer m ≥ 2 (or with

any finite abelian group). We encourage the reader to pursue such generalizations and
their possible graph-theoretic applications.
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