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CORRIGENDUM TO /-CONSERVATIVE MATRIX SEQUENCES 

FEYZI BA~AR 

The purpose of this short note is to add the relevant terminology on some 
spaces of double sequences and is therefore to rectify [1] of Ba§ar. 

Quite recently, the class (J\ : ft) has been characterized by Ba§ar in [1], for 
a matrix sequence A = (Ap) by setting A, fl = f or f s; where f and f s denote 
the spaces of almost convergent single sequences and series, respectively. Since 

the A-transform of every x E / or f sis the double sequence Ax= ((Ax)~), we 
require to define the space µ, appea1j1g in each class (). : µ) of [i], such that 
fl C W; where Ml denotes the linear space of all real double sequences. So, we 
shall define the subspaces F and F s of TV, via uniform /-column limits of an 
infinite matrix X = (Xij), (i,j = 0, 1, ... ), as follows: 

q-1 

F ={(Xij) E VV: lim("°' Xi+k i)/q = b unifonnly in i,j for some b} 
q ~ ' 

k=O 
and 

q-1 

F s = { ( Xij E T1V : lim(L Yi+k,j )/ q = u II niformly in i,j for some b }, 
q . 

k=O 

where '!Jij = ~i= 0x kj. Let us also denote the spaces derived in the case b = 0 
forrn the spaces F and Fs, by F'o and Fos respectively. We should remark to 

the reader here that the concept of almost convergence regarded in above spaces 

is more different than the almost convergence of double sequences introduced 

by M6ricz-Rhoa.des in [2]. It is trivial in the case Xij = x1 for all j that the 
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above spaces of double sequences reduce to the corresponding spaces of single. 
sequences. 

At tliis stage, Lemmas B and D of [1] attain the ~allowing statements: 

Len11na B. Given A= (A;). Tlfen AC (J: c) if! AC (c: C), and (2.1) 
holds; where C denotes the linear space of double sequences such that lim1 Xij 
exists uniformly in j. 

Len11na D. Let ( Uij) E HI with Sij = Ei=o Ukj ( equivalently uoj = Soj and 
Uij = Sij - si- l ,j for i 2: 1) for all i, j. · Then the trans/ ormation g : F s -+ F 
defined by g( 1lij) = ( s·ij), is a linear isomorphism,. 

Above lemma. renders that (sij) E F whenever (uij) E Fs, and conversely. 

Finally, we express our tha.nks to the referee for his valuable comments 
which has been useful for us to prepare the present note, at the completion 
to the report on "Certain matrix sequences on c(p) and cs(p )" submitted to 
:tvfa.themati cal J a.ponica. ( 2828 ). 
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Abstract. The main purpose of this paper is to determine the necessary and 
sufficint conditions on the matrix sequence .A = (Ap) in order that .A contained 
in one of the classes (f: !),(!: Js),(fs: !) and (fs: fs), where J and fs 
respectively denote the spares of all almost convergent real sequences and series. 
Our results are more general than those of Duran [3] and Solak (7]. Additionally, 
theorems of Steinhaus type concerning some subclasses of above matrix classes, 
are also given. 

I. Introduction 

In this paper m, c, c0 and bs have their usual meanings. The shift operator S is 
defined on m by (Sx )n = Xn+i. A Banach limit L is defined on m, as a non-negative 
linear functional, such that L(Sx) = L(x) and L(e) = 1, ([l],p.32), where e = (l, 1, ·. ·). 
A sequence x E mis said to be almost convergent to the generalized limit x0 if all Banach 
limits of x is xo [5], and denoted by f-lim x = xo. It is proved by Lorentz [5] that f-lim 
x = xo if and only if limp(xn + ... + Xn+p-i)/p = x0 uniformly in n. It is well-know that 
a convergent sequece is almost convergent such that its limit and its generalized limit 
are equal. Given an infinite series Ean, it is said to be almost convergent if its sequence 
of partial sums is almost convergent. By f and f s, we denote the spaces of all almost 
convergent real sequences and series, respectively. 

Let A = (ank) be an infinite matrix of real numbers ank (n, k = 0, l, · · ·) and >., /t 
two non-empty subsets of the space s of all real sequences. We say that the matrix A 
defines a transformation from>. into µ, if for every sequence x = (xk) E .\ the sequence 
Ax= ((Ax)n) exists and is inµ, where (Ax)n = Lk ankXk. For simplicity in notation, 
here and after we write Lk instead of L~o- By (>. : µ), we denote the class of all such 
matrices. If there is some notion of limit or sum in >. and 11, then we write (>. : µ; P) to 
denote the subclass of(>. : µ) which preserve the limit or sum. We say that A E (>i : µ) is 
/-multiplicative r if f-lim Ax= r(f-lim x) for all x E >.,where>.,µ= f. In conformance 
with the nature of the space fs and the class(>.:µ), it will be, of course, convenient to 
:restate this definition in the cases of >.,11(>. or 11) = fs. We also denote the class of all 
such matrices by ( >. : µ )r. It is evident in the case r = 1 that the class ( >. : µ )r coincides 
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with the class (A : µ; P) and hence the set inclusions (..\ : µ; P) C (..\ : µ)r C (..\ : µ) are 
immediate. 

Let A denote the sequence of real matrices AP = (ank(p)). We write for a sequence 
x = (xk), (Ax)~ = Lk ank(p)xk if it exists for each n,p and Ax = ((Ax)f.)~p=O· A 
sequence x is said to be A-summable to x0 if liIDn(Ax)~ = x0 uniformly in p. To 
denote the matrix sequence A contained in the class (..\ : µ), we write A C (..\ : JJ.). 
If ank(P) = ank for all p, then A is reduced to the usual summability method A and 
ank(P) = l (n = k) for all p, = 0 (n f k) for all p, then A corresponds to the identity 
matrix I which is equivalent to the ordinary convergence. Similarly, the method / which 
is equivalent to the almost convergence introduced by Lorentz [5], the almost sumabiiity 
method introduced by King (4), etc,. can be defined by this new method A. So, the 
method A is more general and more comprehensive than the usual summability method 
A. 

By the /-conservativity of any summability method, we mean the method belonging 
to one of the classes (I:/),(/: fs),(fs: /) or (ts: /s). The object of this study is to 
characerize the matrix sequences contained in the /-conservative matrix classes and in 
this way to fill up some gaps in the existing literature. 

II. Matrix sequences from f into / and / s 

In this section, we give necessary and sufficient conditions on the matrix sequence 
A= (Ap) in order that AC (I:/),(/:/ s). 

We start with following two lemmas which require in the proof of Theorem 2.1. The 
first one is due to Stieglitz [8], and the other one is obtained from Folgerung 8 of Stieglitz 
[8] with A = (A;) .. 

Lemma A. Given B = (Bp). Then the following three statements are equivalent: 
( a) Bx exists for all x E m, 
(b) Bx exists for a.II x E c0, 
(c) Lk lbnk(P)I < oo, (n,p). 

Lemma Il. Given A= (A;). Then AC(!: c), and only if AC (c: c), and 

(2.1) 

uniformly in n,p; where ak = limq a;k(P) uniformly in n,p for each k and 6[a;k(P) - 
ak] = a;k(P) - ak - [a;,k+i(P) - ak+d· 

Theorem 2.1. A C (! : f) if and only if, all limits being uniform in p, 

SUPn,p L I ank(P) I < 00, 
k 

f - lim ank(P) = a.k for each k, 

(2.2) 

(2.3) 
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f - lim L ank(P) = a, 
k 

q 

lim L ~ I L .6.[an+i,k(P) - ak] I = 0 uniformly in n. 
q k q + i:O 

(2.4) 

(2.5) 

Proof. Necessity. Let AC (I:/) and x E /. Since/ C rn, the necessity of (2.2) 
is immediate by Lemma A. The necessities of (2.3) and (2.4) are obvious, since ek, e E f, 
where ek is the sequence whose only non-zero term is 1 in the kth place. 

To prove the necessity of (2.5), we define the double sequence B = (B;) of infinite 
matrices such that 

(2.6) 

Let Sn = -1
- t Si, where Si denotes the composition of the shift operator with itself 

n + 1 i=O 

i times. Then limq(Bx)~q exists uniformly in n,p for all x E /, since (Bx)fiq = Sq(Ax)~. 
Hence, BC (/: c) and thus we get by (2.1) that 

lim L I .6.[b;k (p) - h] I = 0 uniformly in n, p 
q k 

which is equivalent to (2.5). 

Sufficiency. Suppose the conditions (2.2)-(2.5) hold and x E /. Then, one can 
easily observe that B; = (b;k(p)) in (2.6), satisfies the conditions of Lemma Band thus 
we have B C (I : c). This implies the existence of l imq Sq (Ax)~ uniformly in n, p which 
completes the proof. 

As an immediate consequence of Theorem 2.1, we have 

Corollary 2.2 (a) AC(! : /)r if and only if (2.2) holds, (2.3) and (2.5) hold with 
ak = 0 for each k and (2.4) also holds with a = r. 

(b) A C (/ : /o) if and only if (2.2) holds, (2.3) and (2.5) hold with ak = 0 for each 
k and (2.4) also holds with a = 0, where Jo denotes the space of all sequences which are 
almost convergent to zero. 

Now, we can give a theorem of Steinhaus type. For this, we need the following 
lemma due to Baqar-Solak [2]: 

Lemma C. AC (m: /) if and only if (2.2), (2.3) hold, and 

q 

lim L ~ I Lan+i,k(P) - ak I= 0 uniformly in n,p. 
q k q + i=O 

(2.7) 

Theorem 2.3. The classes ( m : /) and (! : /)r are disjoint. 
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Proof. Suppose that the converse of this is true and AC (m: /) n (!: /)r. Then, 
by combining (2.7) and (2.3) of Corollary 2.2(a), we have 

q 

lim I:-1
- IL an+i,k(P) I = 0 uniformly in n,p 

q k q + l i=O 

which contradicts (2.4) of Corollary 2.2(a). 
In the special case A= A, Theorem 2.1 is reduced to Theorem 2 of Duran [3]. We 

now state without proof the following easy lemma. 

Lemma D. Given an infinite series Eun with Sk = L:=o Ui (or u
0 
= so and u~ = 

Sk - Sk-1 for k ~ l). Then the transformation g : fs -+ f, defined by g(u) = s: is a 
linear isomorphism. 

A hove lemma renders that s E / whenever u E / s, and conversely. This terminology 
is used throughout. 

Theorem 2.4. A C (! : / s) if and only if, all limits being uniform in p, 

n 

SUPn,p LIL aik(P) I < oo, 
k i=O 

(2.8) 

n 

/ - lim L aik(P) = ak for each k, 
i=O 

(2.9) 

n 

f - Iim LL aik(P) 
k i=O 

a, (2.10) 

l q n+i 
lim I::--1 ILL 6[ajk(P) - ak] I= 0 uniformly inn. 
q k q + i=O j=O 

(2.11) 

Proof. Let AC (J: fs) and x E J. NOw, consider the following equality obtained 
from then, mth partial sums of (Ax)f: 

n m m n 

LLaik(p)xk = LLaik(p)xk; n,m,p = 0, 1, ... 
i=O k=O k=Oi=O 

which yields by letting m -+ oo that 

n n 

LLaik(p)xk = LLaik(p)xk; n,p=O,l,···. 
i=O k k i=O 

Then Bx E f and hence B C (! : /), since g(Ax) = Bx, where Bp = (bnk(P)) with 
bnk(P) = L~o aik(P) for all n, k and p. Thus, we obtain the proof by the equivalence 

• of the methods A and B. 
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By Theorem 2.4, we have 

Corollary 2.5 (a) AC (f : fs)r if and only if (2.8) holds, (2.9) and (2.11) hold 
with ak == 0 for each k and (2.10) also holds with a= r. 

(b) A C (f : fos) if and only if (2.8) holds, (2.9) and (2.11) hold with ak = 0 for 
each k and (2.10) also holds with a = 0, where fos denotes the space of all series which 
are almost convergent to zero. 

We now give the following lemma due to Ba~ar-Solak [2], and nextly give a theorem 
of Steinhaus type whose proof is similar to that of Theorem 2.3. 

Le1nma E. AC (m: / s) if and only if (2.8), (2.9) hold, and 

l · q n+i 
lim I:-- I LLaik(P) - ak I= 0 uniformly in n,p. 
q k q + l i=O j=O 

(2.12) 

Theorem 2.6. The classes ( m : f s) and (f : j s )r arc disjoint. 
In the special case A= A, Theorem 2.4 is reduced to Theorem 2.4 of Solak [7]. 

III. Matrix Sequences from f s into f and f s 

In this section, we establish necessary and sufficient conditions on the matrix se 
quence A= (Ap) in order that AC (Is:/), (Is: J s). 

Theorem 3.1. A C (f s : J) if and only if 

sup L I 6-ank(P) I < oo, 
n,p k 

(3.1) 

lim llnk(P) = 0 for each n, p, 
k 

J - lim ank(P) = ak uniformly in p for each k, 

(3.2) 

(3.3) 
q 

lim I:-1- I L62[an+i,k(P)- ak] I= 0 uniformly in n,p; (3.4) 
q k q + l i=O 

where 62[an+i,k(P) - ak] = 6{6[ari+i,k(P) - ak]}. 

Proof. Necessity. Let AC (ls:!) and u E fs. Now, to show the necessity of 
(3.2), we assume that (3.2) is not satisfied for some n, p and obtain a contradiction as 
in Theorem 2.1 of Oztiirk [6]. Indeed, under this assumption we can find some u E f s 
such that Au does not belong to/. For example, if we choose u = ((-It) E / s then 
(Au)~= Lkank(P)(-l)k which does not coverge for each n,p. That is to say that 
A-transform of the series ~(-It, which belongs to f s, does not even exist.. But this 
contradicts the fact that A is !-conservative. Hence, (3.2) is necessary. The proof of the 
necessity of (3.3) also follows as in (2.3). 
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Let us consider the equality 
m m-1 

L ank(p)uk = L 6ank(p)sk + anm(p)sm; m, n, p = 0, 1, · · · (3.5) 
k=O k:O 

obtained by applying the Abel's partial summation to the mth partial sums of Au. By 
(3.2), it is obtained on taking the limit as m -+ oo in (3.5) that 

L ank(p)uk = L 6ank(p)sk; n,p = 0, 1, · · ·. (3.6) 
k k 

It follows by passing to /-limit in (3.6) that B = (Bp) C (! : I), where Bp = (bnk(P)) 
with bnk(P) = 6ank(P) for all n, k and p. Therefore B = (Bp) satisfies (2.2),(2.5) and 
these are equivalent to (3.1),(3.4), respectively. 

Sufficiency. Suppose the conditions (3.1)-(3.4) hold and u E / s. Again consider 
B = (bnk(P)) in (3.6). Therefore, it is immediate that "B = (bnk(P)) satisfies (2.2),(2.3) 
and (2.5) if and only if A= (ank(P)) satisfies (3.1),(3.3) and (3.4), respectively." Addi 
tionally, we have by (3.2) and (3.3) that 

f - Jim L bnk(P) = f - liman,o(P) = ao uniformly in p. 
k 

Hence, B C (! : f) and this yields by passing to /-limit in (3.6) that Au E f. This 
means that every element offs is almost A-summable and thus the proof is completed. 

By Theorem 3.1, we have 

Coroliary 3.2 (a) A C (/ s : f)r if and only if (3.1), (3.2) hold, and (3.3), (3.4) also 
respectively hold with ak = r,62ak = 0 for each k. 

(b) A C (! s : fo) if and only if (3.I), (3.2) hold, and (3.3), (3.4) also hold with 
ak = 0 for each k. 

We now give the following lemma due to B~ar-Solak [2] and later give a theorem 
of Steinhaus type. 

Lemma F. A C (bs : !) if and only if (3.l), (3.2), (3.3) hold, and ~ 
q 

Jim I:;~/ :[;c.[an+;,;(p) - a;]/= 0 uniformly in n,p. (3.7) 
q k q + i=O . 

Theorem 3.3 The classes (bs : I) and (! s : /)r are disjoint. 

Proof. Suppose that the converse of this is true and let A C (bs : I) n (/ s : J)r. 
l q 

Then, the both series Lk 6ank(P) and Lk q + l ~ 6an+i,k(P) are uniformly convergent 
•=0 in n, p. Therefore, we have by (3.3) of CorolJary 3.2 (a) that 

q ' 

lim I:;_!_ I:; C.an+;,,(p) = J - lim an,o(p) = r uniformly in p. (3.8) 
q k q + l i=O 
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On the other hand it follows by combining (3.3) of Corollary 3.2 (a) and (3.7) that 
l q 

lim I:-- IL .6.an+i,k(P) I = 0 uniformly in n, p. (3.9) 
q k q + l i:O 

q 

Then, (3.9) trivially implies that limq I Lk -
1
-Z:.6.an+i,k(P) I= 0 uniformly in n,p, 

q + l i=O 

which contradicts (3.8) and this completes the proof. 
In the special case A= A, Theorem 3.1 is reduced to Theorem 2.2 of Solak [7]. 
Now, we can give 

Theorem 3.4. A C (! s : / s) if and only if 
n 

sup~ I L .6.aik(P) I < oo, 
n,p k i:0 

limank(P) = 0 for each n,p, 
k 

n 
/ - lim I:aik(P) = ak uniformly in p for each k, 

i:O 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Proof. This is easily obtained by the similar kind of argument that of Theorem 2.4. 
We are now ready to give the following corollary: 

Corollary 3.5 (a) AC (Is:/ s),. if and only if(3.l0), (3.11) hold, and (3.12), (3.13) 
also hold with a,. = r, 6.2ak == 0 for each k, respectively. 

(b) AC (Is: /os) if and only if(3.10),(3.ll) hold, and (3.12),(3.13) also hold with 
ak = 0 for each k. 

We shall give a lemma due to Ba~ar-Solak [2] and later state a theorem of Steinhaus 
type whose proof is similar to that of Theorem 3.3. 

Lemma G. AC (bs: Js) if and only if(3.10),(3.11),(3.12) hold, and 
l q n+i 

lim I:--
1 
ILL .6.[ajk (p) - ak] I = 0 uniformly in n, p. 

q k q + i=O j:O 

(3.14) 

Theorem 3.6. The classes ( bs : f s) and (f s : / s )r are disjoint. 
Finally, we should state in the case A = A that Theorem 3.4 is reduced to Theorem 

2.3 of Solak [7]. 
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