
TAMKANG JOURNAL OF MATHEMATICS 
Volume 22, Number 3, Autumn 1991 

A (NEW) MEASURE OF FUZZY UNCERTAINTY 
VIA INTERVAL ANALYSIS, WHICH IS FULLY CONSISTENT 

WITH SHANNON THEORY 

GUY JUMARIE 

Abstract. Many authors have suggested different measures of the amount of un­ 
certainty involved in fuzzy sets, but most of these concepts suffer from drawbacks: 
mainly, they are indexes of fuzziness rather than measures of uncertainty, and 
they are not fully consistent with Shannon theory. The question is herein once 
more considered by combining the information theory of deterministic functions, 
recently initiated by the author, with the viewpoint of interval analysis; and one so 
de1·ive the new concept of "uncertainty of order c of fuzzy sets". It is shown that 
it satisfies the main prope1·ties which are desirable fo1· a measure of uncertainty. 

Some topics are outlined, such as informational distance between fuzzy sets, 
and mutual infonnation between fuzzy sets for instance. One so has at hand a 
.unified approach to Shannon information expressed in terms of probability, and 
to fuzzy information described by weighting coefficients commonly referred to as 

possibility disti-ibut.ion. 

1. Introduction 

The last few years have witnessed a number of critical papers on the goals, the 
foundations and the present. development of the so-called fuzzy set theory [2], [7], [11], 
[12], [16], [21], [22], [24], [25], [26], [29], [33] which seem to indicate that the latter has 
not yet achieve its final form and is still looking for improvement in its interpretations 
and applications. 

This theory is st.ill suffering from a rather careless mixture of concepts and methods 
(subjective probability, objective probability, possibility, min-max operator, ... ) and this 
feature is mainly transparent in the various models of entropy which have been proposed 
in order to measure the amount of uncertainty involved in fuzzy sets. Clearly, there is 
an obvious confusing between the uncertainty which is caused by randomness (if there 
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is any) on the one hand, and by fuzziness, that is to say vagueness of definition, on the 
other hand. Nevertheless, a careful derivation of a good measure of fuzzy set uncertainty 
is of interest because (i) it would enlarge the area of applications of the maximum entropy 
principle (13],(14]; (ii) it would provide new ways to meaningfully address identification 
problems; (iii) and more generally it would allow us to extend Shannon information 
theory to the fuzzy set framework in quite a consistent manner. 

As it has been pointed out by several authors, the main source of the difficulties 
above mentionned is that the very nature of the so-called membership function of a. 
fuzzy set is not yet quite clarified in the literature. Fuzziness appears only in linguistics 
in the broad sense of this term, and we have suggested [19] a modelling via coupling effects 
between syntax and semantics in the framework of a relative information theory. In this 
approach, a membership function cannot be identified with a probability distribution, or 
with subjective probability, and in this way we fully agree with fuzzy scientists. 

As a matter of fact, it appears that some of the theoretical difficulties so encountered 
can be circumvented if we merely utilize interval analysis [23] and it is exactly the purpose 
of the following, to expand this idea. 

The paper is organized as follows. After a critical review of some entropic concepts 
which have been proposed to deal with fuzzy sets, we shall give a few background on our 
recent information theory of deterministic functions. Then we shall apply it to fuzzy sets 
and we shall so obtain the concept of U-uncertainty of order c, and later we shall outline 
some consequences and applications. 

2. A Critical Review of Fuzzy Entropic concepts 

2.1 Preliminary Background 
For a discrete random variable X E R which takes on the values (x1, x2, ... , Xn) 

with the probabilities (p1, p2, ... , p11), the Shannon entropy or Sentropy H(X) is defined 
as 

n 

I/(X) := - LPiln JJi 
i=l 

(2.1) 

and measures the amount of uncertainty (and incidentally of information, but incidentally 
only) involved in the probability distribution {p;} or equivalently in X. 

The amount of uncertainty involved in an incomplete probabilit.y distribution, name­ 
ly in (Pi,Pi+l, ... ,Pi+k) is 

H(X;i.i+k) 
k k 

-(L Pi+jlll Pi+i/ LPi+j) 
j=O i=O 

(2.2) 

and this expression is consistent with the fact that the uncertainty involved in the event 
X = Xi is -lnpi (instead of -pilnpi). For further details, see for instance the Ref. [l]. 
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For a continuous random variable XE R with the probability density p(x), one bas 

and 

JJ(X) := - L p(x)ln p(x) dx 
H(X;Q) := - [Lp(x)ln p(x)dx / L p(x)dx} 

(2.3) 

(2.4) 

Prerequisites for any generalization of Shannon's measure of uncertainty. Our claim 
is that, any extension of the Shannon entropy which aims to involve some external 
parameters which characterize uncertainty different from randomness, should comply 
with two requirements . 

. (i) First, of course, it must yield (2.1) and (2.3) as special cases, when the parameters 
are given some special actual physical values; 

(ii) and second, it must be consistent with the fact that the uncertainty involved in 
one event only, say X = x, is -In J)(x). 
2.2 From Fuzzy-Set Entropy to Fuzzy Set-Entropy 

(i) The first formal extension of entropy has been proposed by Belis and Guiasu [3] 
in the form of the so-called useful entropy 

n 

H(X, V) := - L ViPiln Pi 
i=l 

(2.5) 

where V := ( v1, v2, ... , v11), Vi 2: 0, is refencd to as a utility distribution. 
The trouble is that H(X, V) so defined does not satisfy the requirement (ii) above. 

Indeed, if we make vk = 1 and Vi = 0, i =/:- k, into (2.5) we find that the uncertainty 
involved in the event X = xi.: is -pkln Pk instead of -ln Pk as it should be. As a matter 
of fact, the Shannon entropy is a weighted mean value of local event uncertainties, and 
with this feature in mind, it would be more convenient to take the alternative definition 

n n 

H(X, \I) := - L ViPiln Pi / LPiVi (2.6) 
i=l i=l 

(ii) Xadeh [32} introduced a concept of "entropy of fuzzy event" as follows. Let be 
given the fuzzy set defined by the membership function /(xi), Xi€{ xi}, i = 1, 2, · · ·, n, 0 ::S 
f(xi) ::S 1, on the one hand, and the probability distribution p(xi) on the other hand; 
then this entropy is defined by the expression 

n 
H(f,p) := L f(xi)p(x;)ln p(xi) 

i:l 

(2.7) 

The surprizing-looking consequence of this definition is that the uncertainty involved 
in a fuzzy set is lower than that of the corresponding crisp set! In other words, fuzzyfying 
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a crisp set diminishes the amount of uncertainty we may have about it! It is clear that 
this drawback would be less transparent if instead we had (for instance) the definition 

n n 

JI(!, p) := - L f(xi)p(x;)ln p(x;) / E J(x;)p(xi) (2.8) 
i=l i=l 

(iii) De Luca and Termini [5] in troduced a quantity ll(f) referred to as entropy of 
fuzzy sets, which is defined by the expression 

n 

H(f) :== L h(f(x;)) 
i=l 

(2.9) 

where h(J) denotes the entropy (first utilized by Fermi) 

h(f) := -/ ln / - (1- /)ln(l -/) (2.10) 

This definition gives rise to two disturbing questions. First, in view of (2.10), the 
pair (/, 1 - f) is merely considered as a probability distribution, which contradicts the 
well known claim of fuzzy scientists themselves. More important is the following s~cond 
point. Assume that we refine the definition of the fuzzy set by measuring the value 
of /(() at a new point (, Xi < ( < Xi+l, in such a manner that the set has the new 
membership function f := {/(xi), ... , /(x;), /((), /(x;+1), ... , /(.xn)}. We would then 
have H(F) > H(f). In other words, we increase the amount of uncertainty we have 
about the fuzzy set just becase we are refining its definition! It is clear that we would 
not have this trouble if If(/) were an average of uncertainty. For instance, it would 
already be better to take 

1 n 
HU> := ; I: h(f(:i:in 

i=l 

(2.11) 

In fact, strictly speaking, H(f) is not an 'informational entropy in Shannon sense, 
that is to say a measure of uncertainty, but rat.her an index of fuzziness which measures 
the discrepancy of the fuzzy set with respect to a crisp set. 

(iv) Later, again De Luca and Termini [6] introduced the entropy 

n 

Hr(/,p) := H(f) - LP;ln Pi 
i=l 

(2.12) 

which is an obvious adaptation of the well known information theoretic law in accordance 
of which one has JI(X, Y) = H(X) + H(Y) provided that X and Y are independent. 
But unfortunately, strictly speaking, this expression is not homogeneous in the physical 
sense of this term. Indeed, at first glance, one has 

HT(/, p) := JJ(t) + H(X), 
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but as we just mentionned it above, H(/) should be considered as a· divergence, m 
Kullback sense, rather than as an entropy. 

(v) Hirota [10] suggested a mixed probabilistic-fuzzy entropy in the form 

n n 

(2.13) 
i=l i=l 

which is an obvious adaptation of the well known infonnation theoretic equation H(X, Y) 
= H(X) + H(Y/X). But unfortunately, Hu(/,p) combines all the flaws above men­ 
tionned. Mainly, the more we refine the definition of the fuzzy set, the more we have 
uncertainty about it! 

(vi) In an attempt to unify the various entropic models which have been proposed 
in the literature, including the above ones, Bouchon [4] considers simultaneously two 
random variables X and Y and their respective probability distributions P and Q. X 
represents the posterior characterization of events, and Y describes a prior one. By using 
a set of given prior axioms which are chosen in an ad hoc manner, she can derive the 
entropies (2.7) and (2.9). But according to our previous remarks, it is clear that these 
axioms are not suitably defined since they lead to consequences which contradict which 
contradict basic results of Shannon theory! 

(vii) Higashi and I<lir [9] introduced an entropic m'odel for fuzzy intervals as follows. 
Let us consider (just to simpliry the writing) a cont.inuous fuzzy set with the membership 
function f(x), 0 :S f(x) :S 1. Let us construct the interval i(z) := {x: f(x) ~ z} where 
z denotes the level of set off, and let L(z) denote its length; then the entropy U0(/) of 
the fuzzy set / is defined by the expression 

Uo(/) 
I fl f Jo ln L(z)dz (2.14) 

with 7 := max/(x), x ER. 
For a discrete fuzzy set, we have the expression 

(2.15) 

which can be re-written in the form 

Uo(!) = - L Zi6ln L(zi) (2.16) 

with 6lnL(zi) := ln L(zi+1)-ln L(z;). 
This quantity is symmetric, expansible, co11tinuous, additive for an operation and 

defined by the minimum or the values or the grades of memberships. Moreover, it is the 
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average value of the Hartley entropies In L( Zi) in such a manner that it does not suffer 
from the drawback involved in the various measures of uncertainty above. 

Dut despite its interesting features, this definition appeals to the following remark. 
In fact, the genuine meaning of U0(J) is that it measures an amount of information (or 
transinformation in Shannon's terminology) instead of an amount of uncertainty. Indeed, 
if we refer to equation (2.16), U0(J) appears to be the average value of differences of un­ 
certainties, clearly 61n L( z ), that is to say the average val uc of measures of information! 
Another way to assess the matter is as follows. Assume that we rewrite U0(f) in the 

form 1 Uo(f) = -= L=iln[L(zi+i/L(zi)] I . I 
(2.17) 

then it looks like a Kullback divergence. 
(vii) Recent.ly Ramer [27} suggested that a more general definition of "information 

function" for fuzzy sets would be in the form 

I(/) := L)T(/;+1) - T(/i)} In Xi+l (2.18) 

where T is a nondecreasing function of [O, 1) ont.o it.self. If one also requires that I(!) 
satisfies som form of a. linear property, like branching condition, one arrives at the par- 
ticularly simple expression 

(2.19) 

(2.20) 

l(J)_ 

,ve shall comment on t.his result as follows. In his derivation, the author considers 
{Ji} as being a so-called possibility dist.ribut.ion, that. is to say such that /i ::S h ~ ... ::S 
fn = 1. But a special case of such possibility distribution is the cumulative distribution 
function n 

fn := LPi 
i=l 

(2.21) 

where {pi} is a probability distribution. If then we subst.itute (2.21) into (2.19), we 
obtain 

= E{ln X}! 

V-lc believe that all these remarks and comments arc a sufficient. motivation to once 
more re-consider the question of how t.o measure t.hc arr1ou11,. of uncertainty involved in a 
fuzzy set., and we herein propose an alternative .ia i11fo1Tiat.io11 of deterministic functions. 
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3.1 Main Definitions and Motivation 

Entropy of mappings. Let / : R11 -. R11
, x -+ f(x) denote a continuously differen­ 

tiable mapping, the Jacobian determinant of which is denoted by f'(x); then a measure 
He(/(.); n) of the amount of uncertainty it involves on the domain n, and which further­ 
more is fully consistent with Shannon entropy of random variables, is the S-entropy (S 
holds for Shannon) of order c E R, defined by the expression 

Hc(/(.);O) := In I f'(x) lc In I f'(x) I dx 
In I f'(x) lc dx 

(3.1) 

Entropy of family of map71ings. Let f : f2 x D -+ R", f2 C R", D C Rm, 
(x, z) -+ f(x, z) denote a function which is continuous with respect to z and contin­ 
uously differentiable w.1·.t. to x, and the Jacobian determinant of which is denoted by 
fx(x, z). Then as a direct consequence of the definition of Shannon entropy of random 
variables, its S-entropy of order (b, c(z)), b ER, c(z) E Ron the domain n x Dis given 
by the expression 

lh,c(z)Uz(.); n X D) 
fv ebllc(•)(/(.,z);n) llc(z)(/(., z); Q)dz 

f D eblfc(;l(J(.,z);n)dz (3.2) 

On the derivation of these definitions. These measures of uncertainty are not "ad 
hoc" definitions made for convenience only, but rather, they are direct consequences 
of the expression of Shannon cntrnpy of random variables, and as such, they are fully 
consistent with Shannon theory. Loosely speaking, the derivation of the first expression 
works as follows. 

(i) For two random variables X and Y one has 

H(X, Y) ~ H(X) + ll(Y) 
where the equality holds when and only when X and Y are independent. \Ve may 
therefore think of ll(Y) as 

H(Y) = max [h(X, Y) - JJ(X)] 
1)(X) 

where p( x) is the probability density of X, subject to the condition 

(3.3) 

JI(.X) = h. 

(ii) Next, assume now that one has Y = f(X), then it is well known that 

ll(Y) = Jl(X) + 1 p(x)ln I J'(x) I dx 
11" 

(3.4) 
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If we think of H(Y) as 
H (Y) 

then, according to (3.3) we shall set 

JI(X, /(.)) (3.5) 

JI(!(.)) max[H(Y) - JI(X)] 
p(x) 

maxj p(x)lnl/'(x)ldx (3.6) 
p(x) Jln 

therefore the expression (3.1). 
The derivation of (3.2) is based on a randomization of the parameter z. For more 

details, see the Ref. [18]. 

3.2 Some Useful Remarks 
(i) The constant c in (3.1) and the pair (b, c(z)) in (3.2) are related to the Lagrange 

parameters involved in the maximization expressed by (3.6). 
(ii) Assume that X ER, and that f(x) is the cumulative distribution function F(x) 

of X; i.e. F'(x) = p(x), then one has 

1 l+L H0(F(.);-L, +L) = 
2
£ ln p(x)dx 

-L 
(3.7) 

and 
H1(F(.);R) = - H(X) (3.8) 

This remark underlines two points of importance. First, the most natural value, 
which is consistent with Shannon theory, for c in (3.1) and (b,c(z)) in (3.2) is 

b = C = 1, c(z) = 1; 

and second, the corresponding entropies (3.1) and (3.2) then clearly exhibit the defintion 
of the weighting function involved in the averaging of the entropic density lnl/'(x)I. 

(iii) The meaning of (3.1) should be understood as follows. If the basic object we are 
observing is the whole pattern {f(x); x E i1}, then its mean uncertainty is Hc(/(.);i1). 
But if we assume that the basic object of the obse.rvat.ion process is the point (x, J(x)), 
then the total amount of uncertainty involved in the set {/(x); x E !1} is In 1/'llnl/'ldx! 
For a random variable, these two measures of uncertainty are equal since then one has 
In p(x)dx = 1. 
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4.1 Preliminary Definit_ions and Notations 
In R, we consider a fuzzy interval defined by the membership function f(x), 0 ::S 

f(x) ::S 1, x E R. \\Te shall assume that the fuzzy set is bounded (or finite), and that it 
is convex, that is to say f(x) is convex. 

For any level of set z, 0 ::S z $ 1, the equation z = f(x) has two solutions xm(z) and 
XM(z), z = J(xm) = J(xM ), such that Xm $ XM. We define the interval length 

L(z) := XM(z) - Xm(z). 

1 

~(z) X 0 

Fig 1. Fuzzy set and membership function 

The significance of f ( x) in practical problems is not yet quite clear, fuzzy scientists 
refer to so-called possibility distributions, and we shall herein merely consider the fuzzy 
set f(x) as a family of intervals [x111( z), XAf(z)] indexed by the parameter z. f(z) is then 
simply a weighting coefficient which is ascribed to L(z). 

4.2 Uc-Uncertainty of Continuous Fuzzy Sct.s 

Main Definition. Let f(x) denote a convex finite fuzzy interval with max f(x) = 1, 
x E R. Then as a direct consequence of the definition of Shannon entropy of random 
variables, a measure of the amount of uncert.ainty it involves is the S-uncertainty of order 
c, E R defined by the expression 

·- 1; £C(z)ln L(z)dz 
1; U(z)dz 

( 4.1) 

Derivation of this definition. (i) \Ve are dealing wit.h a family of crisp sets indexed 
by z, and we thus refer to the equation (3.2). 

(ii) \Ve identify the uncertainty involved in a bounded crisp set [a, bJ with the un­ 
certainty of the uniform probability density 1/(b - a) to obtain ln(b - a). 

(iii) \Ve can now apply equation (3.2) in which we set He(/(., z); n) = In L(z). 
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4.3 Uc-Uncertainty of Discrete Fuzzy Sets 

Assume that we are now dealing with a discrete convex fuzzy set {/(xi), f(x2), ... , 
f(xn)}, and let {z1 = O,z2, ... ,Zn = 1} denote the levels of set off. Then as a conse­ 
quence of the information theory of deterministic functions, the discrete counterpart of 
the distributed ent!"opy (3.2) directly yields the S-uncertainty of {/(xi)} in the form 

n L Lc(zi)ln L(zi) 
i=l 

n 
I,: U(zi) 
i=l 

(4.2) 

Remark that there is a complete consistency between (4.1) and (4.2). Indeed, if we 
assume that Zi - Zi-1 = constant, then on multiplying (4.2) by the term (zi - Zi-1)/(zi - 
Zi-d we then have 

lim Uc(/(.))(4.2) = Uc(/(.))(4.1) as Zi - Zi-1 ! 0. 

Comments. Assume that c = 0 in equation (4.1), then we obtain a meassure of 
uncertainty which is equivalent to the uncertainty U0(f) expressed by (2.14). If we make 
c = 0 in (4.2), we get 

1 n 

Uo(f) = - L In L(zi) n. 
1=1 

(4.3) 

and this expression is equal to (2.15) in the special case when zi+l - Zi is constant. 

5. Some Properties of Uc-Uncertainty 

5.1 Preliminary Remrks 

Although our derivation of Uc-uncertainty of fuzzy intervals is rigorously supported 
by Shannon information theoretic framework via entropy of deterministic functions, we 
still need to verify that is satisfies suitable likely properties for a satisfactory measure 
of uncertainty. But on doing so, care must be exercised, and we should have in mind 
that Uc(/) so defined is the uncertaint.y involved in the basic object we are dealing with 
(indeed the fuzzy set is herein considered as the first element of the theory) and should 
not be thought of as the result of any composition law describing how local uncertainties 
are aggregated. 

In this way of thought, we should rat.her refer to the basic suitable properties th.at 
Shannon himself suggested for the entropy of random variables, and which we herein 
bear in mind for convenience. 

Consider a discrete random variable X with t.he probability distribution (p1 ,p2, ... , 
Pn), and let '1>(p1 ,P2, ... , Pn) denote a measure of the amount of uncertainty it involves. 
Then '1>(.) should satisfy the following properties. 
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(Al): <I>(.) should be a cont.inuouf? function of its arguments. 
(A2): v\'hen all the probabilities are equal, p1 = p2 = ... == Pn =. 1/n, then ~(.) 

should be an increasing function of n. 
(A3): Assume that a given outcome can be considered as a sequence of two events; 

then the whole uncertainty <I>(.) should be the weighted combination of the partial un­ 
certainties involved in (P1,P2, ... ,Pn-1 + ]Jn) and l/}n_if(IJn-1 + ]}n),Pn/(Pn-1 + Pn)] 
respectively. 

For instance, for t.hree events, one should have the relation 

In the sequel, when we shall enumerate the properties of Uc(/), we should have in 
mind to compare some of them with (Al)-(A:q. 

5.2 Some Properties of UcU) 
(Pl) Uc(!) is a continuous function of Li := L(zi) for every i. (This property 

c01T1pares with (Al)). 
(P2) Assume that L( z) == L is constant, in other ·words that we are dealing with a 

crisp set; then one has 
Uc(!) = ln /., 

and Uc(!) is an increasing function of L. (This property compares with (A2)). 
(P3) For a discrete fuzzy set, let us define (see equation (4.2)) 

U1(f) ==: Us(!), S holds for Shannon 
==: \Jl(L1,L2, ... ,L,.) 

and n 

L := LLi 
i=l 

(5.3) 

then the following relation holds, 

This property cornparcs witl1 (A:q above, and it.s 11wa11ing can be exhibited as fol­ 
lows. Assume that. we ra11do111izc the set of the H intervals in (4.2) by using the probabil­ 
ity clistribut.io11 (l,1/ /,, [,'2/ L, ... , L,j q, tlwn t.hc corrcsponJing Shannon entropy <P(.) 
is such that 

<I>(L1/ L, f,'2/ !,, ... , !,,,//,) + '11(!,1, L1, ... , Ln) = In L (5.5) 

and as a result., cq11at.ion (5.1) direct yields (5.11 ). 
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Assume that L is constant; then cf> is maximum when £1 = £2 = ... = Ln = L/n 
to yield 

cf>(L/n, L/n, ... , L/n) = ln n (5.6) 
and corresp0ndingly 

'1!(L/n, L/n, ... , L/n) = ln(L/n) (5.7) 

These relations illustrate the relative significance of the Uc-uncertainty with respect 
to the usually H entropy. 

(P4) Let /(x) and g(x) denote two fuzzy sets such that 

(5.8) 

where k denotes a constant, then one has 

Uc(g) (5.9) 

(P5) Let L and .L. be defined as 

L := max L(z), z E [O, 1] 
L := min L(z), z E [O, I] 

then Uc(/) is an increasing function of c and one has 

Jim Uc(/) = In L 
= ln L 

as 

as 
c T +oo 
C ! -00 

(5.10) 
(5.11) 

The proof of this result is based on the following remark. Consider the integral 

Q' > 0 

then when c increases, the main contribution to the value of J is provided by a(x) where 

a-(x) := max a·(x), x E [a, b] 

in such a manner that, loosely speaking, for large values of c, one has 

where € denotes a small positive constant. 
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6.1 On the Min-Max Operator 

Let A and B denote two fuzzy sets defined by theil' 1·espective membership functions 
a(x) and b(x), x· ER. It is by-now classical in fuzzy set theory to take the definition 

AUB := max{(a(x),b(x)),xER} (6.1) 

and 
An B := min{(a(x),b(x)), x ER} (6.2) 

and most authors who dealt with fuzzy uncertainty, claimed that a good measure of 
such uncertainty should be consistent with these min-max operators, and as a result, 
they selected prior axioms in this way. For instance,they a'5ked for additivity and sub­ 
additivity as defined below. 

Additivity. Given two domains X and Y, and two independent membership functions 
f : X - [O, 1], g : Y - [O, 1], define the joint membel'ship function / © g : (x, y) - 
min(/(x),g(x)), then one should have 

U(f © g) = U(f) + U(g) (6.3) 

Snb-additivity. Given two domains X and Y and a membership function f : Xx Y - 
[O, 1] on the product space, define the mal'ginal membe1·ship functions fy on X and /x 
on Y as 

Ji,(x) 
fx(Y) 

max J(x,y), y E Y 
max /(x, y), x EX 

(6.4) 
(6.5) 

thf:n one should have 
U(f) :S U(/x)+U(Ji,) (6.6) 

The trouble is that the min-max operators (6.1) and (6.2) also have been and still 
arc objects of content.ion [30]. In some special frame,vorks, it has been shown that these 
definitions of fuzzy union and fuzzy intersection are the only natural and reasonable 
definitions extending the standard set. theory notion of union and intersection [31], but 
unfortunately, the same type of proof that demonstrates this property, has failed to 
demonstrate the corresponding result for the extension of complement as defined by 
fuzzy scientists, clearly 

A := {(1 - a(x)), x ER} (6.7) 

For further details on this controversial issue, see for instance Refs [21], [28]. 
So we believe that this remark entitles us to re-consider the question of additivity 

of fuzzy uncertainty, and to this end, we shall use the framework of interval analysis. 
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6.2 Additivity of Uc-Uncertainty 
(i) Consider two fuzzy intervals f X - [O, 1], z -+ L(z) and g : Y -+, [O, 1], 

z' - L'(z'). We define the pair (!, g) as 

(f,g) : Xx Y-+ [O, 1] x [O, 1], (z,z'}-+ (L(z),L'(z')) (6.8) 

then the following relation holds 

(P6) Uc((f,g)) (6.9) 

Indeed, one then has 

f; f; Lc(z)[L'(z')]cln L(z)L'(z')dzdz' 
f
0
1 f01 U(z)[L'(z')]cdzdz' 

(6.10) 

therefore the result. The same rationle applies to discrete fuzzy sets. 
As we mentionned it in subsection 5.2, everything looks like as if we randomized the 

discrete set (z1, z2, ... , Zn) wit.h the pwbabilit.y dist.ribution (Li/ L, L2/ L, ... , Ln/ L ), and 
the definition (6.8) is quite consistent with t.his point. of view. 

(ii) The following relation holds 

(P7) Uo(f © g) = Uo(f) + Uo(g) (6.11) 

but despite this feature, we shall advocate for U1 (/) rather than Uo(/), as we have 
already pointed out, mainly for the sake of consist.ency with the concept of entropy as it 
has been derived by Shannon. 

(iii) \Ve then have the relation 

(PS) 
f; L'(z)L(::)ln L(::)dz Jd L'(::)L(::)ln L'(z)dz 

= 1 + 1 (6.12) 
fo L'(z)L(::)d:: f0 L'(z)L(z)dz 

= n{/,g)U1(/) + /3(!,g)U1(g) (6.13) 

where a·(f, g) and /3(/, g) are two positive coefficients which depend upon f and g. 

6.3 On the Sub-Addit.ivit.y of Uc-Uncertainty 

Let J(x,y), fy(x) and fx(Y) be defined as in equations (G.1) and (6.5); then one 
may have U1(/) :S U1(f x 0/l') or on the contrary U1(f) 2: U1(/x ©h- ). This surprizing 
looking result is quite acceptable as far as we arc dealing wit.h subjectivity. Indeed, 
possibility is not.hing but an approach to introducing subjectivity in probability, and it 
is well known t.hat subjectivity can destroy or on the contrary create information [l 9]. 
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7. Further Measures of Fuzzy Uncertainty 

7.1 Renyi Uncertainty of Orders of Fuzzy Sets 

(i) \Ve first bear in mind that the Renyi entropy of order s of a continuous function 
f : R -+ R, x -+ f(x) on the domain n is defined by the expression (the subscript R 
holds for Renyi) 

HR,sU(.); n) 
1 fn I f'(x) 1

3 dx --ln.;;...:.:_--- 
1 - s fn I f'(x) I dx ' s > 1 (7.1) 

and one has 
limHnAf(.);Q) = H1(/(.);Q) ass! 1 

where H1(/(.); !l) is expressed by (3.1). For further details see the Ref. [18]. 
(ii) Renyi entropy of fuzzy sets. Dy applying the rationale of section 4 to the equation 

(5.13), one obtains the Renyi entropy of orders oft.he fuzzy interval f(x) in the form 

Un,sU) 
1 J; U(z)dz ---ln.::..::..__-- 

1 - s J; L( z )dz ' 
s > 1 (7.2) 

and one can show easily that 

lim Un,s(/) = Us(!) as s ! 1 (7.3) 

For a discrete fuzzy set, we shall derive the corresponding Renyi uncertainty in the 
form l n n 

Un,s(/) := -
1 
_ 

8 
ln[L L"'(z)/ L L(z)] 

i=l i=l 

(7.4) 

7 .2 Structural Entropy of Order s of Fuzzy Sets 

llavrda and Charvat [8] introduced the so-called structural entropy of order s of a 
discrete random variable X defined by the probabilit.y distribution (p1,P2,P3, ... ,Pn) in 
the form n 

J/3(X) := (LPf - 1)/(e1-s -1), 
i=l 

s > 1 (7.5) 

where e here is associated with the natural logarithm (one could select 21-s as well). 
\Vhen X E Rn is continuous with the probability density p(x ), one has 

fr(X) := (j 1/(x)dx - l)/(e1-s - 1) 
R" 

(7.6) 
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Later [20] we derived the corresponding structural entropy of order s of a deterministic 
mapping/: Rn -t Rn, x - f(x), on the domain 0, in the form 

(7.7) 

where f'(x) denotes the Jacobian determinant of f(x). 
This can be extended to fuzzy intervals as follows. 
Structural uncertainty of order s of fuzzy sets. Let f(x), X -t [O, 1] denote the 

membership function of a fuzzy set; then the substitution I /'(x) I+- L(z) in (7.7) 
directly yields the structural uncertainty of this fuzzy set in the form 

us(!) s>l (7.8) 

8. Concluding Remarks and Outlook 

8.1 Comments on the Meaningfulness of the Approach 

In the framework of interval analysis, the logarithms of the z-cuts of a fuzzy set are 
quite meaningful measures of uncertainty on a componentwise standpoint, but at first 
glance, it is not clear how these local uncertainties are aggregated to yield the uncertainty 
of the whole fuzzy set itself. It is the main contribution of the information theory 
of deterministic functions, to provide a general possible modelling for this aggregation 
process. 

As a matter of fact, we have obtained a family of weighting distributions indexed by 
a parameter c, and by adapting results previously derived for deterministic mappings, 
one can eao;ily show that c pictures how the density In L( z) of uncertainty is scrutinized 
by the observer. c = 0 defines a uniform observation scanning while c = 1 corresponds to 
Shannon entropy of random variables. Klir [9] focused on the case c = 0, that is to say 
on Uo(/), but on doing so, is he not too much optimistic? Indeed, one has the inequality 
Uo(J) < U1(/), and Uc(/) is the amount of uncertainty involed in the fuzzy set / to the 
observer!! In other words, he systematically ao;sumes that the fuzziness of the observer 
is not so bad! 

In short, if we had to select between U0(!) and U1 (!), and if we assume that the 
maximum entropy principle [13], [14] holds, that we should choose U1 (/). 

8.2 Suggestions for Further Research 

Technical communication in the J>resence of fuzziness. In 1975 [16], we introduced 
the concept of complete or total entropy of discrete random variables, in order to obtain 
a modelling of information loss. Later [17] we utilized the same concept to derive a 
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unified approach to discrete and continuous Shannon entropies. Here, in .the presence of 
fuzziness, this entropy reads 

lle(X) 
n - I: Piln[pif exp{U1(fi)}] 
i=l 

(8.1) 

where (p1,p2, ... ,Pn) is the probability distribution defining X, and U1(/i) is the fuzzy 
entropy which characterizes the ith-state Xi of X. 

Given a second random variable Y which takes on the values (Y1, Y2, ... , Ym) with 
the probability distribution (q1, q2, ... , qm), one has the conditional total entropy 

m 

He(X/Y) := L qj He(X/yj) 
j:l 

(8.2) 

with 
n n 

- LPi/jlnJJi/j + LPi/jUl,j(/J (8.3) 
i=l i=l 

n 

= H(X/yj) + LPi/jU1,jUi) 
i=l 

(8.4) 

One can define an effective mutual information in the form 

Ie(X/Y) = JI(X) - He(X/Y) (8.5) 

and then expand a meaningful theory of communication in the presence of fuzziness. 
Distance between fuzzy sets. The problem of defining the distance of two fuzzy sets 

is of interest, for instance, in studies related to approximate reasoning, and a possible 
new approach, via information of deterministic functions, is as follows. 

Let f(x) and g(x) be the membership functions of two fuzzy intervals in R, and 
define the local Kullback divergence 

g( X) 1 - g( X) l 1 - g( X) 
d(f,g; x) := g(x)ln f(x) + 1 - J(x) n 1 - f(x) (8.6) 

then one could consider a possible distance in the form 

f ecd(J,g;x)d(f g· x)dx D() u . '' 
c f, g := JR ecd(/,g;x)dx ' cE R (8.7) 

Mutual infonnation between fuzzy sets. According to Shannon, the mutual informa­ 
tion I(X, Y) between the continuous random variables X = {x,p(x)} and Y = {y,q(y)} 
lS 

I(X, Y) := f r(x, y)ln[1·(x, y)/p(x )q(y)]dxdy l1r2 (8.8) 
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where 1·(x, y) is the probability density of the pair (X, Y). Clearly, I(X, Y) is the expec­ 
tation of the density I(x, y) of mutual information, expressed as 

I(x,y) := -ln J)(x)-ln q(y)-(-ln 1·(x,y)) (8.9) 

The amount of mutual information involved in (X, Y) for X E n C Rand YE n' C R 
is then 

I(X, Y; n, n') = f f r(x, y)ln[r(x, y)/p(x)q(y)}dxdy over f f r(x, y)dxdy (8.10) JnJn, JnJn, 
These remarks could be extended to fuzzy sets as follows. Consider the pair f(x, y), 

fy(x) and fx(Y) as defined by equations (6.4) and (6.5); then according to (6.15), the 
density of mutual information at the z-cut level would be 

and the mutual information le(/, g) would be 

le(/, g) 
In L1(z)ln[L1x (::)Lfr (z)/ L1(z)]dz 

In L1(z)dz 
(8.11) 
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