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EXTENDED HOMOGENEOUS PROCESSES 
AND BAYES ESTIMATION OF RELIABILITY FUNCTIONS 

L. PARDO, D. MORALES AND V. QUESADA 

Abstract. The problem of estimation a reliability function is e~tablished in the 
Bayesian nonparametric context; however parametric techniques are used. Ex 
tended homogeneous prncesses are defined whose sample paths may be assumed to 
be increasing hazai·d rates by properly choosing the parameter functions of the pro 
cesses. Estimators are obtained in the mentioned processes and their asymptotic 
properties are studied. An application for simulated dada is given. 

1. Introduction 

Suppose the random variable T 2: 0 denotes t.ht age of failure of an inanimate 
device. The reliability function and the cumulative hazard function corresponding to T 
are defined by 

R(t) = Pr(T > t) 
and 

H(t) = - log R(t) 
respectively. If for all t 2: 0 

H(t) = f r(u) du 
lco,t) 

then r(t) is called the hazard rate of the distribution and in reliability context indicates 
the propensity for failure of an item in the near future given that the item has survived 
till time t. 

We use a Bayesian nonparametric approach to estimate a reliability function; this is, 
we do not introduce significant constraints over the space 'R. of all the reliability functions. 

A ~roblem, which appears immediately, is to place a prior probability over n. T. 
S. Ferguson (1973) and K. Doksum (1974) have studied this problem hy defining the 
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Dirichlet process and the more general neutrnl to the right processes respectively. An 
alternative solution is given by II. L. Dikst.rat et al. (H>Sl). They have introduced an 
appropriate stochastic process, called extended gamma process, whose sample paths are 
hazard rates. Moreover, they derive its posterior distribution and give the Bayes es 
timator or r(t) under the natural loss function 

L(r, 1-:) = 100 

[1·(t) - f(t)]2dw(t) 

where i.-v is an arbitrary finite measure on [O,oo). 
In accordance with these last ideas, we use extended homogeneous processes, which 

have the advantage of placing the prior probability on absolutely continuous rather than 
on discrete distributions, as is the case with a. nei;tral to the right process prior not 
having a nonrandom part. 

In this work, we present a Bayesian parametric method to estimate R(t), where it 
is not necessary to calculate the posterior distribution of the process. This method is 
similar to one presented in Morales ct al. (1986). 

2. The Extended Homogeneous Pl'occsscs 

Let Z(t), t 2:: 0, defined on an appropriate probability space (n, A, P), denote a 
process with independent. increments such that: 
i) Z(O) = 0 a.s. 
ii) Z(t) has nondecrea'3ing right continuous sample paths a.s. 
iii) Jim Z(t) = +oo .a.s. 

t-oo 
iv) The characteristic funct.ion of Z(t) has t.he following Lcvy-Kolmogorov representa 

tion: r+= logl/J,(O) ~ T(t) Jo [eillz - l]dN(z) 

where r(t), t 2:: 0, is a nondecreasing right-continuous real-valued function such that 
r(O) = 0, and N( z) is a an arbitrary measure on [O, oo) such that 

1+00 - 
~dN(::) < oo 

0 1 + = and 

Let {3(t), t 2:: 0, be a positive right-conti11uous real valued functions, bounded away 
from O with left-hand limit existing. \Ve denote a new stochastic process by 

r(t) = 1 /3( s) dZ(s) 
[O,t) 

where the integration is with respect to the sample paths of the Z(t) process. We say a 
process defined in this manner has an extended homogeneous distribution. Of ·course if 
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r(t) is taken to be a random hazard rate, there will be a corresponding random continuous 
reliability function given by 

R(t) = exp[- f 1·(u) du] lro,t) 
and we denote such a process by saying 1·(t) or R(t) is H( r(t), fJ.(t), N(z)). Furthermore, 
it can be easily proved that 

E[1·(t)] = k1 f /J(s) dr(s) lro,t) 
and 

V[1·(t)] k2 f /f2(s) dr(s) 
Jro.1) 

where r+oo 
k1 = lo z dN(z) and 

r+oo 
k2 = lo z2 dN(z) < 6o 

In this work, we consider two spei;ial extended homogeneous random reliability func 
tions: 
a) Extended gamma process 

dN(z) and 

b) Extended simple process 

dN(z) = dz/(ez) and 

In assigning a prior probability measure to 'R, one needs to input the functions r(t) 
and /J(t). One approach consists of defining nondecreasing mean and variance functions 
µ(t) and a2(t). It would seem reasonable to assign a5 µ(t) the best "guess" of the hazard 
rate a.nd use 0'2(t) to measure the amount of uncertainty or variation in the hazard rate at 
the point t. Assuming Jt(t), 0'2(t) and /J(t) are all differentiable, one can set µ(t) = E[r(t)] 
and u2(t) = V[1·(t)]. 

Solving for r(t) and /3(t) yields, 

and r'( l) k2 (Jt'(t))2 
(k1)2 (0'2(t)) (2.1) 

which then determines the prior distribution. 
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3. A Parametric Method to Estimate a Reliability F\mction 

For each fixed t 2: 0, we consider the following parametric Bayesian estimation prob 
lem. The parameter R(t) is a random variable whose p.d.f. is given by the extended 
homogeneous process {R(s)L?;o· This p.d.f. will be the prior probability for this partic 
ular problem. We consider, for the mentioned t 2: 0, the following random variable: 

X' = { 1 if 
0 if 

T > t 
T<t 

After observing a random sample Ti, ... , Tn from T 2'. 0, we have the associated 
sample Xf, ... , X! from X'. So, nRn (t) = Xf + ... + x:

1 
has a Binomial distribution 

with parameters (n, R(t)). 
If we use the quadratic loss function L[R.(t), Rn(t)] = [R(t) - Rn(t)]2 the Bayes 

estimate of R(t), for the fixed t, which minimizes the expected loss is given by the 
posterior mean of R(t). 

Observe that we do not need t.o calculate, with this method, the posterior distribu 
tion of the random reliability function. 

Theorem 3.1 If { 1·(s)} 8;?:o is distributed as H( r(t), {J(t ), N(t)) then, for each fixed t 2: 0, 
the Bayes estimator of R(t) under quadratic loss is given by the expression 

n-x ( ') 1 1+00 .L (-I)i n-: x exp( (e-.8(.,)(t-.,) z(n-i+l) - 1) dN(z)dr(s) 
Rn(t) = J=O J {O,t) 0 

n-x ( ) 1 1+00 .L (-I)i n-: x exp( (e-.6(.,)(t-.,) z(n-j) - I) dN(z)dr(s) 
J=O ) [O,t) 0 

where x denotes nRn(t). 

Proof: For each fixed t 2: 0, let g(y) be the p.d.f. of the random variable II(t). If we 
denote R(t) by 0, p,(O) is the p.d.f. of R(t) and 

n is the joint density of then random variables Xf, ... , X!. Finally, we define x = L xi. 
i=l Using the binomial expansion, the posterior mean of R.(t) is 

rl 0x+1(1 - O)n-xd, (0) Rn(t) = E (8/nR.,.(t)J = Jo 
1 

1 t 
fo ox(l - O)n-xdp,(O) 

Ex(-1 )i ( n-: X) J/co e-(n-j+l)y g(y) dy 
i=O ) 
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Observe that 

f e-ayg(y)dy = E[exp(-all(t))] = E[exp(-a f r(s)ds)]. 
lro,oo) lro,oo) 

Now, this expectation can be calculated by defining a sequence of partitions O = tn,l < 
tn,2 < ... < tn,k(u) whose norm goes to O and whose upper end point goes to oo. Then 
the sequence of random functions 

t > in,2 
tn,1 < i < tn,2 

verifies that lim r11(t) = 1·(t) a.s. 
n-oo 

Appropriate limiting arguments gives the following result: 

This completes the proof. 
If we particularize the last theorem for some specific extended homogeneous pro 

cesses, we obtain: 
-Extended Gamma 

%Z(-l)i ( n j x) exp[- fro,t) log(l + /3(s)(t - s)(n + 1- j)) dr(s)] 
~t:(-l)i ( 

11 j x) exp[- fro.i) log(l + /3(s)(t - s)(n - j)) dr(s)] 
-Extended Simple 

n-:z: i (n - x) . {J(s)(t - s)(n -j + 1) 
1:(-1) . exp[-fr[ot)f3( )( )( . l) 1dr(s)] j=O ) ' S t - S n - J + + 
nf\-l)i(n-x)ex [-fr {3(s)(t-s)(n-j) 
i=O j . p [0,1) at ,.\/1 _ ~\I~ .:\ 1 1 dT(s)J 

4. Some P1·opcrtics of Ru(l) 

Theorem 3.1 gives, for each fixed l 2: 0, a Bayes estimator of R(t). Now the problem 
is to consider the function Rn(-) as an estimator of the function R(.). To do this, Rn(-) 
must be a deterministic reliablit.y function. The next theorem states this result. 
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Theorem 4.1. Rn(.) is a deterministic reliability function. 

P1·oof: First we prove that Jim Rn(t) = 1 and lim Ru(t) = 0 a.s .. If t goes to O or oo 
i-o t-oo 

then r(t) goes to 1 or O a.s., so the prior probability p,(O) will concentrate its mass in 
those points. As the posterior probability p1( () / x) is proportional to the prior, we obtain 
that Pt ( () / x) will concentrate its mass in the mentioned points as well. Considering that 
R(.) is bound a.s, the mean of p,(O/x) will be 1 or O respectively. 

Second we prove that Rn(.) is a right-continuous function. Rn(.) is a quotient of 
linear combinations of moment-generating functions which are continuous. The denom 
inator is never 0, the jumps of Rn(.) are at the sample values t1, ... , tn, and Rn(.) is 
continuous in [ti,ti_i). 

Finally we prove that Rn(.) is a nondecreasing function. 
Rn(t) = E[R(t)/.nRn(t)J is a a(nRn(t))- measurable function and nRn(t) is a discrete 

random variable taking the values 0, 1, .. ·., n. Therefore Rn(t) is a constant in each set 
Ax = {w E 0/nRn(t)(w) = x }. This is, 

Vw E Ax R11(t)(w) = 1'x::::: fo1 

Odp1(0/x), x::::: 0, 1, ... , n 

First we prove that r1 < 1·2 < ... < r11• \i\'e study the behavior of the posterior 
distribution function of R(t) given nR,.(t) = x. 

( X: 1) ox+l(l - or-x-ldp,(O) 
J: ( x: 1) 0x+i(1 - O)n-x-ldp,(0) 

> (;) o·(i -0)"-•Jv,(O) ~ f.10•(1 - oi•-•av,(O) 
fol (;) {)X(l - O)n-xdp,(O) fol ox+l(l - 0)''-X-ldp,(O) 

ox(l - 0)11-xdp,(O) 1 - 0 
> - -- ox+ l (1 - O)n-x-1dp,(O) - () 

dp1(0/(x + 1)) > dp1(0/x) <=> 

If and only if 3 b E (0, 1) s.t O > b, because 1; O is decreasing in (0, 1), satisfying 
. 1 - () J~ -8- = 0. Therefore, rx+I = Ep,(8/x+I)(O) ~ Ep,(8/x)(O) = rx Vx = 0, 1, ... , n - 1. 
Now we compare R11(t) with Rn(t') when t > t'. \Ve know that Rn(t') is a constant in 
the set A~= {w E 0/nRn(t')(w) = x} t.his is, Vw EA~ Rn(t')(w) = 1·~ = /

0
1 Odp,(0/x). 

n 
Furthermore, as n.Rn(t') ~ nR,(t), t.he set.s A~ satisfy A~ C LJ Ai; so it is enough 

i=x 
to prove the following inequalities 1·: < 1-; Vx = 1, ... , i However, 1·~ < 1·~ < ... < r~, it 
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is only necessary to prove that r~ < 1·0, 1·~ < 1·1, ... , ,·:, < 7'n· ·we analyze the relation 
between the posterior p.d.f. p,(0/x) and p1,(0/x). 

· dp,(O) P(nR11(t) = x) 
dp1(0/x) > dp1,(0/x) ¢:} _, (O) > P( R ( ') _ ) = k E (O,oo) Pt' n ·n t - x 

"vVe observe that R(t) > R(t') a.s and suppose, to simplify reasoning, that Pt( 8) and 
p1,(0) are unimodal continuous p.d.f.. 

In the case, as ox(l - O)n-x is a c~mcave function in (0, 1) wit·h maximum in x/n, 
the posterior p.d.f. p1(0/x) and p,,(0/x) have the same structure. 

If consider the set Bk = {OE [O, I]/dp,(O) > kdp1,(0)}, B1: is a nonempty set because 
dp1,(0/x) cannot be greater than dp1(0/x) for every OE (0, 1). 

"vVe obtain Bk = (b, 1), with b ~ Oo when k 2: 1 and b < Oo when k < I. Therefore, 
r~ = Ep,,(8/x)(O) < Ep,(8/x)(O) = rx. 

Now we give a result related to the Bayesian behavior of .R11(t). Remember that to 
determine the parameter functions r(t) and (J(t) of and extended homogeneous process 
it is necessary to give two functions: Jt(t) and o-2(t). 11.(t) rerpresents the prior knowledge 
about r(t) and o-2(t) can be considered as a. measure of how confident we are about that 
knowledge. If µ(t) remains constant and o-2 (t) goes fo 0, which means that our trust 
grow, it seems reasonable that R,i(t) goes t.o the reliability function associated to the 
prior estimation of 1·(t); this is, 

R0(t) = exp(-1
1 

Jt(s)ds) 

Theorem 4.2 Suppose 11.(0) = 0. For every fi:red t 2: 0, if µ.(t) remains constant, then 

Jim R11(t) = Ro(t) 
<12(t)-o 

Proof: As, 

Jt(t) = k1 1' (J(s)r'(s) ds 
remains constant and 

goes to 0, .,'c have that (J(s)r'(s) remains constant for every s :St and (J(s) goes to 0. 
Therefore, using standard calculus techniques, we obtain 

_ lim iln(t) = ffo(l) 
/J( ·' )-0 
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5. Computation and Simulation. An Example 

In this section random samples of size n = 10 from an exponential distribution with 
parameter a= 1, i.e. R(t) = e-t, are generated in order to calculate Rn(t). We suppose 
that the prior estimation of R(t) is R0(t) = e-t:i, i.e., Weibull with parameters a = I 
and b = 2. 

As it was stated in section 2, in assigning a prior probability measure to 'R, one 
needs to input the mean and variance functions of 1·(t), i.e., µ(t) and u2(t) respectively. 
Remember that µ(t) = E[r(t)] = r0(t) = 2t is the best guess of the hazard rate function 
and u

2
(t) indicates how confident we are in such a guess. Furthermore, we suppose 

that u
2
(t) = 4t. We consider two different prior processes: (1) Extended Gamma (2) 

Extended Simple. 

If the prior process is Extended Gamma, solving equations (2.1) for k
1 
= k

2 
= 1, 

µ(t) = 2t and u2(t) = 4t, we obtain {3(t) = 2 and r(t) = t, so 

n-r . (n _ X) -(t + · ) 
.E(-1)' . [l+(n+l-j)2t] 2(n+l-j) 
J=O ) 

1 

n-r (n X) -(t+ · ) ;L ( -1 )i -:- [1 + ( n _ j)2t] 2( n - j) ,=o J 

1 

Computational results for this process are summarized in table 1. 

If the prior process is Extended Simple, solving equations (2.1) for k
1 2, µ(t) = 2t and u2(t) = 4t, we obtain {3(t) = 1 and r(t) = 2t, so 

n-r (n x) .E(-1); -:- fl+(n+l-i)tJn.+1-i 
J=O J 

2 

2 
I:r(-l)i (n ~ x) [l + (n -j)t]n - i 
j:0 J 

Computational results for this process are summarized in table 2. 

Finally, in both tables t indicates the ordered simulated values from R(t), R
10
(t) is 

the estimation of R(t), R1o(t-) = lim .R10(t), R(t) = e-t and R0
(t) = e-t2 • ., tt 
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t 
0.08214 
0.14735 
0.38806 
0.48242 
0.51346 
0.53135 
0.64331 
0.70336 
0.80295 
3.35460 

t 
0.08214 
0.14735 
0.38806 
0.48242 
0.51346 
0.53135 
0.64331 
0.70336 
0.80295 
3.35460 

Table 1. 
R1o(t) R1o(r) 
0.95009 0.99673 
0.87028 0.93411 
0.74492 0.82353 
0.64970 0.73122 
0.56234 0.64528 
0.47562 0.55972 
0.37438 0.46012 
0.27989 0.36691 
0.18014 0.26870 
0.05938 0.06033 

Table 2. 
R1o(t) R1o(t-) 
0.93590 0.99712 
0.85770 0.91230 
0.72864 0.79840 
0.63080 0.70840 
0.54643" 0.62526 
0.48415 0.54328 
0.36408 0.44515 
0.27319 0.35485 
0.17692 0.25925 
0.04421 0.07308 
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