TAMKANG JOURNAL OF MATHEMATICS
Volume 22, Number 3, Autumn 1991

LOCALLY NOETHERIAN LATTICE MODULES

H. M. NAKKAR AND I. A. AL-KHOUJA

Let L be a multiplicative lattice and let M be a L-module. M is said to be Noetherian
if M satisfies the ascending chain condition, is modular, and is principally generated
(PG-lattice). If L is a Noetherian L-module, then L will be called a Noetherian lattice.

Recall that M is a K-lattice ([6], Definition 12) if it is a CG-lattice and for any
compact element h of L and any compact element H of M, the element h. H is compact.
And recall M is a R-lattice ([6], Definition 13) if it is a PG-lattice and every principal
element of M is compact.

Let L and M be K-lattices. A L-module M is said to be locally Noetherian if M,
is a2 Noetherian L,-module for each maximal element p of L. It is well known that if M
is locally Noetherian, then M need not be Noetherian.

The purpose of this paper is to characterize those locally Noetherian lattice modules
which are also Noetherian. So Theorem (2-3) shows that a locally Noetherian lattice
module, in which the annihilator of any element of M is contained in only finitely many
maximal elements of L, is Noetherian.

The afore-mentioned condition on the annihilatores of elements of locally Noethe-
rian modules can be simplified for locally Noetherian lattices, by restricting it to the
annihilatores of their prime elements (Theorem (2-7)). Then our lattice results can be
applied to commutative rings and modules; and thus we obtain new conditions which are
necessary for locally Noetherian rings and modules to be Noetherian.

Throught this paper L will denote a multiplicative lattice and M will denote a lattice
module over L. Our notation and terminology are essentially that of ([3], [5], [6]) and

[7].

1. General Properties.

Lemma (1-1). If the greatest element I of L is compact, then for ecvery element
b # I in L there is a mazimal element p of L such that b < p.

Proof. This is essentially the same as given for Lemma (1-1) in [7).

Proposition (1-2). Let L be a K-lattice in which the greatest element I is compact.
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Let M be a K -lattice and let B,D € M. If[B] = [D] in M, for every mazimal element
pofL, then B = D.

Proof. This follows from Proposition (5-3) in [6] and Lemma (1-1).

Proposition (1-3). Let L be a K-lattice in which the greatest element I is compact.
Let M be a K-lattice and let B be an element of M. If (O : B) £ p, then [B] = [O] in
M, for every prime element p of L.

Proof. Let p be a prime element of L and let [B] # [O] in Ly. Then there exists
a compact element H of M such that H < B and [H] # [0] in M,. This implies
that ([O] : [H]) # [I)in L,. By Lemma (9-2) in [6] and Lemma (1-1) we get that
(0] : [H]) = [0 : H] < p. This implies that (O : H) < S(p) =p.So(0:B)<p
since (O : B) < (O : H), a contradication. Thus [B] = [O)].

Lemma (1-4). Let M be a K-lattice. Then the following conditions are equivalent:
(i) M satisfies the ascending chain condition.
(ii) Every element of M is compacl.

Proof. The proof is obvious.

Lemma (1-5). Let M be a R-lattice and let B be an element of M. Then B is
compact, if and only if, B is finitely generated.

Proof. It follows from the definition of the R-lattice.

Proposition (1-6). Let M be a R-lattice. Then the following conditions are equiv-
alent:
(i) M satisfies the ascending chain condition.
(i) Every element of M is finitely generated.
(iii) Every element of M is compact.

Proof. Obviously (i) implies (ii) since every element of M is a Join of principal
elements. To see that (ii) implies (i), let B; < B, < ... be an ascending chain of
elements of M. Then the element B = Viz, B; of M is finitely generated. Let B =
A1 V...V A, where 4; (1 < j < n) is a principal element of M. Since a finite join
of principal elements is compact we get that B is compact and hence B = B, for some
integer k. Therefore, M satisfies the ascending chain condition. Lemma (1-4) shows that
i) and (ii) are equivalent.

2. Locally Noctherian lattice modules.

It is well known that if R is a locally Noetherian commutative ring, then R need
not be Noctherian (Example (2-2) in [4]). So the multiplicative lattice L(R) of ideals of
R is a locally Noetherian lattice, but need not be Noctherian. It follows that a locally
Noetherian lattice module M over L need not be Noetherian. The following Theorems
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and Proposition give some criterions which are necessary for locally Noetherian lattice
modules to be Noetherian.

Theorem (2-1). Let L be a K-lattice in which the grealest element I is compact.
Let M be a K-lattice and let B be an element of M, whose annihilaior is contained in
only finitely many mazimal elements p,, . . +»Pn of L. If[B] is a compact element in Mp,
over Ly, for1 < i < n, then B isa compact element in M.

Proof. For i = 1,---,n, let p; be a maximal element of I, containing (O : B). By
assumption [B] is a compact element in M, . Therefore there exists a compact element
H; of M such that H; < B and [H;] = [B] in M,,. Suppose that H = H; V...V H,,
then  is compact and [H] = [B] in M,, for every maximal element p; (1 £i<n)
Furthermore if p is a maximal element of L such that (O : B) £ p, then by Proposition
(1-3) we get that [O] = [B] in M, over L,. Therefore [H] = [B] in M, for all maximal
elements p of L. Thus by Proposition (1-2) we have that H = B and hence B is compact.

Proposition (2-2). Let L be a K-lattice in which the greatest element I is compact.
Let M be a R-lattice and let B be an element of M, whose annihilator is contained in
only finitely many mazimal elements py,...,p, of L. If B is finitely generaled in M,
Jor1 < i < n, then B is finitely generated.

Proof. Since M, is a R-lattice, we get that [B] is a finitely generated element in
Mp, if and only if, it is compact. Therefore Theorem (2-1) shows that B is compact in
M, and by Proposition (1-6) it follows that B is finitely generated.

Theorem (2-3). Let L be a K -laitice in which the greatest element I is compact
and let M be a R-lattice. If M is locally Noetherian and the annihilaior of any element
of M 1is contained in only finitely many mazimal clements Pis---,Pn of L, then M is
Noetherian.

Proof. Let B be an element of M. By assumption the element [B] is finitely
generated in My, over L,; (1 < ¢ < n). Hence by Proposition (2-2) it follows that A
satisfies the ascending chain condition. Furthermore Corollary (7-3) in [6] shows that M
is modular. .

Corollary -(2-4). Let L be a semi-local K -laitice in which the greatest element I
is compact and let M be a R-lattice. If M is a locally Noetherian module, then M is
Noetherian.

Proof. This follows from Theorem (2-3) and from the definition of a semi-local
lattice.

Theorem (2-5). Let L be a locally Noetherian R-lattice. If the annihilator of
any element of L is contained in only Jinitely many mazimal elements of L, then L is
Noctherian.

Proof. This follows from Theorem (2-3) by regarding L as an L-module.
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Now we shall simplify the condition related to annihilators of elements of L.

Theorem (2-6). Let L be a modular R-lattice. If any prime element of L is finitely
generated, then L satisfies the ascending chain condition.

Proof. By Proposition (1-6), it is sufficient to prove that any element of L is
finitely generated. Let T be the set of all elements of L which are not finitely generated.
If T # ¢, then by Zorn’s Lemma, T contains a maximal element p. Since p can not
be a prime element in L, then there exist two principal elements a,, a; of L such that
ay-a2 < p,a; £ p & a; £ p. This implies that (PVa)> Pand (P : a;) > P.
Therefore (P V a;) and (P : a,) are finitely generated. It follows that (P : ;) - q, is
finitely generated. Since M is a join of principal elements and P v a, is finitely generated
there exists a finitely generated element b of I such that b < PandbVa; = PV a;.
By the modularity we find that:

P = P/\(PVal) = P/\(bVal) = bV(P/\al) = bV(P . (11)- a;
This implies that P ¢ T, a contradication.

Theorem (2-7). Let L be a locally Noetherian R-lattice. If the annihilator of any
prime element of L is contained in only finitely many mazimal elements of L, then L is
Noetherian.

Proof. Let ¢ be a prime element of L, and let p be a maximal element which is
containing the annihilator of q. By assumption L, is a Noetherian lattice and hence [q]
is finitely generated in L,. Proposition (2-2) shows that q is finitely generated in L and
by Theorem (2-6) L satisfies the ascending chain condition. Furthermore L is modular
by Corollery (7-3) in [6], which completes the proof.

When viewed in the context of ring theory these results translate to the following:

Proposition (2-8). Let R be a commutative ring and let M be a locally Noetherian
R-module. If the annihilator of any submodule of M is contained in only finitely many
mazimal ideals of R, then M is Noetherian.

Proof. Let L(R) be the lattice of ideals of R and let L(Af) be the lattice of
submodules of M. Then L(R) is a multiplicative lattice and L(M) is a lattice module
over L(R) with known structure operations on ideals and submodules. Each of L(R) and
L(M) is satisfying the conditions of the Theorem (2-3) and hence the module L(M) is
Noetherian. It means that Af is Noetherian.

Corollary (2-9). Let R be a semi-local ring and let M be a R-module. If M is a
locally Noctherian madule,‘ then M is Noetherian.

Proof. It is obvious.

Proposition (2-10). Let R be a locally Noetherian ring. If the annihilator of
any prime ideal of R is conlained in only finitely many mazimal ideals of R, then R is
Noetherian.
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Proof. This follows by applying Theorem (2-7) on the multiplicative lattice L(R).
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