TAMKANG JOURNAL OF MATHEMATICS
Volume 22, Number 3, Autumn 1991

ON SOME EXTENSIONS OF RELLICH’S INEQUALITY

B. G. PACHPATTE

Abstract. In this note we derive some new inequalities which in the special cases
yields an extension of Rellich’s inequality recently given by Bennétt.

1. Introduction

In his fundamental work on perturbation theory of eigenvalue problems F. Rellich
[9] established the following inequality.
Suppose that u(z) is a function in C§°(R"™ — {0}) which is not identically zero, then

2 nz(n"4)2 -4y, 12
..IAUI dz > B e Rnl::l | ul® de, n # 2. (1)

Rellich also proved this inequality for n = 2 under some additional hypotheses (see,
(3, p- 988]). Some important extensions of inequality (1) were established by Schmincke
[10] in exploring selfadjointness criteria for a Schrédinger operator and Allegretto [2]
in obtaining nonoscillation theorems for elliptic equations of order 2n. In a recent pa-
per [3] Bennett established an interesting extension of Rellich’s inequality by following
Schmincke’s method of proof. Despite the applications, we believe that the inequalities
of the form (1) are of interest in their own right. The purpose of this note is to give
further extensions of the inequality (1) which contains in the special cases an extension
of (1) recently given by Bennett in [3]. The technique we will use to prove our results
is based on the method employed by the authors in [10] and [3]. In fact, our search for
further extensions of inequality (1) has led to some new inequalities which will allow for
a broader range of applications.

2. Statement of Results

Throughout we assume that H is an open, connected subset of R® that is not
necessarily bounded, and that the boundary of H, dH, is sufficiently smooth in order
that the Green formulas applies. A point in R is denoted by z = (zy,...,z,) and its
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norm is given by |z| = (31, 22)¥. We denote by C™(H) the vector space consisting of
all functions ¢ which, together with all their partial derivatives D® ¢ of orders la| < m,
are continuous on H and denote by C§° (H) the vector space of infinitely differentiable
functions with compact support (see, [1, p. 9]).

We first establish the following Dubinskii type inequality [6, p. 168] which will be
used in the proof of our main result.

Theorem 1. Letp > 0, ¢ > 1 be constants; g € C*(H), Ag # 0 in H and
u € C§°(H) be real valued functions. Then

f1800uP ds < @t [ 18D ggplupivup a0
H H

s 7B ) s PP a?
wherev B (FE”E) and A = E-{-ﬁ-axi

The following version of the inequality (2) will be useful in our latter work.

Theorem 2. Let p, q, g, u be as defined in Theorem 1. Then
L 1811uP de < G g [ ag 0D g pre qupt as, o
H "

where 7 and A are as defined in Theorem 1.

Remark 1. If we take g = |2|**2, a > 0 is a real constant, and hence |y g|2 =
(e +2)%|z|>**+2 and Ag = (a+ n)(a+2)|z|* in inequality (3), then we get the following
Hardy type inequality (see, [5, Lemma 12, p. 303])

/ [z [*uP? dz < (p—+—q)P+4/ | & [PHo+e | gu [P de. (4)
H a+n "

For different forms of the inequalities of the type (2)-(4), see [7,8].
Our main result is given in the following theorem.

Theorem 3. Ifp, q, ¢, u be as defined in Theorem 1, then for any constanis
6§>0,¢e>0,

S 1807 g o up | Au e da

H

2 —e"g(p + g — 1)sgn (Ag) / gluPt=? | gu |? dz
H

_ )
= T [ A D g ) P gu |7 de
P+ q Jy

6
O e =l s / , |P+e
[P + g (9 = 1)e + (» + q)q+1] o RAVAIRT dz, (5)

where 7 and A are qs defined in Theorem 1.
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A slight variant of inequality (5) is embodied in the fcllowing theorem.

Theorem 4. If p, q, g, u be as defined in Theorem 1, then for any constanis
52> 40, ¢ >0, '

[ 18900 g Pt Bt o
H
> — Pt (p 4 q)(p + ¢ — 1)sgn(Ag) /}-1 glulPti=?|vul® dz
— pta-D) 5 / | Ag [7P+~D | gy P+ | u [P dz.
H

6
| [18allupttaz @
H

+ elpte-1) [l -(p+a+ -1e+ m;‘;;

where 57 and A are as defined in Theorem 1.

Remark 2. We note that in the special cases when p = 0, ¢ = 2 and using the

definition sgn (Ag) = l—g—gT, inequalities (5) and (6) reduces to the following inequality

[ 1801191 buP ds
H

> - }1[29A9+5Ivyl:’] | Ag |7 vu |? de
] &

+e[1—e+—1/ | 8g || ul® dz, @)
4° Ju

which is recently established by Bennett [3, Theorem 5]. By taking p = 0 and ¢ = 4
in (5) and p = 2, ¢ = 2 in (6) we get an inequality which we believe is new to the
literature. Furthermore, by specializing the conditions on p, ¢ and the function g in (5)
and (6) we get different inequalities of some interest in their own right and will have a
broader range of applications.

3. Proofs of Theorems 1 and 2

By applying Green’s first formula to [, AglulP*9 dz, we have

Agluptt ds = - [ vov(luptnds. ®)
H H

From (8) and using the definition sgn(Ag) = I%g_l’ the fact that y([ulf*?) = (p +
@lulPt4~1 7 u sgn u, and applving Holder’s inequality with indices g,
that

q—f_—l, we observe
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/ | Ag || u P+ dz = —sgn(Ag) / Vo v (| u [P*)dz
o I
= — (p+ g)sgn(Lg) / Vo | u [PH1 Gusgnu dz
H
s(p+q)/ |70 || u P4 gu | de
H

= (p+q)/”[l Ag T gy || u 7] vu|
[l Ag |55 w pre-1-5] 4z

1
< (p+q>{/” | Ag 176D gg 7] u P| wu |¢ dz)

-{[llAgllit I”""’d;l:}g;_l. (9)

If f;; 1A g||ulPt9dz = 0, then (2) is trivially true, otherwise we divide both sides of (9)
by {f; 14 gl Ittll”"'?cla:}g;—l and then raise both sides of the resulting inequality to the
power g to get inequality (2). This complete the proof of Theorem 1.

By following the above proof of Theorem 1, we have

J 180 up* as <G+ a) [ 1valluptegu) as
I "

—(2te=1
= + i /HnAgr D) 99 [l vu ]

[l Ag |CFD] w a1 gz (10)

Now using the Ilder’s inequality with indices P+ q, I—,ﬂ;ﬂ—l on the right of (10) and
following exactly the same arguments as in the last part of the proof of Theorem 1 given
above with suitable changes we get the desired inequality in (3). The proof of Theorem
2 is complete.

Remark 3. If we take ¢, | v ¢|® and Ag as in Remark 1 in inequality (10) we get
/11 |z [ u Pt d < (21 /” |2 1** w P+ gu | dz

a+n

=D [ e vy

S e EY s P e P (11)
Using the Holder’s inequality with indices p + q, 54% on the right of (11) we get the
following Wey! type inequality (see, [5, Lemma 11, p. 303])

o p+qd.<m / 2 [0 Ty [PHT gy ) THE
JAEN e < (DU 121 gu e e

) : _
. {-/u | = |21 o [P0 d;z:} PHe (12)
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For a version of Weyl’s inequality in one independent variable, sce [4].

4., Proofs of Theorems 3 and 4

263

Let A, B, C, D denote the integrals (without the exterior constants) in (5) succes-

sively. Applying Green’s second formula to [, Ag|u|P*9dz we have

/ AglulPt? dz = / g A (|ulPt)de.
H "
Using the definition sgn(Ag) = r%f,-' in (13) we obscrve that

D = sgn(Ag) / g (Julrt?)dz.
"
Using the fact that

A u ") = (p+q) | w P Ausgnu
++ap+a=1)[u [t gul?

in (14) we have

D =sgn(Ag)(p+ q)/ g|u Pt Ausgnudz
i)
+sgn(Ba)p+)o+a-1) [ glul vul? da
H
<@+ [ 1ollupe| Aulds
H
+(p+q9)(p+q—1)sgn(Ly)B
q-1 .
= (P+q)/”[l By 175 g Nl 5] Bu ]

1 Ag |95 w P de

+(P+9)(p+q— 1)sgn(Ay)B.

(13)

(14)

(15)

(16)

Now first applying the Holder’s inequality with indices g, E%Y on the right side of (16)

and then using the Young’s inequality with indices ¢, q-f—l, we see that
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5
D < (p+q){/H | Ag 76D g |9 u ]P| Au |¢ do}

[ 180 l1u P an)
H
+(p+ 9)(p+ g — 1)sgn(Ag)B
= (P+ 9 ATDD) 4 (p+ g)(p + ¢ — )sgn(Lg) B
= (p+ (A% (D)
+ @+ 9)(p+q— 1)sgn(Ag)B
< (E;qi'_q)c—(q—l)A + (p+9)(g - I)ED

q
+(p+ 9)(p + ¢ — 1)sgn(Ag)B, (17)

for € > 0. Now for any 6§ > 0, from (2) we observe that

el B s
(p+q)°

Combining this fact with (17) we have

oC

D < (p;rq)c_(q_l)A+ (p+q)q(q— D.p

+(P+9)(p+q-1)sgn(Ag)B + 6C —

Gt =
foralle > 0and § > 0. Rewriting (18) we get the desired inequality in (5). This
complétes the proof of Theorem 3.

In order to prove Theorem 4, let A, B, C, D denote the integrals (without the
exterior constants) in (6) successively. By following the arguments in the first part of
the proof of Theorem 3 we have

D s(p+q)/ L9 1l P Au| de
H
+ @+ 9+ q - )sgn(Ag)B
—(2tg=1
=(p+q)/”nAg| ) g 1) Au ]

89 IS uPHYds + (o4 q)(p + ¢ - sgn(dg)B.  (19)
Now first using the Holder’s inequality with indices P+q, ;ﬁ"—f—l, then Young’s inequality
with indices p + ¢, ;_H{—l on the right in (19), the inequality (3) and following closely
the arguments in the proof of Theorem 3 with suitable modifications we get the required
Inequality in (6). The proof of Theorem 4 is complete.
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Remark 4. If we specialize the inequalities (5) and (6) by putting ¢ = |z|*%2, o >
0 real and hence |7 g|? = (a+2)%|z[***?, Ag = (a + n)(a + 2)|z|*, we get some new
inequalities similar to that of inequality given by Bennett in [3, Corollary 6, p. 992]. For
an interesting comparison of inequality in [3, Corollary 6] with the earlier extensions of
Rellich’s inequality (1) given by Allegretto [2] and Schmincke [10], see [3].
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