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ON THE COMMUTATIVITY AND ANTICOMMUTATIVITY OF RINGS Ir 

CHEN-TE YEN 

Abstl'act. It is shown that if R is any associative l"ing such that for each x, y ER, 
there exist an even natural number m(x, y) and an odd natural number n(x, y), 
depending on x and y, with either [x, y]m(:z:,y) = (x, y]n(:z:,11) or (x o· y)m(:z:,y) = 
(x o y)n(:z:,11), then either [x, y) or (x o y) is nilpotent for all x, yin R. Moreover, R 
is commutative if R has no nonzero nil right ideals. 

1. Introduction 

Throughout the paper, R will denote an associative ring with Jacobson radical J(R). 
For x,y ER, set [x,y] = xy- yx and (x o y) = xy + yx. R is called commutative (resp. 
anticommutative) if [x, yJ = 0 (resp. (x o y) = 0) for all x, yin R. R is called semi prime 
if for a ·E R, aRa = 0 implies that a = 0. A right ideal A of R is called nil if for every 
a E A, an = 0 for some positive integer n = n(a). An element x in R is called periodic 
(resp. strongly periodic) if there exists an integer n > 1 (resp. an even positive integer 
m), with xn = x (resp. xm = x). An element x of R is called (*)-periodic if there exist 
an even natural number m and an odd natural number n such that xm = xn. Note that 
if char R = 2, then R is commutative if and only if R is anticommutative. 

In 1957, Berstein [1] prove 

Theoi·em A. If for each x, y E R, there exists a natural number n(x, y) > 1, 
depending on x and y, with [x,yJn(x,y) = [x,yJ, then R is commutati·ve. 

In 1987, l\·fachale [3] proved 

Theorem D. // for each x, y E R, there exists an even natural number m(x, y), 
depending on x and y, with (x o y)m(x,y) = (x o y), then R is anticommutative. 

Later in 1D87, Yen [4] combined Theorem A and Theorem B to obtain 
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Theorem C. Suppose tit at for each x, y E R, tit ere exists either a natural number 
n(x,y) > l such that [x,yJn(x,y) = [x,y] or an even natural number m(x,y) such that 
(x o y)m(x,y) = (x o y). Then for each x, y E R, 
(1) [x, y] = 0, if [x, yJ is periodic; 
(2) x o y = 0 if both. (x o y) and ((-y) ox) are strongly periodic. 
Furthermore, R is either commutative or anticommutative; in particular, R is commu­ 
tative if R is semiprime. 

The purpose of this note is to generalize Themem B and partially extend Theorem 
A, and combine these generalizations. 

2. Results 

Lemma 1. If for each x, y ER, there exist an even natural number m(x, y) and an 
odd natural number n(x, y), with [x, y]'11(x,y) = [x, y]n(x,y), then [x, y] is nilpotent for all 
x, y E R. Moreover, R is commutative if it has no nonzero nil right ideals. 

Proof. If Risa division ring, then by Herstein's theorem [I, or 2, Theorem 3.1.3], 
R is commutative. 

If R is a primitive ring, then the first possibility is that R ~ D, where D is a division 
ring, and so R is a field. Otherwise, for some k > I, Dk, the complete matrix ring over 
a division ring D, would be a homomorphic image of a subring of R. Thus Dk would 
inherit the property [x,yJm(x,y) = [x;y]n(x,y), where m(x,y) and n(x,y) are as above. 
Let ei/s be the matrix units of Dk. In Dk, let x = e11 + e12 and y = -e21. Then 
[x,y] = e21 + e22 - eu. Hence 

[x,yJm = e11 + e22 if rn is an even positive integer, and 

[x,yt = e21 + e22 - e11 if n is an odd positive integer. 
This yields a contradiction. Therefore, R is a field. 

If Risa semisimple ring, then R is isomorphic to a subdirect sum of primitive rings 
Ri, each of which, as a homomorphic image of R, satisfies the hypotheses placed on R. 
Thus each Ri is a field by the result above, and we conclude that R is commutative. 

Now, let R be any ring satisfying the hypotheses. Since R/J(R) is a semisimple 
ring, by the previous result Rf J(R) is commutative. Hence, [x, y] E J(R) for all x, yin 
R. Now J(R) has the property that if ab = a, with b E J(R), then a = 0. Therefore, 
[x,y]m(x,y) = [x,y]11(x,y) implies that [x,y]11(x,y) = 0 for all x,y in R. 

Finally, let R be a ring having no nonzero nil right ideals. Since R has no nonzero 
nil right ideals, R is semiprime. To prove that. R is commutative, it suffices to show that 
if a E R and a

2 = 0 then a= 0. For every x E R, we have O = [a, x]'1(a,x) = [a, x]'1(a,x)a. 
Thus, (axt(a,x)+t = 0. So, aR is a nil right ideal. Hence, aR = 0. Dy semiprimeness of 
R, a.R = 0 implies that a= 0. 

Lcnuua 2. ff for each x, y ER, there c1.:ist an even natural number m(x, y) and an 
odd natural number n( x, y), with ( x o y )m(x ,y) = ( x o y )'1·(x ,Y), th c11 ( x o y) is nilpotent for 
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all x, y E R. Moreover, R is anticommutative and char R = 2 if it has no nonzero nil 
right ideals. 

Proof. If R is a division ring, then R is anticommutative by Machale's theorem [3]. 
If Risa primitive ring, then the first possibility is that R '.::'. D, where Dis a division 

ring, and so R is anticommutative. Otherwise, for some k > I, D1c, the complete matrix 
ring over a division ring D, would be a homomorphic image of a subring of R. Thus D1c 
would inherit the property (x o y)m(x,y) = (x o y)"(x,y), where ni(x, y) and n(x, y) are as 
above. Let ei; 's be the matrix units of Dk. In Dk, let x = e11 + e12 and y = -e21. Then 
(xoy) = -e11 -e21 -e22. Hence (xoy)m = eu +me21 +en if mis an even positive integer, 
and (x o y)" = -e11 - ne21 - e22 if n is an odd positive integer. Thus, the hypotheses 
imply that char D = 2. This yields a contradiction. So, R is anticommutative. 

If R is a semisimple ring, then_ R is isomorphic to a subdirect sum of primitive rings 
R;, each of which, as a homomorphic image of R, satisfies the hypotheses placed on 
R. Thus each ~ is anticommutative by the result above, and we conclude that R is 
an ti co.mm u tative. 

Now, let R be any ring satisfying the hypotheses. Since R/ J(R) is a semisimple 
ring, by the previous result R/ J(R) is anticommutative. Hence, (x o y) E J(R) for all 
x, yin R. Therefore, (x o y)m(x,y) = (x o y)"(x,y) implies that (x o y)"(x,y) = 0 for all x, y 
in R. 

Finally, let R be a ring having no nonzero nil right ideals. Then as the proof of 
Lemma 1, R is anticommutative. Hence, 2x2 = (x ox) = 0 for all x in R. Thus, 2R is a 
nil right ideal and so 2R = 0. 

By the proofs of Lemma 1 and Lemma 2, we have the following 

Lemma 3. Suppose that for each x, y E R, there exist an even natural number 
m(x, y) and an odd natural number n(x, y) such that either 

[x,y]m(x,y) = [x,y]'1(x,y) 

or 
(x o y)m(x,y) = (x o yf(x,y)_ 

If R is a semisimple ring, then R is com.mutative. 

Proof. If R is a division ring, then by Lemma 3 of [4], R is commutative. 
If R is a primitive ring, then as the proofs of Lemma I and Lemma 2, we can show 

that R is commutative. 

If R is a semisimple ring, then as the proof of Lemma 1, we can prove that R is 
commutative. 

Theorem. Suppose that for each x, y E R, there exist an even. natural number 
m(x,y) and an odd natural number n(x,y) such that either [x,y]m(x,y) = [x,y]n(x,y) or 
(x o y)m(x,y) = (x o y)"(x,y). Then for each x, y E R, 
(I) [x,y] is nilpotent, if[x,y] is (*)-periodic; 



270 CHEN-TE YEN 

(2) (x o y) is nilpotent if both (x o y) and ((-y) ox) are (*)-periodic. 
Furthermore, R is commutative if R has no nonzero nil right ideals. 

Proof. If R is a semisimple ring, then by Lemma 3, R is isomorphic to a subdirect 
sum of fields. 

Now, let R be any ring satisfying the hypotheses. Let x, y ER. Since [x, y] = [-y, x], 
it suffices to consider the following two cases: 

Case 1. [x, yJ is (*)-periodic. Since R/ J( R) is a semisimple ring, by Lemma 3, 
R/ J(R) is commutative. Thus, [x, y] E J(R). Hence, [x, y]m(x,y) = [x, y]n(x,y) implies 
that [x, y]n(x,y) = 0. 

Case 2. (x o y) and ((-y) ox) are (*)-periodic. Consider the semisimple ring 
R = R/J(R). By the result above,. R is isomorphic to a subdirect sum of fields Ri, 
i in some index set I -:p tp. Let IT;EJR; be the complete direct sum, and</> : R-+ IT;e1R; 
be a monomorphism. Let Ili be the projection of IT;e1R; onto Ri, t.hen by definition, 
Rt/JITi = Ri for each i E /. Thus, (x o y) is (*)-periodic implying that (xt/JITi o yt/JITi) is 
(*)-periodic for each i E /. Since Ri is a field, it follows that (xt/JITi o ytpITi) is strongly 
periodic for each i E /. Similarly, ((-ytplli) o xt/JITi) is strongly periodic for each i E /. 
By Theorem C, (x o y)t/Jili = (xt/Jili o yt/JIT;) = 0 for each i E J. So, (x o y)tp = 0. Since tp 
is one to one, (x o y) = 0, i.e., (x o y) E J(R). Hence, (x o y)m(x,y) = (x o y)n(x,y) implies 
that (x o yt(x,y) = 0. 

Finally, let R have no nonzero nil right ideals. Then as the proofs of Lemma 1 and 
Lemma 2, we have that either [x,y] = 0 or (xoy) = 0 for all x,y in R. Thus, R is 
commutative by the result of (4]. 

FinalJy, we note that Lemma 1 does not hold if both of m( x, y) and n( x, y) are even 
or odd. To see this, let F be a finite field. Observing that [x, y]2 is a scalar matrix for 
all x, y in F2, it is easy to see that the hypotheses as in Lemma 1 hold. However, [x, y] 
is not necessarily nilpotent for all x, y in F2. \Ve also note that Lemma 2 does not hold 
if both of m(x,y) and n(x,y) are even or odd. 
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