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ON THE COMMUTATIVITY AND ANTICOMMUTATIVITY OF RINGS II”

CHEN-TE YEN

Abstract. It is shown that if R is any associative ring such that for each z,y € R,
there exist an even natural number m(z,y) and an odd natural number n(z,y),
depending on z and y, with either [z,y]™®Y) = [z,y]™*¥) or (z o y)™=¥) =
(zo y)"("y), then either [z, y] or (z 0 y) is nilpotent for all z, y in R. Moreover, R
is commutative if R has no nonzero nil right ideals.

1. Introduction

Throughout the paper, R will denote an associative ring with Jacobson radical J(R).
For z,y € R, set [z,y] = zy — yz and (z 0 y) = zy + yz. R is called commutative (resp.
anticommutative) if [z,y] = 0 (resp. (z oy) = 0) for all z,y in R. R is called semiprime
if for a € R, aRa = 0 implies that a = 0. A right ideal A of R is called nil if for every
a € A, a” = 0 for some positive integer n = n(a). An element z in R is called periodic
(resp. strongly periodic) if there exists an integer n > 1 (resp. an even positive integer
m), with 2" = z (resp. 2™ = z). An element z of R is called (*)-periodic if there exist
an even natural number m and an odd natural number n such that z™ = z”. Note that
if char R = 2, then R is commutative if and only if R is anticommutative.

In 1957, Herstein [1] prove

Theorem A. If for each z,y € R, there exists a natural number n(z,y) > 1,
depending on z and y, with [z,y]**¥) = [z,y], then R is commutative.
In 1987, Machale [3] proved

Theorem B. If for each z,y € R, there exists an even natural number m(z,y),
depending on z and y, with (z o y)™*¥) = (z 0y), then R is anticommutative.
Later in 1987, Yen [4] combined Theorem A and Theorem B to obtain
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Theorem C. Suppose that for each z,y € R, there ezisls eilher a natural number
n(z,y) > 1 such that [z,y]"*¥) = [z,y] or an even natural number m(z,y) such that
(z o y)™E=¥) = (zoy). Then for each z,y € R,

(1) [2,y] =0, if [x,y] is periodic;

(2) zoy =0 if both (z 0 y) and ((—y)o z) are strongly periodic.

Furthermore, R is ez'ih_er commutatlive or anticommulalive; in particular, R is commu-
tative if R is semiprime.

The purpose of this note is to generalize Theorem B and partially extend Theorem
A, and combine these generalizations.

2. Results

Lemma 1. If for each z,y € R, there ezist an even natural number m(z,y) and an
odd natural number n(z,y), with [z,y]™=Y) = [z,9]*®9), then [z,y] is nilpotent for all
z,y € R. Moreover, R is commutative if it has no nonzero nil right ideals.

Proof. If R is a division ring, then by Herstein’s theorem [1, or 2, Theorem 3.1.3],
R is commutative.

If R is a primitive ring, then the first possibility is that R 2 D, where D is a division
ring, and so R is a field. Otherwise, for some &k > 1, Dy the complete matrix ring over
a division ring D, would be a homomorphic image of a subring of R. Thus D; would
inherit the property [z,y]™(=¥) = [z,y]"¥), where m(2,y) and n(z,y) are as above.
Let e;;’s be the matrix units of Dig. In Dy let z = €57 + €55 and Y = —eg;. Then
[z,y] = e21 + €33 — €17. Hence

[29]™ = 14 + €33 if m is an even positive integer, and
[24l™ = g g - €11 if n is an odd positive integer.

This yields a contradiction. Therefore, R is a field.

If R is a semisimple ring, then R is isomorphic to a subdirect sum of primitive rings
R;, each of which, as a homomorphic image of R, satisfies the hypotheses placed on R.
Thus each R; is a field by the result above, and we conclude that R is commutative.

Now, let R be any ring satisfying the hypotheses. Since R/J(R) is a semisimple
ring, by the previous result R/J(R) is commutative. Hence, [2,9] € J(R) for all z,y in
R. Now J(R) has the property that if ab = a, with b € J(R), then a = 0. Therefore,
[z, y]™(=9) = [z, y]7(=9) implies that [2,y]"(®¥) = 0 for all 2,y in R.

Finally, let R be a ring having no nonzero nil right ideals. Since R has no nonzero
nil right ideals, R is semiprime. To prove that R is commutative, it suflices to show that
ifa € R and a? =0 then a = 0. For every 2 € R, we have 0 = [a, 2]*(%:%) = [q, 2]"(e/%)q,
Thus, (az)™(*#)+! = 0. So, aR is a nil right ideal. Hence, aR = 0. By semiprimeness of
R, aR = 0 implics that a = 0.

Lemma 2. If for each z,y € R, there exist an cven nalural number m(z,y) and an
odd natural number n(z,y), with (zoy)™(=y) = (zoy)"EY) then (zoy) is nilpotent for
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allz,y € R. Moreover, R is anticommuiative and char R = 2 if it hes no nonzero nil
right ideals.

Proof. If R is a division ring, then R is anticommutative by Machale’s theorem [3].
If R is a primitive ring, then the first possibility is that R 2 D, where D is a division
ring, and so R is anticommutative. Otherwise, for some k > 1, D;s the complete matrix
ring over a division ring D, would be a homomorphic image of a subring of R. Thus Dy
would inherit the property (z o y)™(=¥) = (z 0oy)"(®¥), where m(z,y) and n(z,y) are as

above. Let e;;’s be the matrix units of Dy. In Dy let £ = e1; + €12 and Y = —e2;. Then
(zoy) = —ej; —ea; —e0s. Hence (zoy)™ = €11+ mea; +eas if m is an even positive integer,
and (zoy)”® = —e1; — neay — e22 if n is an odd positive integer. Thus, the hypotheses

imply that char D = 2. This yields a contradiction. So, R is anticommutative.

If R is a semisimple ring, then R is isomorphic to a subdirect sum of primitive rings
R;, each of which, as a homomorphic image of R, satisfies the hypotheses placed on
R. Thus each R; is anticommutative by the result above, and we conclude that R is
anticommutative.

Now, let R be any ring satisfying the hypotheses. Since R/J(R) is a semisimple
ring, by the previous result R/J(R) is anticommutative. Hence, (z o y) € J(R) for all
z,y in R. Therefore, (z 0 y)™(*=¥) = (20 ¥)"=¥) implies that (zoy)*=¥) = 0 for all z, ]
in R.

Finally, let R be a ring having no nonzero nil right ideals. Then as the proof of
Lemma 1, R is anticommutative. Hence, 222 = (zoz) =0 for all z in R. Thus, 2R is a
nil right ideal and so 2R = 0.

By the proofs of Lemma 1 and Lemma 2, we have the following

Lemma 3. Suppose that for each z,y € R, there ezist an even natural number
m(z,y) and an odd natural number n(z,y) such that either

(25" = [o,y]e)

or
(zoy)™=¥) — (z 0 y)™=:¥),

If R is a semisimple ring, then R is commutative.

Proof. If R is a division ring, then by Lemma 3 of [4], R is commutative.

If R is a primitive ring, then as the proofs of Lemma 1 and Lemma 2, we can show
that R is commutative.

If R is a semisimple ring, then as the proof of Lemma 1, we can prove that R is
commutative.

Theorem. Suppose that for each x,y € R, there ezxist an even-natural number
m(z,y) and an odd natural number n(z,y) such that either [z,y]™(=¥) = [z,y]"(=¥) or
(zoy)™=¥) = (20 ¥)"=Y) . Then for each z,y € R,

(1) [=,y] is nilpotent, if [2,y] is (%)-periodic;
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(2) (zoy) is nilpotent if both (zoy) and ((—y) o z) are (x)-periodic.
Furthermore, R is commutative if R has no nonzero nil right ideals.

Proof. If R is a semisimple ring, then by Lemma 3, R is isomorphic to a subdirect
sum of fields.

Now, let R be any ring satisfying the hypotheses. Let 2,y € R. Since [z,y] = [~y, 2],
it suffices to consider the following two cases:

Case 1. [z,y] is (%)-periodic. Since R/J(R) is a semisimple ring, by Lemma 3,
R/J(R) is commutative. Thus, [z,y] € J(R). Hence, [z,y]™=v) = [z, y]"®¥) implies
that [z,y]*@¥) = .

Case 2. (zoy) and ((—y) o z) are (*)-periodic. Consider the semisimple ring
R = R/J(R). By the result above, R is isomorphic to a subdirect sum of fields R;,
¢ in some index set | # ¢. Let Il 1 R; be the complete direct sum, and ¢ : R — MjerR;
be a monomorphism. Let II; be the projection of II;¢ 1R; onto R;, then by definition,
RQII; = R; for each i € I. Thus, (z o y) is (*)-periodic implying that (Z4II; o y41II;) is
(*)-periodic for each i € I. Since R; is a field, it follows that (Z4II; o F#II;) is strongly
periodic for each ¢ € I. Similarly, ((—7¢11;) o TIL,) is strongly periodic for each : € J.
By Theorem C, (Z 0 3)4Il; = (ZT¢II; 0 YoIT;) = 0 for each i € I. So, (ZoY)¢ = 0. Since ¢
is one to one, (ZoF) =0, i.e., (z oy) € J(R). Hence, (2 0 y)™(=¥) = (z 0 y)™=¥) implies
that (z o y)*(=¥) = @,

Finally, let R have no nonzero nil right ideals. Then as the proofs of Lemma 1 and
Lemma 2, we have that either [z,y] = 0 or (z0y) = 0 for all z,y in R. Thus, R is
commutative by the result of [4].

Finally, we note that Lemma 1 does not hold if both of m(z, y) and n(z,y) are even
or odd. To see this, let F be a finite field. Observing that [z,y]? is a scalar matrix for
all z,y in F», it is easy to see that the hypotheses as in Lemma 1 hold. However, [z,y]
1s not necessarily nilpotent for all z,y in F>. We also note that Lemma 2 does not hold
if both of m(z, y) and n(z,y) are even or odd.
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