A REMARK ON BOUNDEDNESS OF THE NUMERICAL RANGE

CHI FAI CHAN

Abstract. It is shown that Chien's result on the smallest rectangle with sides parallel to the axes containing the numerical range of a real matrix follows from a simple observation on complex matrices. A counter-example to Chien's conjecture is also given.

The numerical range of an m-square complex matrix B is defined to be

$$W(B) = \{ (Bx, x) : || x || = 1, \quad x \in \mathbb{C}^m \},\$$

where (.,.) denotes the standard inner product in \mathbb{C}^m . Let $\Lambda(B)$ denote the set of eigenvalues of B. If B is hermitian, let

$$\lambda_1(B) = \max \Lambda(B)$$
 and $\lambda_m(B) = \min \Lambda(B)$.

Let $A = [a_{ij}]$ be an *n*-square complex matrix. Then, for $x \in C^n$,

$$(Ax,x) = \frac{1}{2}((A + A^*)x, x) + \frac{i}{2}(i(A^* - A)x, x).$$

Since $A + A^*$ and $i(A^* - A)$ are hermitian, it follows that

$$W(A + A^*) = [\lambda_n(A + A^*), \lambda_1(A + A^*)],$$

and

$$W(i(A^* - A)) = [\lambda_n(i(A^* - A), \lambda_1(i(A^* - A)))].$$

Hence $[a, b] \times [c, d]$ is the smallest rectangle with sides parallel to the axes containing W(A), where

$$a = \frac{1}{2}\lambda_n(A + A^*),$$

$$b = \frac{1}{2}\lambda_1(A + A^*),$$

$$c = \frac{1}{2}\lambda_n(i(A^* - A)) = \frac{1}{2}\min\{Im(\lambda) : \lambda \in \Lambda(A - A^*)\},$$

and

$$d = \frac{1}{2}\lambda_1(i(A^* - A)) = \frac{1}{2}\max\{Im(\lambda) : \lambda \in \Lambda(A - A^*)\}.$$

Received October 12, 1990.

CHI FAI CHAN

Suppose now that A is real. M. T. Chien [1] proved that

$$c = \frac{1}{2}\lambda_n(K)$$
 and $d = \frac{1}{2}\lambda_1(K)$,

where

$$K = \begin{bmatrix} 0 & A - A^T \\ A^T - A & 0 \end{bmatrix}.$$

We shall see that a shorter proof is obtained from the previous observation. It is obvious (see, e.g., [2, pp. 45, 46]) that

$$\Lambda\left(\begin{bmatrix}0 & B\\ B^* & 0\end{bmatrix}\right) = \{\alpha \in \mathbb{R} : \alpha^2 \in \Lambda(BB^*)\}.$$

As $A - A^T$ is skew-symmetric,

$$\Lambda(K) = \{ \alpha \in \mathbb{R} : \alpha = \pm Im(\lambda), \quad \lambda \in \Lambda(A - A^T) \} \\ = \{ \alpha \in \mathbb{R} : \alpha = Im(\lambda), \quad \lambda \in \Lambda(A - A^T) \},$$

and Chien's result follows. Note also that $\lambda_n(K) = -\lambda_1(K)$, so c = -d.

We study some particular cases:

(i) n = 2. $\Lambda(A - A^T) = \{\lambda i, -\lambda i\}$, where $\lambda \ge 0$, and the eigenvalues of K are $\pm \lambda$. Since

$$2\lambda^{2} = \operatorname{tr}((A - A^{T})^{T}(A - A^{T})) = \sum_{i,j} (a_{ij} - a_{ji})^{2},$$

$$\lambda^{2} = \sum_{i < j} (a_{ij} - a_{ji})^{2}.$$
(1)

(ii) n = 3. $\Lambda(A - A^T) = \{\lambda i, -\lambda i, 0\}$, where $\lambda \ge 0$, and the eigenvalues of K are $0, \pm \lambda$. Similarly, we have (1).

Chien [1] conjectured for any n that if λ is an eigenvalue of K, then $\lambda = 0$ or λ satisfies (1).

(iii) n = 4. $\Lambda(A - A^T) = \{\lambda i, -\lambda i, \mu i, -\mu i\}$, where $\lambda, \mu \ge 0$, and the eigenvalues of K are $\pm \lambda, \pm \mu$. Similarly,

$$\lambda^2 + \mu^2 = \sum_{i < j} (a_{ij} - a_{ji})^2.$$

Let $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Then $\Lambda(B - B^T) = \{i, -i\}$. Let $A = B \oplus B$. Then the eigenvalues of K are ± 1 , whereas $\sum_{i < j} (a_{ij} - a_{ji})^2 = 2$. Chien's conjecture fails.

Acknowledgement

The author is grateful to Dr. Yik-IIoi Au-Yeung for his guidance and encouragement and to Mr. Che-Man Cheng for his useful comment.

272

A REMARK ON BOUNDEDNESS OF THE NUMERICAL RANGE

References

[1] M. T. Chien, "Boundedness of the numerical range", Linear Algebra Appl. 134, 25-30, 1990.

[2] F. R. Gantmacher, The Theory of Matrices, Vol. I, Chelsea Publishing Company, New York, 1959.

Department of Mathematics, University of Hong Kong, Hong Kong.