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SOME COMMUTATIVITY THEOREMS FOR ASSOCIATIVE RINGS 
WITH CONSTRAINTS INVOLVING A NIL SUDSET 

MOHD. ASHRAF 

Absh·act. We first prove that a ring R with unity 1 is corrunutalive if and only if 
for each x in R either x is central or there exists a polynomial J ( t) E Z{ t] such that 
x-x2 J(x) E A, where A is a nil subset of R (not necessarily a subring of R) and R 
stisfies any one of the conditions [x,xmy-xPy"xq) = 0 and [x, yxm -xPynxq) = O 
for all x, yin R, where m ~ 0, n > 1, p ~ 0, q ~ 0 are int.egcrs depending on pair 
of elements x, y. Further the same result has been extended for one sided s-unital 
rings. Finally a related result for a nil commutative subset A is also obtained. 

1. Introduction. 

Let A be a non-empty subset (not necessari1y a subring) of an associative ring R (R 
may be without unity 1 ); let N, Z denote the set of nilpotent e]ements of R, the center of 
R respectively. A ring R is called right (resp. left) s-unital if x E xR (resp. x E Rx) for 
all x in R. R is called s-unital if x E xR n Rx for all x in R. R is called normal if every 
idempotent of R is central. The symbol [x, y] stands for the commutator xy- yx, for any 
pair of elements of R. As usua] Z[t] is the totality of polynomials in t with coefficients 
in Z, the ring of integers. \Ve consider the following conditions: 

(I-A) For each x in R there exists a po]ynomial /(t) E Z[t] such that x-x2 f(x) E A. 
(II-A) For each x in Reither x is centra] or there exists a po]ynomial J(t) E Z[t] such 

that x - x2 J(x) E A. 
(III-A) For each x E R and a E A, [[a, x], x] = 0. 

(IV) For each x, yin R there exist integers m = m(x, y) 2'.; 0, n = n(x, y) > 1. ; 
p(x, y) 2'.; 0, q = q(x, y) 2'.; 0 such that [x, xmy - xPynxq] = 0. 

(V) For each x,y in R there exist integers m = m(x,y) 2'.; 0, n = n(x,y) > 1, p = 
p(x,y) 2 0, <J = q(x,y) 2 0 such that [x,yxm - xPynxq] = 0. 

A classicial theorem of Berstein [8] establishes commutativity of all rings satisfying 
(1-Z). Many authors have studied the commutativity of rings satisfying the condition 
(I-A), but always under some restrictions on A (for a complete reference see [5]). Various 
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special cases of (IV) and (V) are shown to imply commutativity of rings (cf. [2], [3]) for 
example if the integral indices in the underlying conditions are 'global'. The objective 
of the present paper is to investigate the commutativity of R, when the integral indices 
are 'local' i.e. they are depending on pair of elements x,y for their values. We establish 
commutativity of R, when (II-A) holds for a nil subset A together with either of the 
conditions (IV) and (V). Moreover, the commutativity of ring R satisfying (II-A) for a 
commutative nil subset A has been studied. The results obtained here, improve the main 
theorems of the author et. al. [2) and [3]. 

2. Property (II-A) For Noncommutative .4 

Theorem 1. Let R be a ring with unity l. The following statements are equivalent: 
{i) R is commu.tative. 
{ii) R satisfies either of the conditions (IV) & (V) and there e·xists a nil subset A 

of R for which R satisfies (I I - A). 
For easy reference, we state the following well-known lemma. 

Lemma 1 (10). Let R be a ring with unity l and f : R --+ R be a function such 
that f(x) = f(x + I) holds for all x in R. If for any x in R, there exists a positive 
integer h such that xh f(x) = 0, then necessarily f(x) = 0. 

Proof of Theorem 1. Obviously (i)=>(ii). Next, to show that (ii)=>(i) suppose 
that a E N and x be an arbitrary element of R. If R satisfies (IV), then there exist 
integers m1 ~ 0, n1 > 1, Pl ~ 0, q1 ~ 0 depending on the pair of elements x and a such 
that xm1[x,a] = xP1[x,a"1]x91• Again if we choose m2 2:: 0, n2 > 1, p2 ~ 0, q2 ~ 0 
depending on the pair ofelements-x and a"1, then xm2[x,a"•] = xP2fx,(a"1)"2Jz92. 
Thus for any positive integer k we have integers m1, m2, ... , m1.; ~ 0, n1, n2, ..• , nk > 
1, P1 ,P2, •.. ,Pk ~ 0 and q1, q2, ... , q1i; ~ 0 such that 

xm1+m2+ ... +m,.[x,a]. = xm2+ +m,. xPi[x,a"•Jx9i 

= Xm3+ +m1, ;xP1fP2 [x, a"1"2)x91+q2 

- - - - - - - - - -- 
- - - - - - - - - -- 

= xP1+p2+ ... +P1<[x,an1n2 ... n1-]xq1+ ... +q". 

Hence xmi+m:i+ ... +m" [x, aJ = 0 for sufficiently large k and a E Z, by Lemma I. Thus 
N ~ Z and in view of (II-A) R satisfies (1-Z). Hence R is commutative by Herstein's 
theorem [8). 

Again if R satisfies (V), t.hen by using the same arguments as above we get the 
required result. 

Remarks 1. The following example suggests that it is essential to retain any one 
of the conditions (IV) and (V) together with (II-A) in the hypotheses of above theorem 
in order to get the commut.ativit.y of R. 
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(
Q b C) ( 1 0 0) Example 1. Let R = {al+ B / B = 0 0 d , I = 0 . I · 0 , a, b, c, d E 
0 0 0 0 0 1 

GF(2) }. Obviously N :_ {B} and R satisfies neither (IV) nor (V). If we assume that 
A = N, then for any x in R, x - x2/(x) E A. However, R is not commutative. 

2. The justification for unity 1 in the hypotheses of our theorem may be given by 
the following example. 

(
0 a b) 

Example 2. Let R = { 0 0 c /a, b, c E GF(2) }. It can be easily seen that 
0 0 0 

R is a nilpotent ring of index 3. Thus R = N and R satisfies both· the conditions (IV) 
& (V). Next, if we assume that A = N then R also satisfies condition (II-A). However, 
R is not commutative. 

3. Although, the above example strengthens the existence of unity 1 in the hypothe­ 
ses of. our theorem, nevertheless, the same result may be extended in a more general 
setting. 

Theorem 2. Let R be a left (resp. right) s-unital ring satisfying {IV) {resp. VJ. 
Suppose, further that there exists a subset A of N for which R satisfies (II-A). Then R 
is commutative (and conversely). 

The following lemma is essentially proved in [13]. 
Lemma 2. Let R be a right (resp. left) s-unital ring. If for each pair of elements 

x, y of R there exist a positive integer k = k(x, y) and an element e' = e'(x, y) of R such 
that e'xk = xk and e'yk = yk {resp. xke' = xk and yke' = yk), then R is s-unital. 

Proof of Theorem 2. Since R is left (resp. right) s-untial then for any x,y in R, 
we can find an element e of R such that ex = x and ey = y (resp. xe = x and ye = y). 
Thus there exist integers m = m(x, e) ~ 0, n = n(x,e) > 1, p = p(x,e) > 0 and 
q = q(x, e) ~ 0 such that 

(resp. 

xm+Ie = [x, xme - xPenxq] + xm+l = xm+l 
exm+l = [x, exm - xPenxq] + exm+l = Xm+l). 

Similarly, ym'+1e = ym'+I (resp. eym'+I = ym'+1). Hence xm+m'+1e = xm+m'+1, 
ym+m'+le = ym+m'+l (resp. exm+m'+I = xm+m'+I, eym+m'+I = ym+m'+I) and in view 
of Lemma 2, R is s-unital. Thus by (9, Proposition l], we may a<;surne that R has unity 
1 and hence R is commutative by 'Theorem 1. 

Remark 4. The following example shows that there are noncommutative left (resp. 
right) s-unital rings satisfying (V) (resp. (IV)). 

Example 3. Let 
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and 

be two subrings of 2 x 2 matrices over GF(2). Obviously in both the cases N is the set 

consisting of the matrices ( ~ ~) , ( ! ! ) . Further if A = N, then for any x in R 

we can find a polynomial J(t), for example /(t) = t, such that x - x2 /(x) E A. Also 
R1 (resp. R2) is a left (resp. right) s-unital ring and for any fixed integers m 2'.; 0, n > 
I, p 2'.; 0, q ~ 'O, R1 (resp. R2) satisfies .the condition (V) (resp. (IV)). 

3. Property (II-A) For Commutative A 

Motivated by Theorem 1 of Tominaga and Yaqub [12], we derive the following: 

Theorem 3. Let R be a normal ring, and let A be a nil commutative subset of R 
for which R satisfies (II - A). Then R is co1nniufotive. 

In the proof we shall use the following lemma, the proof of which is contained in 
that of [11]. 

Lemma 3(i). Let</> be a ring homomorphism of R onto R ... If R satisfies (I - A), 
(II-A) or(IJI-A), then n· satisfies (/-¢(A)), (JI-</>(A)) or(III-</>(A)) respectively. 

(ii). If there exists a commutative s1tbset A of N for which R satisfies {II-A) and 
(III-A), then R is commutative. 

(iii). If A is commutative and R satisfies (I I - A), then N is a commutative nil 
ideal of R containing a commutator ideal of R and contained in a centralizer of A, in 
particular, N2 ~ Z. 

Proof of Theorem 3. In view of Lemma 3(i), R can be assume to be subdiractly 
irreducib]e. Let x be an arbitrary element of R \ Z. By using hypotheses (II-A), we find 
that there exists y E < x > and a positive integer m such that xm = xm+1y. Obvious]y, 
e = xmym is an idempotent with x111 = xme. Since idempotents of Rare central, hence 
e is either O or 1. But R has no unity, hence e = 0 and by Lemma 3(iii) x is in the 
commutative ideal N and so [[a, x], x] = 0 for all a E A. Hence R is commutative by 
Lemma 3(ii). 

Remarks 6. Example 3 also shows that the condit.ion (II-A) alone does not imply 
commutativity of rings in the above theorem. 

7. In retrospect, it is tempting to conjecture as follows: 

Conjecture. Let R be a ring satisfying any one of the conditions (IV) and (V). 
Further, if there exists a nil commutative subset A for which R satisfies (II-A), then R 
is commutative. 
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8. A careful observation of the proof of Theorem 3 shows that the above conjecture 
is true if R is normal. However, Example 3, violates the above conjecture because the 
centrality of idempotents in R1 (resp. R2) are not implied by the condition (V) (resp. 
(IV)) together with (II-A). 
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ROTARU STARLIKE INTEGRAL OPERATORS 

SUBHAS S. BHOOSNURMATH ANDS. R. SWAMY 

Absta·act. Let S0(a, b) denote the class of analytic functions fin the unit disc U, 
with /(0) = /'(O) - 1 = 0, satisfying the condition l(z/'(z)/ /(z)) - al< b, z E U, 
where a E C, la - 1 I < b ~ Re( a). In this paper we obtain integral operators which 
map S0(a,b) into S•(a,b) and S*(,\) X S0(a,b) into S0(,\). 

1. Introduction. 

Let V denote the class of functions / analytic in the unit disc U, with f(O) = 
f' ( 0) - 1 = 0. A function / of V is said to belong to s• (A), the class of starlike functions 
of order A, if Re(zf'(z)/ f(z)) > A, for z E U, 0 ~ A < 1. The class S"' of starlike 
functions is identified by S*(O) = S*. In [2], Rotaru investigated properties of the class 
S*(a,b) of functions/ E V satisfying l(zf'(z)//(z)) - al < b, z E U, where a EC, 
la - II< b ~ Re(a). It is clear that S"'(a, b) C S*(Re(a) - b) CS*. 

Recently in [3], Vinod kumar and Shukla have studied the integral operators of the 
form 

I(!) e+/3 r t6-lfo(t)dt)l/.B 
z-Y Jo 

(1.1) 

and 

(1.2) 

where a, /3, 1, {J and u are real constants and f and g belong to some favoured classes of 
univalent functions. By imposing suitable restrictions on a, /3, 1, {J and u thay have shown 
that, for a= a, I(!) maps S*(a, b) into itself and, for a= a, I(!, g) maps S*(A) x S*(a, b) 
into s·(.~)- 

In the present paper we prove that, for a E C', J(f) maps S*(a,b) into itself and 
also, for a EC, I(f,g) maps S*(A) x S*(a,b) into S*(A). 
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2. Prelhninary Lemmas 

The following lemma may be easily proved by using Schwarz's lemma as in Rotaru 
[2]. 

Lemma 2.1. The function f belongs to S*(a, b) if and only if there exists a function 
w analytic in U satisfying w(O) = 0, lw(z)I < 1 for z EU such that 

zf'(z) 
f(z) 

1 + Aw(z) 
1 + Bw(z)' z EU, 

where A= (b2 - lal2 + a)/b and B = (I - a)/b. 
Next we have the well known Jack's lemma [l]. 

Lemma 2.2. Let w be analytic in U with w(O) = 0. If there exists a z0 E U such 
that maxlzl:5lzol lw(z)I = lw(zo)I, then zow'(zo) = k w(zo) for some k 2'.; 1. 

Lastly we prove a lemma which plays an important role in establishing our main 
result. 

Lemma 2.3. Let a, /3, b be real numbers and 'a ' be a complex number sue/, that 
0 < o ::; /3, la - 11 < b::; Rc(a). If d = (ao + /3 - o)/ /3 and e = bo//3, then S*(d, e) C 
S*(a, b). 

Proof. We need only to consider the case o < /3. In order to establish the lemma 
it suffices to show that 

Re(a) - b < Re(d) - e and Re(d) + e < Re(a) + b. (2.1) 

Let Re(a) - b 2'.; Re(d) - e. Then Re(a) - b 2'.; 1, which is contrary to la - II< b. Next, 
suppose that Re(d) + e 2'.; Re(a) + b. Then 1 2'.; Re(a) + b, which is also contrary to 
ja - II< b. Therefore inequa]ities in (2.1) ho]d and hence the required result follows. 

From now on d and e will be as in lemma 2.3. 

3. Integral Operators That Map S*(a, b) into S*(a, b) 

An integral operator which is defined on S*(a, b) and maps S*(a, b) into (onto) itself 
is called Rotaru starlike integral operator. 

\Ve now prove the following: 

Theorem 3.1. Let a, /3, 1 and 8 be real constants such that O < a ::; /3 and 1 + f3 = 
8 + a. If f(z) E S*(a,b) then the function F(z) defined by 

F(z) = [' + /3 t t6-1 f0(t) dt] 1113 
z-Y Jo (3.1) 
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also belongs to S*(a,b), provided 411~(a)I > ,+/3 ~ ac~~~~I~), where c ~ (b2-la-ll2)/b 
and B = {I - a)/b. 

Powers in (3.1) are meant as principal values. 

Proof. First we prove that F( z) E S* ( d, e). Let w( z) be a regular function defined 
in U by 

zF'(z) _ 1 + D w(z) 
F(z) - I+ Ew(z) 

(3.2) 

where D = (e2 - ldl2 + d)/e, E = (1 - d)/e. Clearly w(O) = 0 and w(z) -f. -1/ E. From 
(3.1) and (3.2) we obtain 

· 6_-yf0(z) N+lv/w(z) 
Nz = _ , 

Ff3(z) 1 + E w(z) (3.3) 

where N =; + /3, M = D(J + E,. Logarithmic differentiation of (3.3) yields 

a [ z f' ( z) _ a] = Ee + e w( z) m zw' ( z) 
/3 rt_\ - . ' + 

where m = (e2 - Id- 112)/e = J(b2 - la - 112)/b = j c > 0. 
Now we claim that jw(z)I < 1, for otherwise by lemma 2.2 there exists a zo E U 

such that lw(zo)I = 1 and 

(3.4) 

zow'(zo) = kw(zo), 

From (3.4) and (3.5) we have 

~ [ zof'(zo) _ a] _ 
/3 f(zo) 

k > 1. (3.5) 

P(zo) 
Q(zo) 

(3.6) 

where 

P(zo) = EeN + (Eelvl + eN + km) w(zo) + eJ.1 w2(zo) 
and 

·Q(zo) = N +(EN+ M) w(zo) + EA1 w2(z0). 

Clearly 

I P(zo) 1
2 -e2 I Q(zo) 1

2 > 0 provided 
km - - + N + Re(Ek!) + Re((EN + /11) w(zo)) > 0 
2e 

(3.7) 

or equivalently 

(k- l)m m 
2e +Ao+ Bo Re(w(zo)) - Do Im(w(zo)) + 2e > 0, (3.8) 
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where Ao = Re(N + EM), B0 = Re(EN + /1,f) and D0 = lm(EN + M). Since k 2:: 1 
and m > 0, (3.8) holds if A0 ± Bo ~ 0 and ;: ± Do > 0. 
Now 

Ao± Bo = Re[{(-y + /3) + E(D/3 + E-y)} ± {E('Y + /3) + (D/3 + E,)}] 
= Re[(l ± E)(, + /3) ± (1 ± E)(D/3 + E;)] 
= Re[l 1 ± E 12, + /3(1 ± E)(l ± D)] 

0 .d d > /3Re(l ± E){l ± D) 
~ , prov1 e ')' - - I 1 ± E 12 

· Re(l ± B) = -(/3 ± ac , 1 , n I? ), where B = (1 - a)/b. 
and 

m 
m ± D = m ± 2(1 + /3) Jm(d) > O provided,+ /3 < 4 I Jm(d) I 2e o 2e e 

C 

4 I /m(a) I" 
Thus from (3.6) and (3.7) it follows in view of e = o:b/ /3 that l(zo/'( zo)/ /(zo))-al > b 

provided 
c Re(l - B) 

4 I Jm(a) I > 'Y + /3 .2:: ac , . - ·~ . 

But this is contrary to the fact that/ E s•(a, b). Therefore lw(z)I < 1 for z in U. Thus 
from (3.2) and lemma 2.1, FE s•(d, e). Hence from lemma 2.3, FE S*(a, b). 

. Corollary 3.1. If 4lln~(a)I > 1 2:: ac1j~~nl~)' where C = (b2 - la - 112)/b, B = 
(I - a)/b and if f E s•(a,b), then the function F defined by 

also belongs to S*(a,b). 
The above corollary follows by taking,= 1 - /3 and 6 = 1 - a in theorem 3.1. 

Corollary 3.2. Leto: and T/ be real constants suclt that a> 0, T/ 2:: 0. If f E S*(a, b), 
then the Junction F defined by 

also belongs to S*(a,b), provided 411~(a)I > a+T/+, ~ a·c~~~DI~), where c = (b2-Ja­ 
ll2)/b and B = (1 - a)/b. 

The above result is obtained by setting /3 = a + 17 and 6 = , + T/ in theorem 3.1. 

Remark. For a = a, theorem 3.1, corollary3.1 and corollary 3.2 of Vinod kumar 
and Shukla [3] are obtained as particular cases from our results. 
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We now conside!' the integral operator defined in (3.1) in a limiting case. When 
a= {3, the relation (3.1) ·can be written as 

f(z) = F(z)([-y + ({3 zF'(z))/F(z)]/('Y + f3))1//J. 
when {3 -- 0, the above relation reduces to 

f(z) = F(z)exp[{(zF'(z)/ F(z)) - 1}/-y) 

where 'Y > 0. It follows from (3.9) that 

(3.9) 

F(z) = f(z)exp[-z--Y 1z rr-1{t~:g-l}dtJ-. (3.10) 

We now take "Yin (3.10) a complex numbe1· with Re('Y) > 0 and prove the following. 
Theorem 3.2. If f ( z) E S* ( a, b) and 'Y E C such that Re( 'Y) > 0, then the function 

F defined by (3.10) also belongs to S"(a, b). 

Proof. Let w( z) be a regular function defined in U by 

zF'(z) _ 1 + A w(z) 
F(z) - l+Bw(z)' 

where A= (b2 - lal2 + a)/b and B = (1 - a)/b. Evidently w(O) = 0 and w(z) "I -1/ B 
for z in U. Differentiating (3.9) and using (3.11) we get 

(3.11) 

zf'(z) bB+bw(z) (c/,)zw'(z) 
_:_..;__:. - a = - + - ' J ( z) 1 + B w( z) ( 1 + B w( z) )2 (3.12) 

where c = (b2 - la-112)/b > 0. \Ve sha1l prove that lw(z)I < 1, z EU. For, if not, there 
exists a zo EU, by lemma 2.2, such that lw(zo)I = 1 and 

zow'(zo) = kw(zo), (3.13) 

From (3.12) and (3.13) we obtain 

zof'( zo) 
-a = J(zo) 

b[B + w(zo) + <I>(zo)w(zo)] 
1 + Bw(zo) 

kc 
where <I>(zo) = - , 

b,(I + Bw(zo) 
Now I zt'z~z)) -al> b provided I B + w(zo) + <I>(zo)w(=o) 12 > I I+ Bw(zo) 12. This 

condition reduces to the fo11owing: 

14>(.:-o) 12 +2Re[(l + Bw(zo)<I>(=o)] > 0, 
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~hich is true since Re[l + Bw(zo)<l>(zo)] = Re(:~) > 0. But this is a contradiction to the 
hypothesis that/ E S"(a,b). Hence lw(z)I < 1 for z EU and from (3.11) we conclude 
that FE S"(a, b). 

Remark. For a. = a, the above theorem improves a recent result of Vinodkumar 
and Shukla [3) who proved it when , is a real number. Here it is worth noting that the 
technique used by them with the help of Jack's lemma, fails when, is a complex number. 

4. Integral Operators that Map S"(.~) x S"(a, b) into S"(,\) 

Theorem 4.1. Let o:,/3,,,6 and O' be real constants such that o: > 0, /3 ~ o:, o- ~ 01 

a+ 6 = /3 +,and,+ u + ,\{3 > 0. If f ES"(,\) and g E S"(a,b?, (a,b) ER= {(a,b) : 
la - 11 < b ~ a*}, where a• = min{Re(a), (Re(a) - I)+ 2q(~<~~~>./J) }1 then the function 
F defined by 

F(z) = [' ~!+; u 1z t6-l f0(t)gq(t) dt] l//3 
also belongs to S*(,\). 

Powers in (4.1) are meant as principal values. 

Proof. Define a regular function w(z) in U by 
zF'(z) = 1 + (2,\ - 1) w(z) (4.2) F(z) l+w(z) 

( 4.1) 

Clearly w(O) = 0 and w(z) f:. -1 in U. From (4.1) and (4.2) we have 

Niz6--y-<1{f0(z)g<1(z)} = N1+1\-ftw(z), (4.3) Ff3(z) 1 + w(z) 
where N1 =, + /3 + u and .Af1 =, + O' - /3 + 2,\{3. 

Logarithmic differentiation of ( 4.3) yields 

zf'(z) = u (I - a)- u {zr/(z) _a}+ /3 { 1 + (2.X - l)w(z)} 
f(z) o: o: g(z) a l+w(z) 

-{/3-a}- 2/3(1-.\)zw'(z) (4.4) a o{l + w(z))(N1 + Af1w(:)) 
Now we claim that lw(z)I < 1, for otherwise by lemma 2.2 there exists a z0 E U such 
that lw(zo}I = 1 and 

z0w'(z0) = kw(z0), k > 1. (4.5) 
Using the technique similar to the one cmployc<l in the proof of theorem 4.1 of Vinod 

kumar and Shukla [3], we obtain from (4.4) and (4 .. 5) 

R { /'(zo)} , 2(, + u + ,\{3){2o{y + O' + ,\f3)[b - (Re(a) - I)} - ,8(1 - ,\)} 
e zo ( ) < " + [ ., ( )) 2J J zo - a- Ni+ 2N1M1Rc(w =o + M1 

. /3(1-·,\) 
'.SA, provided b '.S (Re(a)-1)+. '/3) 

2<Th + (7 + /\ 
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But this is contrary to the fact that f E S*(-X). Therefore lw(z)I < 1 al)d hence, from 
( 4.2), FE S" (-X). 
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