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SOME COMMUTATIVITY THEOREMS FOR ASSOCIATIVE RINGS
WITH CONSTRAINTS INVOLVING A NIL SUBSET

MOHD. ASHRAF

Abstract. We first prove that a ring R with unity 1 is commutative if and only if
for each z in R either z is central or there exists a polynomial f(t) € Z[t] such that
z—z2f(z) € A, where A is anil subset of R (not necessarily a subring of R) and R
stisfies any one of the conditions [z,z™y—zPy"z9 = 0and (z,yz™ —zPy™z9)] = 0
forallz,yin R, wherem > 0,n > 1,p 20,9 20 are integers depending on pair
of elements z,y. Further the same result has been extended for one sided s-unital
rings. Finally a related result for a nil commutative subsct A is also obtained.

1. Introduction.

Let A be a non-empty subset (not necessarily a subring) of an associative ring R (R
may be without unity 1); let N, Z denote the set of nilpotent elements of R, the center of
R respectively. A ring R is called right (resp. left) s-unitalif z € zR (resp. ¢ € Rz) for
all z in R. R is called s-unital if z € zR N Rz for all z in R. R is called normal if every
idempotent of R is central. The symbol [z, y] stands for the commutator zy— yz, for any
pair of elements of R. As usual Z [¢] is the totality of polynomials in ? with coefficients
in Z, the ring of integers. We consider the following conditions:

(I-A) For each z in R there exists a polynomial f(2) € Z[t] such that z—z2f(z) € A.
(II-A) For each z in R either z is central or there exists a polynomial f(t) € Z[t] such
that z — 22 f(z) € A.
(I1I-A) For each z € Rand a € A, [[a,2],2] = 0.
(IV) For each z,y in R there exist integers m = m(z,y) > 0,n = n(z,y) > 1.7
p(z,y) > 0, q = ¢q(z,y) > 0 such that [z,2™y — 2Py"z?] = 0.
(V) For each z,y in R there exist integers m = m(z,y) > 0,n = n(z,y) > 1,p =
p(z,y) > 0, q = ¢(z,y) > 0 such that [z,y2™ — zPy"z?] = 0.

A classicial theorem of Herstein [8] establishes commutativity of all rings satisfying
(I-Z). Many authors have studied the commutativity of rings satisfying the condition
(I-A), but always under some restrictions on A (for a complete reference sce [5]). Various
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special cases of (IV) and (V) are shown to imply commutativity of rings (cf. [2], [3]) for
example if the integral indices in the underlying conditions are ‘global’. The objective
of the present paper is to investigate the commutativity of R, when the integral indices
are ‘local’ i.e. they are depending on pair of elements z,y for their values. We establish
commutativity of R, when (II-A) holds for a nil subset A together with either of the
conditions (IV) and (V). Moreover, the commutativity of ring R satisfying (II-A) for a
commutative nil subset A has been studied. The results obtained here, improve the main
theorems of the author et. al. [2] and [3].

2. Property (II-A) For Noncommutative A

Theorem 1. Let R be a ring with unity 1. The following statements are equivalent:
(i) R is commuiative.
(i) R satisfies either of the conditions (IV) & (V) and there ezists a nil subset A
of R for which R satisfies (I1I — A).
For easy reference, we state the following well-known lemma.

Lemma 1 [10]. Let R be a ring with unity 1 and f : R — R be a function such
that f(z) = f(z + 1) holds for all z in R. If for any z in R, there exists a positive
integer h such that z* f(2) = 0, then necessarily f(z) = 0.

Proof of Theorem 1. Obviously (i)==(ii). Next, to show that (ii))==(i) suppose
that ¢ € N and z be an arbitrary element of R. If R satisfies (IV), then there exist
integers m; > 0,n; > 1, p; 2 0, ¢1 > 0dependingon the pair of elements z and a such
that z7[z,a] = zP[z,a™]z%. Again if we choose my 2 0,n2 > 1,p2 > 0,92 >0
depending on the pair of elements -z and a™, then z™2[z,a™] = zP2[z,(a™1)"2]z%.
Thus for any positive integer k we have integers my, my,...,mg > 0, ny, ng,...,Ng >
1, p1,p2,...,p& > 0 and 91,92, ...,qr > 0 such that

zm1+m2+---+mk [x,a]v = pMat..+ms xpl[x,an!]xQX
= gMsttmi pitpe [x,aﬂxﬂz]x91+92

= gP1tpP2+.. +ps [.’L', anlnz---"k]m91+--~+4k 4

Hence z™¥mat-+mi(z 4] = 0 for sufficiently large k and a € Z, by Lemma 1. Thus
N C Z and in view of (II-A) R satisfies (I-Z). llence R is commutative by Herstein’s
theorem [8].

Again if R satisfies (V), then by using the same arguments as above we get the
required result.

Remarks 1. The following example suggests that it is essential to retain any one
of the conditions (IV) and (V) together with (IT-A) in the hypotheses of above theorem
in order to get the commutativity of R.
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0 b ¢ 1 00
Example 1. Let R = {aI+B/B= 0 0d|,7={01 0},a,bcde€
' 0 0 0 0 01
G’F(2)}. Obviously N = {B} and R satisfies neither (IV) nor (V). If we assume that
A = N, then for any z in R, z — z2f(z) € A. However, R is not commutative.
2. The justification for unity 1 in the hypotheses of our theorem may be given by
the following example.

0 a b
Example 2. Let R = { 0 0 ¢} /ab,ce€ GF(?)}. It can be easily seen that
0 00

R is a nilpotent ring of index 3. Thus R = N and R satisfies both' the conditions (IV)
& (V). Next, if we assume that A = N then R also satisfies condition (II-A). However,
R is not commutative.

3. Although, the above example strengthens the existence of unity 1 in the hypothe-
ses of our theorem, nevertheless, the same result may be extended in a more general
setting.

Theorem 2. Let R be a left (resp. right) s-unital ring satisfying (IV) (resp. V).
Suppose, further thal there exists a subset A of N for which R satisfies (II-A). Then R
is commutative (and conversely).

The following lemma is essentially proved in [13].

Lemma 2. Let R be a right (resp. left) s-unital ring. If for each pair of elements
z,y of R ihere ezist a posilive integer k = k(z,y) and an element ¢’ = e'(z,y) of R such
that e'z® = z* and e'y* = y* (resp. z¥e’ = z* and y*e' = y*), then R is s-unital.

Proof of Theorem 2. Since R is left (resp. right) s-untial then for any z,y in R,
we can find an element e of R such that ez = z and ey = y (resp. ze = z and ye = y).
Thus there exist integers m = m(z,e) > 0,n = n(z,e) > 1,p = p(z,e) > 0 and
g = q(z,e) > 0 such that

m+1 m+41 __

e = [z, 2™e — zPe"29] + = = gmt!

z
(resp.  ex™ = [z, ez™ — zPe"29] 4 ez™t! = g™,

Similarly, y™'*le = y™'*! (resp. ey™*! = y™t1). Hence zm+m'tle = gm+m'+1
ym+m’+le s ym+m'+1 (resp. ewm+m'+1 - :L.m+m’+l, eym+m'+l s m+m'+1) and in view
of Lemma 2, R is s-unital. Thus by [9, Proposition 1], we may assume that R has unity
1 and hence R is commutative by Theorem 1.

Remark 4. The following example shows that there are noncommutative left (resp.
right) s-unital rings satisfying (V) (resp. (IV)).

Example 3. Let

s = {(3 )-GO D)
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m= {80080 0G )

be two subrings of 2 x 2 matrices over GF(2). Obviously in both the cases N is the set

consisting of the matrices (g 8), (i i) Further if A = N, then for any z in R

we can find a polynomial f(t), for example f(t) = ¢, such that z — z%f(z) € A. Also
R, (resp. Ry) is a left (resp. right) s-unital ring and for any fixed integers m > 0, n >
1,p > 0,q >0, R, (resp. R») satisfies the condition (V) (resp. (IV)).

and

3. Property (II-A) For Commutative A

Motivated by Theorem 1 of Tominaga and Yaqub [12}, we derive the following:

Theorem 3. Let R be a normal ring, and let A be a nil commuiative subset of R
for which R satisfies (II — A). Then R is commutative.

In the proof we shall use the following lemma, the proof of which is contained in
that of [11].

Lemma 3(i). Let ¢ be a ring homomorphism of R onto R*. If R satisfies (I — A),
(IT—A) or (II11—A), then R* satisfies (I—¢(A)), (I1—¢(A)) or (I111-¢(A)) respectively.

(ii). If there ezists a commulative subsel A of N for which R satisfies (II-A) and
(1II-A), then R is commutative.

(iii). If A is commutative and R satisfies (II — A), then N is a commutative nil
ideal of R containing a commutator ideal of R and contained in a centralizer of A, in
particular, N* C Z.

Proof of Theorem 3. In view of Lemma 3(i), R can be assume to be subdiractly
irreducible. Let x be an arbitrary element of R\ Z. By using hypotheses (II-A), we find
that there exists y € < z > and a positive integer m such that z™ = z™*!'y. Obviously,
e = z™y™ is an idempotent with 2™ = z™e. Since idempotents of R are central, hence
e is either 0 or 1. But R has no unity, hence ¢ = 0 and by Lemma 3(iii) z is in the
commutative ideal N and so [[¢,z],2] = 0 for all a € A. Hence R is commutative by
Lemma 3(ii).

Remarks 6. Example 3 also shows that the condition (II-A) alone does not imply
commutativity of rings in the above theorem.

7. In retrospect, it is tempting to conjecture as follows:

Conjecture. Let R be a ring satisfying any one of the conditions (IV) and (V).
Further, if there exists a nil commutative subset A for which R satisfies (II-A), then R
is commutative.
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8. A careful observation of the proof of Theorem 3 shows that the above conjecture
is true if R is normal. However, Example 3, violates the above conjecture because the
centrality of idempotents in R; (resp. Rj) are not implied by the condition (V) (resp.
(IV)) together with (II-A).
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ROTARU STARLIKE INTEGRAL OPERATORS

SUBHAS S. BHOOSNURMATH AND S. R. SWAMY

Abstract. Let S°*(a,b) denote the class of analytic functions f in the unit disc U,
with f(0) = f(0) — 1 = 0, satisfying the condition |(2f'(z)/f(z)) —a| < b, z € U,
where a € C, |a—1| < b < Re(a). In this paper we obtain integral operators which
map S*(a,b) into S$*(a,b) and S*(\) x S*(a,b) into S*(A).

1. Introduction.

Let V denote the class of functions f analytic in the unit disc U, with f(0) =
F(0)—1 = 0. A function f of V is said to belong to S*(A), the class of starlike functions
of order A, if Re(zf'(z)/f(z)) > A, for 2z € U, 0 £ A < 1. The class S* of starlike
functions is identified by S*(0) = S*. In [2], Rotaru investigated properties of the class
S*(a,b) of functions f € V satisfying |(2f'(z)/f(z)) —a] < b, z € U, where a € C,
le — 1| < b < Re(a). It is clear that S*(a,b) C S*(Re(a) —b) C S*.

Recently in [3], Vinod kumar and Shukla have studied the integral operators of the
form

I(f) = [7:'_7;3 [)" té—lfa(t)dt]llﬁ (11)
and .
I(f,9) = [LE022 fo 15152 (0)g° (1) de] °, (1.2)

where a, 8,7,6 and o are real constants and f and g belong to some favoured classes of
univalent functions. By imposing suitable restrictions on a, 3,7, 6 and ¢ thay have shown
that, for a = @, I(f) maps S*(a, b) into itself and, for a = @, I(f, g) maps S*(A) x S*(a,b)
into S*(X).

In the present paper we prove that, for a € C, I(f) maps S*(a,b) into itself and
also, for a € C, I(f, g) maps S*()) x S*(a,bd) into S*(]A).

Received February 22, 1991.
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2. Preliminary Lemmas

The following lemma may be easily proved by using Schwarz’s lemma as in Rotaru
[2].

Lemma 2.1. The function f belongs to S*(a,bd) if and only if there exisis a function
w analytic in U satisfying w(0) = 0, |w(2)| < 1 for z € U such that

z2f'(2) _ 1+ Aw(z)
f(2) 14+ Buw(z)’

z€eU,

where A = (b2 — |a|?2 + a)/b and B = (1 — a)/b.

Next we have the well known Jack’s lemma [1].

Lemma 2.2. Lel w be analytic in U with w(0) = 0. If there exisis a z9 € U such
that max,j<|z,| |w(2)] = |w(z0)|, then zow'(20) = kw(2o) for some k > 1.

Lastly we prove a lemma which plays an important role in establishing our main
result.

Lemma 2.3. Let a,B,b be real numbers and ‘a’ be a compler number such that
0<a<pB la=1]<b< Re(a). Ifd= (aa+ B —a)/B and e = ba/B, then S*(d,e) C
S*(a,b).

Proof. We need only to consider the case a < . In order to establish the lemma
it suffices to show that

Re(a)—b < Re(d)—e and  Re(d)+e < Re(a)+b. (2.1)

Let Re(a) — b > Re(d) —e. Then Re(a) — b > 1, which is contrary to |a — 1| < b. Next,

suppose that Re(d) + e > Re(a) + b. Then 1 > Re(a) + b, which is also contrary to

la — 1] < b. Therefore inequalities in (2.1) hold and hence the required result follows.
From now on d and e will be as in lemma 2.3.

3. Integral Operators That Map S*(a,b) into S*(a,b)

An integral operator which is defined on S*(a, b) and maps S*(a, b) into (onto) itself
is called Rotaru starlike integral operator.
We now prove the following:

Theorem 3.1. Let «, 8,7 and § be real constants such that0 < a < B and v+ B =
6+ c. If f(z) € 5*(a,b) then the function F(z) defined by

Fs) = [122 [ﬁ-lfa(t)dt]”” | (3.1)
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also belongs to S*(a,b), provided W)T >y+08> acgﬁ%—gl—lfl, where ¢ = (bz—-la—llz)/b
and B =(1-a)/b.

Powers in (3.1) are meant as principal values.

Proof. First we prove that F(z) € S*(d,e). Let w(z) be a regular function defined

in U by
zF'(z) _ 14+ Duw(2)

F(z) =~ 1+Euw(z)
where D = (e? — |d|*> + d)/e, E = (1 — d)/e. Clearly w(0) = 0 and w(z) # —1/E. From
(3.1) and (3.2) we obtain

(3.2)

sy £22) _ N+ Mu(z)

Nz == A 3.3
G - 1+Bu) (3:3)

where N=v+ 6, M = Df + Ev. Logarithmic differentiation of (3.3) yields
—d] = Fe + ew(z) mzw'(z) (3.4)

= f(z

where m = (e? — |[d — 1|?)/e = g(b‘—la-—l|°)/b=-gc>0
Now we claim that |w(z)| < 1, for otherwise by lemma 2.2 there exists a zo0 € U
such that |w(zo)| = 1 and

1+ Ew(z) 1+ Ew(z))(N+ Mw(z))

zow'(z0) = kw(zo), k=L (3.5)

From (3.4) and (3.5) we have

a rz0f'(20) P(z0)
TN, el = Sl 3.6
5l = Q) 5
where
P(20) = EeN + (EeM +eN + km) w(zo) + eM w?(20)
and '
Q(z0) = N+ (EN + M) w(z0) + EM w*(2).
Clearly
| P(z0) |* =€ | Q(20) | > 0O provided (3.7
k
3’3 + N + Re(EM) + Re(EN + M)w(z)) > 0
or equivalently
k-1
% + Ao + Bo Re(w(20)) — Do Im(w(20)) + —27% > 0, (3.8)
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where Ay = Re(N + EM), By = Re(EN + M) and Dy = Im(EN + M). Since k > 1
and m > 0, (3.8) holds if Ag & By > 0 and =xDy>0.
Now

Ao+ Bo = Re[{(y+B)+ E(DB+Ey)} £ {E(y+ 8) + (DB + Ev)}]

= Re[(1£ E)(v + ) £+ (1 + E)(DB + Ev)]
= Re[|1+ E |? v+ (1 £ E)(1+ D))

: BRe(1 £ E)(1+ D)
p- R
> 0, provided ¥ > FEVAL
' Re(1+ B)
= - s B = (1-a)/b.
(Bxac [zB [ ), where (1-a)/
and
In-:l:Do = ~n—)’:EQ(‘Y_*-—ﬁ)Im(d) > 0 providedy+ 8 < = = : .
2e 2e e 4 | Im(d) | 4| Im(a) |

Thus from (3.6) and (3.7) it follows in view of e = ab/f that |(20f'(20)/f(z0))—a] > b
provided
¢ Re(1 - B)
Tm@] > TP 2 e gp:
But this is contrary to the fact that f € $*(a,b). Therefore |w(z)| < 1 for z in U. Thus
from (3.2) and lemma 2.1, F € S*(d,e). Hence from lemma 2.3, F € S*(a,b).

- Corollary 3.1. If Zlﬂgz(_aﬂ >1> ac%%%}l@, where ¢ = (b - la — 1|?)/b, B =
(1—a)/b and if f € S*(a,b), then the function F defined by

F(z) = {zp—l/oz(@)“dt]l/ﬂ

also belongs to S*(a,b).
The above corollary follows by takingy =1— f# and § = 1 — o in theorem 3.1.

Corollary 3.2. Let a and 1 be real constants such thata > 0, 7> 0. If f € S*(a,b),
then the function F defined by

+a+ o - 1/(e+n)
F(z) = [7—z;—’7/0 grén-lg (t)dt]

also belongs to S*(a,b), provided ‘lIT'E(T)I >a+n+y> acﬁ,-‘i%l’?, where ¢ = (b — |a —
112)/b and B = (1 — a)/b.
The above result is obtained by setting 8 = a + 7 and § = v + 5 in theorem 3.1.

Remark. For a = @, theorem 3.1, corollary3.1 and corollary 3.2 of Vinod kumar
and Shukla [3] are obtained as particular cases from our results.
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We now consider the integral operator defined in (3.1) in a limiting case. When
a = f3, the relation (3.1) can be written as

1) = F@ (o + @) FE) o+ ).
when 8 — 0, the above relation reduces to
f(z) = F(2)exp[{(F'(2)/F(2)) - 1}/7] (3.9)

where v > 0. It follows from (3.9) that
/
- R v-1 f (t) _ .
F(z) = f(z)exp|-z / i - 1) di]. (3.10)
We now take v in (3.10) a complex number with Re(y) > 0 and prove the following.

Theorem 3.2. If f(z) € S*(a,b) and v € C such that Re(y) > 0, then the function
F defined by (3.10) also belongs to S*(a,b).

Proof. Let w(z) be a regular function defined in U by

zF'(z) 14+ Aw(2)

F(z) =~ 14+ Buw(z)’ el

where A = (b2 — |a[? + a)/b and B = (1 — a)/b. Evidently w(0) = 0 and w(z) # —1/B
for z in U. Differentiating (3.9) and using (3.11) we get

zf'(2) u = bB+bw(z) (c/v)zw'(2)
f(2) 14+ Buw(z) (14 Buw(z))?’ 1)

where ¢ = (b — |a — 1|2)/b > 0. We shall prove that |w(z)| < 1, z € U. For, if not, there
exists a zg € U, by lemma 2.2, such that |w(zp)| = 1 and

zow'(20) = kw(zo), k>, (3.13)
From (3.12) and (3.13) we obtain

20f'(z0) _ _ gt Rlz0) + Blro)uz 0)]
f(20) 1 + Bw(z)
ke
by(1+ Bu(z)’
Now [%%9—)- ~a| > b provided | B+ w(z0) + ®(z0)w(20) |* > | 1+ Bw(zo) |2. This

condition reduces to the following:

where ®(z) =

| ®(20) |* +2Re[(1 + Buw(z0)®(z0)] > 0,
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: - k - -
which is true since Re[l+ Bw(z)®(20)] = Re(ﬁ) > 0. But this is a contradiction to the

hypothesis that f € S*(a,b). Hence |w(z)| < 1 for z € U and from (3.11) we conclude
that 7 € S*(a,b).

Remark. For a = @, the above theorem improves a recent result of Vinodkumar
and Shukla [3] who proved it when 7 is a real number. Here it is worth noting that the
technique used by them with the help of Jack’s lemma, fails when v is a complex number.

4. Integral Operators that Map S*(\) x S*(a,b) into S*())

Theorem 4.1. Let a,3,7,6 and o be real constants such thata >0, 8> a, o > 0,
a+bé=PB+vandy+o+A3>0. IffeS*(\) and g € S"‘(a,b!, (a,b) € R = {(a,b) :
la — 1| < b < a*}, where a®* = min{Re(a), (Re(a) — 1) + 20(,,(_:_;;\_,“6)}, then the function

F defined by

Fe) = (222 [ oo ag e (1)

also belongs to S*(A).
Powers in (4.1) are meant as principal values.

Proof. Define a regular function w(z) in U by
zF'(z) 14 (22 =1)w(z)

F(z) 1+ w(2) i)
Clearly w(0) = 0 and w(z) # —1 in U. From (4.1) and (4.2) we have
J-y—o(F2(2)8°(2), _ N+ Miw(z)
N1~ ki { Fﬁ(Z) } == 1 5 w(z) ’ (43)
where Ny =v+fB+ocand My = v+ 0 -+ 2)5.
Logarithmic differentiation of (4.3) yields
2f'(z) _ @ oy _o,.29'(z) B, 14 (22 - Nw(z)
e N O M L C
= 26(1 — A)zw'(2)
{ a J a(l 4+ w(z)) (M + Myw(z))’ (4:4)

Now we claim that |w(z)| < 1, for otherwise by lemma 2.2 there exists a zg € U such
that |w(ze)| =1 and ,
z2w'(z0) = kw(z), k> 1. (4.5)
Using the technique similar to the one employed in the proof of theorem 4.1 of Vinod
kumar and Shukla [3], we obtain from (4.4) and (4.5)

27+ 7 + AB){20( + 0 + AB)[b = (Re(a) = 1)] = A(1 = A)}
a[N{ + 2N M Re(w(zo)) + M7
B(L—1)
20y + 0+ AB)’

. I'(z0)
e f(zo)} = 3

< A, provided b < (Re(a)—1)+
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But this is contrary to the fact that f € S*(A). Therefore |w(z)| < 1 and hence, from
(4.2), F € S*(}).
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