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SUPER QUASI-ADEQUATE SEMIGROUPS

R. J. WARNE

Let S be a semigroup and let L denote Green’s relation on S, For a,b € S, let
(a,b) € L* if and only if (a,b) € L in some cversemigroup of S..R* is defined dually and
let H* = L* N R*. From ([11] or [12]), (a,b) € L* if and only if, for all z, y € S* (S
with an appended identity), az = ay if and only if bz = by. So L* is a right congruence
relation and R* is a left congruence relation. Fountain [9] terms a semigroup S abundant
if each L*-class of S and each R*-class of S contains an idempotent, and Fountain [9]
terms S superabundant if each H*-class of S contains an idempotent. If S is a regular
semigroup, L* = L and R* = R. Hence, regular semigroups are abundant semigroups
and unions of groups are superabundant semigroups. ' ‘

In [9], Fountain gave superabundant analogues to the Rees Theorem and Clifford’s
well known theorem that a semigroup is a union of groups if and only if it is a semilattice
of completely simple semigroups. In [7], El-Qallali terms an abundant semigroup S to
be L*-unipotent if E(S), the set of idempotents of S, form a subsemigroup and each L*-
class of S contains precisely one idempotent. In [7], El-Qallali gives a structure theorem
for super L*-unipotent semigroups on which H* is a congruence (L*-unipotent bands
of cancellative monoids [7]). A semigroup S is termed L-unipotent if each L-class of S
contains precisely one idempotent (equivalently, S is orthodox and each J-class of E(S)
is a right zero semigroup [20]). El-Qallali’s theorem is a superabundant analogue to
Bailes’ structure theorem for L-unipotent union of groups on which H is a congruence
(L-unipotent bands of groups) [1].

Let S be an abundant semigroup. Fountain [8] terms S an adequate semigroup if
E(S) is a semilattice. El-Qallali and Fountain [6] terms S a quasi-adequate semigroup if
E(S) is a subsemigroup. If, furthermore, L is a congruence relation on E(S), we term S
a generalized L*-unipotent semigroup. El-Qallali and Fountain [5], term a congruence e
on S goed if a L*b implies aeL*be and aR*b implies aeR*be.

In section 1, we give a structure theorem for super quasi adequate semigroups S
(Theorem 1.11). We first specialize the above mentioned results of Fountain to super
quasi-adequate semigroups S. In particular, S is a semilattice Y of semigroups (Sy :
y € Y) where Sy = Ty x E(Sy) (algebraic direct product) where Ty is a cancellative
monoid and E(Sy) is a rectangular band (Lemma 1.1). For (g;4,j), (h;r,s) € S, define
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(g;4,7)8(h;r, 8) if (g;4,7), (h;r,s) € Sy, say, and ¢ = h. Then, ¢ is the minimum
adequate good congruence on S (Proposition 1.3) and S/6 is a strong semilattice Y of
the 7, (Lemma 1.4). Then, S* divides Vo(§/75)1 where V' is an L-trivial and idempotent
monoid, o is wreath product, ~is the Rhodes expansion, (S/6) is a jimilattice Y of left
cancellative semigroups (Xy : y € Y) with idempotents, and E((S/4)) is a semilattice
Y of right zero semigroups (E(Xy) : y € Y) (Theorem 1.11). If S is an orthodox union
of groups, 6 becomes the smallest inverse semigroup congruence on S, T, becomes a
maximal subgroup of S, and X, = Ty x E(X,) (algebraic direct product) (see Lemma
1.12). Hence, Theorem 1.11 is a superabundant semigroup analogue to our structure
theorem for orthodox unions of groups [26].

In section 2, we give a structure theorem for super generalized L*-unipotent semi-
groups S (Theorem 2.4). We first show that § N L is the smallest L*-unipotent good
congruence on S and S/6 N L is a semilattice Y of the semigroups ((Ty x Jy) : y € Y)
were Jy, is an R-class of E(Sy) (Proposition 2.1). Then,

S < W'o (E(S)/L)! o (S/6NL)!
(< means “is embedded in”) and S/6 N L

< (S/6NLfe)* 5 (B(S)/L)*

where W is a lower partial chain Y of left zero subsemigroups of E(S), e is the smallest

adequate good congruence on S/§NL, S/6NL/e is a strong semilattice Y of the Ty, and )
is reverse wreath product (Theorem 2.4). An orthodox semigroup S is termed generalized
L-unipotent if L is a congruence relation on E(S). If S is a generalized L-unipotent union
of groups, § N L becomes the smallest L-unipotent congruence on S. Hence, Theorem
2.4 is a superabundant analogue to our structure theorem for generalized L-unipotent
unions of groups [24].

In section 3, we show that if S is a super R*-unipotent semigroup, then S < (E(S))o
(S/6)* where E(S) is a semilattice Y of left zero semigroups (Theorem 3.1). Theorem 3.1
is a superabundant analogue to our structure theorem for R-unipotent unions of groups
[24].

Abundant semigroup analogues to many theorems in regular semigroup theory have
been given by Fountain ([8], [9]), El-Qallali and Fountain ([5], [6]), and El-Qallali [7].

We have studied the structure of generalized L-unipotent semigroups in ([21], [22],
[23], [24]), R-unipotent semigroups have been studied extensively by many authors-most
recently by Szendrei ([14], [15]).

A submonoid of a monoid S is a subsemigroup of S containing the identity of S.

A semigroup (monoid) S is said to divide a semigroup (monoid) T if there exists
a homomorphism of a subsemigroup (submonoid) of T onto S. We also say T covers
S in this case and write S < T. If there exists an isomorphism of S into T, we write
S<T. R, L, H, Dand J will denote Green’s relations and E(S) will denote the set of
idempotents of a semigroup S.
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See [9] for the definition of J*. If S is a regular semigroup J* = J.
We adopt the following notation and definitions from [24, p. 181-182]: S! (S with

appended 1dentity), S°, wreath product “o” of semigroups, reverse wreath product «g»
of semigroups, type A semigroup congruence (for example, inverse semigroup congru-
ence), ae (a € S, a semigroup) (e, a congruence on S, will also denote the natural
homomorphism of S onto S/e), and unions of groups.

For other definitions not given in this paper, see [2] or [10]. We also adopt the
notation of [2] unless otherwise specified.

A monoid S is termed L-trivial and idempotent if each L-class of S is a singleton
and S is a band.

Section 1 - The Structure of Super Quasi-Adequate Semigroups

In this section, we describe the minimum adequate good congruence § on a super
quasi-adequate semigroup (Proposition 1.3 and Lemma 1.4) and give a structure theorem
for super quasi-adequate semigroups (Theorem 1.11).

Let S be a semigroup. For , € S, L} or L%(S) (in case of ambiguity) will denote
the L*-class of S containing , (notation of [9]).

Let S be a semigroup and I and J be sets and let P : J x I — S with (54) P = pse
Let M(S,I,J,P) denote S x I x J under the multiplication (a;; ; )(®5r,s ) = (apjr bsi s ).
We term M (S, I,J, P) a Rees Matrix semigroup over S with entries in P.

The following lemma gives the “gross” structure of super quasi-adequate semigroups.

Lemma 1.1. A semigroup S is super quasi-adequate if and only if S is a semilattice
Y = S5/J* of semigroups (Sy :y€ Y) where Sy = T, x E(S,) where T, is a cancellative
monoid and E(Sy) is a rectangular band, L;(S) = L}(S,) and R%(S) = R:(S,) fory €Y
and ;, € Sy and E(S) is a semilatlice Y of rectangular bands (E(Sy) yeY).

Proof. Utilizing [9, Theorem 6.8 and its proof and Corollary 5.2], we obtain the
above theorem (except the statement about E(S)) with S, = M (Ty, Iy, Jy, Py), a Rees
matrix semigroup over a cancellative monoid T, where the entries of P, are units U of
Ty. As is easily shown, [2, Lemma 3.6] is valid for the above matrix semigroups if we
require the mappings to have range U. Using this Lemma, we may “normalize” P, such
that all the elements in a given row and a given column are the identity e of Ty. Then,
using the assumption that E(S) is a subsemigroup, we may show pji = eforall j € Jy,
and i € I,. Hence, M(Ty, I, Jy, P)) = Ty x E(S,) where E(Sy) is a rectangular band.

To show § is a congruence relation (Proposition 1.3), we will need the following
lemma.

Lemma 1.2. Let Sy =Ty xE, and S; = T, x I, x Jr where Ty and T, are
cancellative monoids, Ey is a rectangular band, I, is a left zero semigroup, and J, is a
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right zero semigroup. Assume these ezists
(a) a left representation 4 — A4 of Sy by transformations of I,
(b) @ right representation 4 — ea of Sy by transformations of J
(c) a homomorphism ¢ of T, into T,
Define a binary operation on Sy U S; extending the given ones on S, and S by
defining products of 4 = (a,e) € Sy and (b;%,7) € Sz as follows:

(ave)(b;ivj) = (a¢b;’\Ai:j)
(b;iuj)(a:e) = (b(a¢);i’jeA)-

Then, Sy US; becomes a semigroup with Sy an ideal.
Conversely every possible binary associalive operation on SyUS; eztending the given
ones on Sy and Sz, and such that S, is an ideal, can be constructed in the above manner.

Proof. Lemma 1.2 has been established by Clifford [3, Lemma 2.5] in the case Ty
and T, are groups. Clifford’s proof is easily seen to be valid when T, and Ty are just
cancellative monoids.

Proposition 1.3. Let S be a super quasi-adequate semigroup. Then, § is the
minimum adequate good congruence on S.

Proof. We first show that 6 is a congruence relation on S. Let § denote the smallest
congruence on S containing 6. Suppose a §b. Then, there exists a = a1,a2,...,8, =b €
S such that a; = z;uiV;, @i41 = LivV;yY; where z;,¥; € St and (u;,v;) €6for1 <i<n-—1.
Let z; = (w;4,j)a € Sa, ¥ = (h;T,8)p € Sp, wi = (g; m,n)y, and v; = (g;¢,d)y. Hence,
a;i = (4;p,9)apy € Sapy and aiy1 = (B; k,)apy € Sapy say. Let 0 =apy. Thus,

(4;p,9)s = (w;1,5)alg; m,n)y(hir,5)p
(B;k, 0o = (w;1,5)a(g; ¢, d)y (T, 5)p

Multiply both of the above equations on the left and right by (e;p,q)s where e is
the identity of Tj.
Hence,

)o(g;m,n)(h; T,5)s

= (W;i,j
W;i,7)e(g;¢,d)y(h; 7, 5)e

(A;0,9)s =
(B;p,2)e = (W;

i,
i
say,

Using Lemma 1.2

(A;0,0) = (W(gwny,0);3s 5e(g,mm)o(Bi7,8)s = (W(gwy,0)hsi,5)e-

where w ¢ 1s the homomorphism of T, into Tj given by Lemma 1.2 and (B;p,q)e =
(W (gwey.0); 1, 7€(g,c,dyy)0 (s 7, 8)a = (W(gwy,6)h; 1, s)s. Hence, A = B. Thus a;éa;4; for
1< i< n—1. Hence, adb. Thus, é =4, and, hence, § is a congruence on S.
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Let a € S and let a*,a” € E(S) such that a* R*a and ¢*L*a. Using [9, Corollary
6.2 and Proposition 6.5] and Lemma 1.1, a*,a*,a € S, say. Hence, using [6, Corollary
2.4 and Proposition 2.6], 6 is the minimum adequate good congruence on S.

Lemma 1.4. Let S be a super quasi-adequate semigroup. Then, S/6 is a strong
semilatiice Y of cancellative monoids (Ty;y €Y).

Proof. Let (g;4,j) denote the é-class of S containing (g;i,;). Since (6:5,)r=g
defines a 1-1 map of S/é onto T = U(T, :y€ Y), T becomes a groupoid under the
multiplication ab = (ar~'b7~1)7 and T defines an isomorphism of S/é onto T. If g, h €
Ty, gh = ((9;1,7)(h;k,e))T = (gh;i,e)r = gh (the last product is multiplication in
Ty). Hence, T is a semilattice Y of cancellative monoids (T, :y€ Y). For a € T,
and ; >y, define a ¢z y = aey where e, is the identity of T,. It is routine to verify
that ¢z is a homomorphism of T into Ty, ¢, is the identity map on Ty, and, for
a €Ty, b€T;, ab = agyyzb¢s yz. Using the fact that the idempotents of T' commute
by Proposition 1.3, its easily seen that ¢y ; ¢z w =gy« for y 2zr>w. Hence, T is a strong
semilattice ¢(Y';Ty;¢y,s) of cancellative monoids (notation of [10]). We identify S/é and
- il

We next describe the Rhodes expansion S of an arbitrary semigroup S (see [17] and
[13]). The Rhodes expansion and certain of its properties will be crucial in developing
our structure theory of super quasi-adequate semigroups. If a,b € S, a < b means
aUSa < bUSHh and ¢ < b means @ < b but aLb. Let Sy = {(sn,...,51) : 8s € S
forl1 <i<nands; <s3<...<sp} Hz=(s0,..-,81), ¥y = (tm,...,11) define

zy = (Sntm,...,81tm,tm,...,t1). Then, S, is a semigroup under this multiplication.
If a = (sn,...,81) € S} and sg41Lsk for some 1 < k< n — 1 delete s; to obtain
a; € S; and denote the deletion by @ — a;. Perform a —» a; — ... —» a; where
g = (B lniyos 5 8nr) With 8y < Bay € wns < dp (such an a; is termed an irreducible

element of S, ). Write a; = red a and a ~ b if red a = red b. The equivalence relation
~ is a congruence relation on S, . Let S = Sy/~. S is termed the Rhodes expansion of
S after its inventor John Rhodes. S will be treated as the set of irreducible elements of
S4 under the multiplication ab = red (ab).

Lemma 1.5. Let S be a super quasi-adequate semigroup. Then, S is a semilatiice
Y of subsemigroups (Fy :y€ Y) where Fy = {(an,an-1,...,a1) : a, € Sy, a; € S} and
E(S) is the semilattice Y of rectangular bands

E(Fy) = {((ey;4,5),an-1,...,81) : (ey;1,7) € E(Sy), aj € S}.

i = (.S/'/\(S) is a semilattice Y of left cancellative semigroups with idempotent (Xy e
Y) where Xy = {(an,@n-1,...,01) : a, € Ty, a; € S/6}. E(U) is a semilattice
Y of right zero semigroups (E(Xy) :y€ Y) where E(X,) = {(ey,an_1,...,81) : &y
the identity of Ty, a; € S/6}. For (@n,8n-1,...,81) € §, let (an,an_l,...,al)/é\ =
red(an6,an_16,...,a18). Then, 5 defines a homomorphism of§ onto (3’7:5)
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Proof. To establish the second sentence of the lemma, utilize Lemma 1.1 and [16,
Lemma 6.7] (see also [17, Lemma 11.4] and [24, Theorem 3.1(f)]). Utilizing Lemma 1.4
and [24, Theorem 3.1(f)], it is easily checked that U is a semilattice Y of the semigroups
(Xy :y€Y) and that the fourth sentence of the lemma is valid. We next show X, is left
cancellative for y € Y. Let (z,,2,_1,...,21), (@n,80-1,...,a;1), and (bs,b5-1,...,b1) be
elements of X, and suppose that (z,,z,_1,...,21) . (ap,@n-1,... 0 ) = (@ Bl gson 5
z1) . (bs,bs—1,...,b1). Hence, red(z,a,, Z,_1ayp,...,218n,80,8n_1, ... ,a1) = red(z,b,,
Zr_1bs, ..., 21bs,bs,b,_1,...,b;). Thus, z,a, = z,b,. Hence, since Ty is a cancellative
semigroup, a, = bs;. Thus, n = s and a; = b; for 1 < t < n. The last sentence of the
lemma is a consequence of [16, Proposition 6.6] (see also [17] and [24, Theorem 3.11(b)]).

In the remainder of this section, S will denote a super quasi-adequate semigroup.
If A is a semigroup and a = (@,,...,a;) € 4, let |a| = n. We term |a| the length of

Lemma 1.6. Ifz€ S, Iz = |z§|

Proof. Let z = (an,an-1,...,a1). Suppose ar410Laré for some 1 < k < n-— 1.
Using Lemma 1.1, let ary1 = (gr41;9k41,Jk41) € Sy, say, and ar = (g&;ir,jr) €
Sz, say. Thus, @416 = gr41 € Ty and a;é = g € T, and, hence, gry1Lgs (in
S/6). Using Lemma 1.4, it easily seen that y = z and k41 = pgr where p is a
unit of T,. Since ary1 < ap, ary; = sap for some s € S. We may take s =
(s';m,n) € Sy. Hence, (g;x41 k41, Jk+1) = (8's5m, n)(gx; ik, Jk). So, jk41 = jr. Thus,
(g% 8k, 92) = (B~ 150k, 5i)- (9x+1;9k+1, Jk+1). Hence, axyiLag, a contradiction. Thus,
red(anb,a,-16,...,a18) = (a,é, an-16,...,a16) and |2| = |z§|.

ForteU:(S/'/TS),letUt:{xeU:t:czt}

Lemma 1.7. Fort €U, U;6~* < E(8). If, € X,, U;5- < U(B(F,) :>,).

Proof. Let s € U,g’l. Hence, s € U;. Using an important theorem of Rhodes
[13, Theorem A.1V.1], (s’cS\)“""1 = (33)"’. Let s = (s,,50-1,...,51). Then, 56 =
(sn6,8n-19,...,516). If 5o = (g;i,§j) € Sy, sn6 =g € Ty. Thus, pri(s)lt+l = gltl+1
and pr; (36)“' = gltl. Let e denote the identity of Ty. Thus, since Ty is a cancellative
monoid, gltle = gltl g implies e = g. Hence, s, € E(S). Thus, using [24, Theorem 3.1(f)],
5 € E(S). Hence U;6~! < E(S). The last sentence of the lemma is a consequence of the
definitions of U; and §, Lemma 1.5, and the first sentence of the lemma.

If we replace “e” by “§”, “Xy” by “Fy”, “Gy” by “T,”, and “Uy” by “X,” in
[26, Lemma 5, Lemma 7, Lemma 8, Lemma 9, Lemma 11] (if U,6-1 # ¢ and the last
sentence is omitted), Lemma 12, Lemma 13, the first two sentences of Lemma 15, Lemma
16, Lemma 17, and Lemma 18 (with “and -.-Y*” omitted)], these lemmas are valid for
quasi-adequate semigroups S. The proofs of these modified lemmias are the same as the
proofs of the original lemmas in [26] except that we replace Lemma 1 of [26] by Lemma
1.1, 1.4, and 1.5 and Proposition 1.3; Lemma 2 of [26] by Lemma 1.6; and Lemma 6 of
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[26] by Lemma 1.7 in the proofs of the original lemmas. Using Lemmas 1.1, 1.4 and 1.5,
Proposition 1.3, Lemma 1.6, [26, Lemma 3], Lemma 1.7, and the modified Lemmas, we
obtain

Lemma 1.8. If U,g“l # @, then Utg”l s a chain ;lfl of rectangular bands (W; :;€

;ltl) where ;)Iil s a sub-chain of By = {1,2,- -+, |s|} under the reverse of the usual order.
Furthermore, every element of W; has length ;.

Let ; € Xy and suppose that || =¢. If z,y € U;6~!, define zo'y if and only if

az = ay for all a € W where ; is thé least element of P

If we make the usual modifications and furthermore replace “o” by “¢’”, [26, Lemma
21 and Lemma 23] are valid for super quasi-adequate semigroups S. The proofs also
remain valid of we replace “o” by “o’”, “¢” by “6”, k by k, and Lemma 7 by modified
Lemma 7 if we note that e;Lg; (notation of [26, Lemma 23]) by virtue of the modified
Lemma 5.

Lemma 1.9. If U;6-! # ¢, L is a congruence relation on U,6-1. Hence, Uy671/L
is a chain Py of right zero semigroups (W;/L ;€ Pyy)).

Proof. Replace “6” for “e”, Lemmas 21 and 23 by their modifications, and Lemma
1.8 for Lemma 20 in the proof of [26, Lemma 24].

Let » be a homomorphism of a monoid S onto a monoid T, we define a category
R, as follows: obj R, = T. For t;,t, € Ty Billy, ta) = {(t1,5,82) : s € S and t5 =
t1(sr)}. For (t1,s1,t3) € R, (t1,t3) and (t2,82,t3) € R, (t2,t3), we define the composition
(t1,51,t2) (22, 52,13) = (t1,8182,13). It is easily checked that (t1,5182,t3) € R.(t1, t3) and
the composition is associative where defined. The identity arrow of R,(t,t)' is (¢,1,t)
where 1 is the identity of S. So, R, is a category. Let a be a congruence on S and for
(t1,51,t2), (t1,82,t2) € R, (t;,t3) define (t1,51,82)Q(t1, 52, 12) if and only if ss; = ss, for
all s € 77! and s;as;. Then, by [26, Lemma 25], Q is a congruence on the category
R,. Let DX = R, /Q. Following Tilson [18], we term Dy the derived category of r. Let
[t1, 51,t2] € D% (t;,¢5) denote the Q-class of R, containing (ty,51,%3) € R.(t1,15). We
define zAy (in §) if z,y € F, for some v. Clearly, ) is a congruence relation on S.

Lemma 1.10. For,; € (573), [1,5,6]7 = sL defines an isomorphism ofD%l(t,t) onto

(U6-1/L).

Proof. Suppose sLz(s,z € Utg‘l) Hence, using Lemma 1.8, s,z € W; for some ; €

;Ii!' Thus, using modified [26, Lemma 23], so'z. Hence, zs = zz for all z € Wr
where ¢ = |;|. Since t(zg) . 4 & z6. Let t = (9ks k-1, ..., 91). Ify =, using [16, Propo-
sition 7.1] (valid for arbitrary semigroups) (see also [17, Proposition 12.1]), Lemmas 1.6-
1.8, and [24, Lemn’l\a $.1[f), 28 = (ex, gpeiigess ,91) where e2 = e Lg;. Using Lemmas 1.5,
1.6and 1.8ifu €; 671, then u = ((g%5 ks 38), (-1 8k=1, Jk-1), - . ., (91571, 1)), say. Since
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W = Wi = E(Fr))N U, 6-1 (where  — s defines isomorphism of P} into Y') (see [26]),
let z = ((ex;ir, k), (9r—1;8k—1,dk-1), - -, (91 1,51)). Since (gk; ik, jr)L(ex;ix,jr), it is
easily checked that uz = u. Hence, us = uzs = uzz = uz. Since s,z € Wj, sAz. Thus,
[t 5] = [1, 2,:]. Next, assume ; >3. Then, using [17, Proposition 12.1]), Lemma 1.7 and
[24, Theorem 3.1(f)], ¢ = (g, gr—1, - - - 9% 951 - - -»91) and z6 = (ez:95_1 - - -»91) where
g;Le,c = e2. Hence, u = (gi; ik, jk), (9k-1; k-1, dk=1), - - -, (95 I Jp)» (951 5 1 JE-1)s

-, (91;41,51)) and z = ((ek:zm]k) (g_._p 1,1,_1:.71;_1): (.‘71!11’]1))

Since (!h;is)js) «< (yg, 'ir,jz) for 7 <sZk, (gs;is;.'ls)(ek,zk;]k) = (9s;%s,7s). Fur-
thermore (gz; 4z, jz)L(eg; iz ,jz). Hence, by a routine calculation, uz = u. Thus, as
above, [1,5,:] = [1, 2,:]. Conversely, assume [;,5,:] = [, 2,:]. Hence, 5,2 € F,, say and
zs = zzforall z €; 6-1. Using [26, Lemma 22], s < z or z < 5. Using Lemma 1.7, 52 = s
or zs = z. Sinice s,z € Wj for some J, 8Lz in either case. Thus, [¢,5,:]7 = sL(s € U¢6‘1)
defines a 1-1 map of DA(t s) into (U;6=1/L). Clearly, r is a surjection. Using Lemma
1.9, 7 is an 1somorphlsm

Theorem 1.11. Let S be a super quasi-adequate semigroup. Then,
§' < Vo(5/8) (1)

where V is an n L-trivial and idempotent monoid, 6 is the minimum adequate good congru-
ence on S, (5/6) is a semzlattzce Y = S/J* of left cancellative semigroups (Xy y€ Y)
with idempotents, and E((S/&)) is a semilattice Y of right zero semigroups (E(X,) :y€
Y).

Proof. Utilize Lemma 1.5 (define 16 = 1), Lemma 1.10, [26, Lemma 29], and [26,
Theorem 26] to establish (1). To complete the proof utilize Proposition 1.3 and Lemma
1.5.

Remark 1.12. If E is the edge set of the graph obtained from Dg’: by removing
the identity arrows, then V is the free monoid over E relative to the equation zyr =
yz(z,y € E) (see [26]-especially the proof of [26, Lemma 29]). V is a semilattice A
(set of all finite subsets of E under union) of right zero semigroups (U, : P € A) where
U, denotes the set of all elements of V with content P (see [2], [10] and [26, especially
Theorem 27])

Lemma 1.12. X, = C, x E, where Cy is a cancellative monoid and Ey is a right
zero semigroup if and only if Ty is a group. In the case, Xy =T, x E(Xy).

Proof. Suppose X, = Cy x E,. Then, Using [19, Theorem 2], a € aXy for all
a € Xy. Thus, (a,) = (as)e for some e € X,. Hence, (a,)e = (an)e?. Thus, using
Lemma 1.5, ¢ = e®. Hence, using Lemma 1.5, (a,) = (an)(ey, Zx—1, ... ,Z1) where e,
1s the identity of T,. Thus, (a,) = red(an,ey, Zx_1,...,21). So, anLe,. Hence, using
Lemma 1.4, e, = sa, where s may be taken as an element of Ty. Thus, apsass =
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Gpneys = @n8 = G, 5€y. SO, a,s = ¢y and, hence, T} is a group. Conversely, suppose 7, is
a group. Let (an,an-1,...,81) € Xy. Then, (ap,as-1,--.,81) = (an)(ey,8n_1,...,a;).
Since (an)(bn) = (andy) for ap, b, € Ty, T, = {(a, : a, € Ty}. Thus, it is easily checked
that every element of X, may be uniquely expressed in the form (a)e where a € T, and
e € E(Xy) and (a,e) — (a)e defines an isomorphism of T, x E(X,) onto X,,.

Remark 1.13. In the case S is an orthodox union of groups in Theorem 1.11, §
becomes the minimum inverse semigroup congruence on S, J* = J and X, = T, x E(X,)
where Ty is a maximal subgroup of S (hence, X, is a right group). These facts are a
consequence of Proposition 1.3. Lemma 1.1, and Lemma 1.12. In this case, the structure
of (§75 ) is further refined by [25, Theorem 2.6] (see also [26, Theorem 31]).

Section 2. The Structure of Super Generalized L*-unipotent Semigroups.

In this section, we describe the smallest L*-unipotent good congruence on a super
generalized L*-unipotent semigroup (Proposition 2.1) and give a structure theorem for
super generalized L*-unipotent semigroups (Theorem 2.4).

Proposition 2.1. Let S be a super generalized L*-unipotent semigroup. Then, 6NL
is the smallest L*-unipotent good congruence on S. S/6 N L is a semilattice Y = S/J*
of semigroups (My :y€ Y') where My = T, x J, where Ty is the cancellative monoid of
Lemma 1.1 and Jy is an R-class of E(Sy). E(S/6 N L) is a semilattice Y of the right
zero semigroups (Jy :(y€Y).

Proof. We first show that 6 N L is a congruence relation on S. Utilizing Propo-
sition 1.3, § N L is a right congruence relation on S. Let § N L be the smallest con-
gruence relation on S containing § N L. We will show that §NL = 6N L. Sup-
pose a (6N L)b. Then, there exists @ = ay,ay,...,6, = b € S such that a; =
z;u;, G417 = z;v; where z; € S! and (u;,v;) € §NLfor 1 < i < n—1. Let
z; = (g;4,k)y € Sy, u; = (w;s,j)x € Sy, and v; = (w;t,5)a € Sx. Since § is
a congruence relation, a; = (m;p,¢)yx and aj41 = (m;i,d),, say. Let , =
Then, ay = ox = o. Hence, (m;p,g)a = (g;%,k)y (ey;4,k)y (er;5,5)r (w; 5,5)x and
(m;e,d)a = (954, k)y (ey;3,k)y (ex;t,5)a (w; 5, j)x Where e, is the identity of T,.

Since L is a congruence relation on E(S), (ey;i,k)y (€x;s,5)r L(ey;i, k) (ex;t,7)a-
Hence, (ex;i,k)y(ex;s,5)a = (€a;8',5')a and (ey;i,k)y(ex;t,5)r = (€a;t’,3)a, say.
Hence,

(m;P)Q)a = (g;i;k)'y(ea;s’:j,)a(w;s)j))\
(m;c:d)a = (g; i, k)'y(ea;t’aj,)a(w;syj)i\

Since L is a right congruence relation on S, (eq; &', j')a (w; 8,7)r L(€a; t', 5') e (w;
5,7)r- Hence, (eq;8’,)a(w;s,5)r = (w*;s*,j*)o and (eq;t’,5)a(w; s, 5)r = (T;%,7%)a,
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say. Thus,
(m;p, Q) = (9;¢, k)¢ (w*; 5%, 5%)a
(m5e,d)a = (957, k)y(w; 5,5 )a

Hence,
(ea; P, D)a(m;p,@)a = (ea; P, 0)al9;1, k)7 (w*; 5%, 5%)a

© (eai P, @a(m;e,d)a = (ea;P,9)al9;t, k)y(W; 5,5 )a-

Suppose that (ea;p, ¢)a(9;, k)y = (7;%, k). Then,

(M50, Q)a = (1, F)a(w*; 5%, 5%)a
(m;p,d)a = (351, k)a(W; 5, 5*)a

Hence, ¢ = d = j*. Thus, a;(6 N L)a;4; for 1 < i < n — 1. Hence, a(6 N L)b and, thus
SNL=6NL.

We will need to show that § N L* = § N L. Suppose a(6 N L*)b. Since aéb, a =
(9:%,7)x € Sq and b = (g; r, 8)a € Sa, say. There exists an oversemigroup S* of S such
that s(g;%,j)a = (g;7, 5)a Where s € S*. Hence, (g: 7 9)aleas iy )a = (9;7, 8)a. _

Thus, j = s. Hence, a(§N L)b. Thus, §NL* < 6N L. Since L <L* éNL*=6NL.

We next show that 6 N L is a good congruence. We will use [5, Corollary 1.5].
Suppose aL*e where e € E(S). Let az(é N L)ay where z,y € S'. Thus, az(6 N L*)ay.
Since aL¢, azL*ez and ayL*ey. Thus, ezL*ey. Using [5, Corollary 1.5] and Proposition
1.3, exbey for some e? = e € L*a. Thus, ez(6 N L*)ey. Hence, ex(6 N L)ey. Next, let
aR%e where e € E(S). Assume za(é N L)ya where z,y € S'. Thus, za = (h;m,n),
and ya = (h;p,n)q, say. Let f = (ey;m,n),. Then, za = fya. Hence, fza = fya.
Thus, using [11, Lemma 1.7], fze = fye. Since zaR*ze and yaR*ye, it is easily seen
that ze, ye, and f € S,. Hence fze = fye implies ze(6 N L)ye. Thus, 6N L is a good
congruence on S by [5, Corollary 1.5].

We next show that S/6NL is an L*-unipotent semigroup. Using [6, Proposition 1.6],
S/6 N L is a quasi-adequate semigroup. Using [6, Lemma 1.5}, E(S/6NL)={e(6NL):
e € E(S)}. Suppose (6§ N L)Lf(6 N L) (in E(S/6 N L)). Thus, (ef,e) € 6N L and
(fe,f) € 6N L. Hence, e, f € S,, say. Thus, e = efe = ef. Hence, e(6 N L)f. Thus,
S/6NL is an L*-unipotent semigroup. |

Let e be an L*-unipotent congruence on S. Suppose a(6 N L)b. Then, a = (g;m,n)q,
and b = (g; p,n)q, say. Thusa = (ea;m,n)qb. Since (eq;m,n)oL(eq; P, n)a, (ea;m,n)qe
= (€a; P, n)qe. Hence, ae = (eq;m, n)qebe = (eq;p,n)abe = be. Thus, § N L < e. Thus,
6N L is the smallest L*-unipotent congruence on S.

Using Lemma 1.1, Sy = Ty x Iy x Jy (algebraic direct product) where I, is a left zero
semiw and Jy, is a right zero semigroup. Let My =T, x J, (algebraic direct product).
Let (g;¢, j) denote the § N L-class of S containing (g;3, j). Then, (g;1, j)A = (g, j) defines
a 1-1 mapping of S/6NL onto M = U (My :y€Y). In a similar manner to the proof of
Lemma 1.4, we may define a multiplication on M such that M is a semilattice Y of the



SUPER QUASI-ADEQUATE SEMIGROUPS 309

semigroups (M, y€Y)and M = S/6§ N L. The last sentence follows since E(M) is a
semigroup.
Remark 2.2 will be used in the proof of Theorem 2.4.

Remark 2.2. Let @ be a homomorphism of a semigroup S onto a semigroup 7.
Define D(6) = {(¢,5,#(s0)) : t € T*;s € S}U{0O} under the multiplication (t1,51,
tl(sla))(t2,82,t2(820)) = (tl,slsz,tl(slsz)ﬂ) if tl(slﬂ) = tz;' O lf t1(810) ?é t2 and
O(t,s,t(s8)) = (¢,5,1(s8))0 = 0.0 = O0.D(0) was termed the derived semigroup of § by
its inventor Bret Tilson (see [16] and [17]). Let ¢ be a mapping of D(6)— {0} into a semi-
group P. Following Rhodes [13, Definition AL21, p. 94], we term ¢ : D@)-{0} - P
a parametrization of D(6) if 1) ¢ is a partial homomorphism of D(6)— {0} into P (i.e. if
z,y € D(6)—{0} and zy # 0, then z0yf = (zy)0) 2) ¢ satisfies the embedding condition:
810 = 5,0 and (2, 51,1(s,0))¢ = (t, 82,1(520))4 for all t € T* implies $1 = 83. For brevity,
we also term P a parametrization of D(#). Using [13, Proposition AL.2.3], S < PoT where
p|S = 6 (p is the projection if PoT onto T). Following Rhodes [13], we define DE(g)
(dual derived semigroup) as follows: DE(g) = (((s6)t,5,1) : s € S,t € T°)U{0} under
the multiplication ((s10)t4, 51,%1)((s20)t2, s2,85) = ((510)t1,slsz,t2) if £ = (s20)ts; o if
t1 # (s520)t2;0((s0)t,s,t) = ((s8)t,5,t)0 = 00 = 0. A parametrization PR of D®(9) is
defined as above and S < T o PR with p|S = 8.

Remark 2.3 will be needed for the statement of Theorem 24

Remark 2.3. Let W be a partial groupoid which is a union of a collection of
pairwise disjoint subsemigroups (Ty :y€ Y) where Y is a semilattice. If a €T, beT,
and y > z (in Y) imply ab is defined (in W) and ab € T, and z 2> w and ¢ € T, imply
(ab)e = a(be), we term W a lower partial chain Y of the semigroups (T :,€ Y). Let X
be a semilattice Y of semigroups (Xy :y€Y) and let R and S be semigroups. For the
definition of WoXoR and S < WoXoR, see [24, p. 188 and p. 189].

Theorem 2.4. Let S be a super generalized L*-unipotent semigroup. Then,
(1) § < W'o(E(S)/L)'o(S/6 N L)! where W is a lower partial chain Y = S/J* of left
zero subsemigroups of E(S), E(S)/L is a semilattice Y of right zero semigroups, and
0N L is the smallest L*-unipotent good congruence on S. Furthermore,
(2) S/6NL < (S/6NL/e)'o(E(S)/L)* where e is the smallest adeguate good congruence
on S/6NL and S/6NL/e is a strong semilattice Y of cancellative monoids (T, :y€ Y) (T,
5 a cancellative subsemigroup of S).

Proof. We will first establish that § < (E(S))'o(S/6 N L)!. For each (9,7)y €
My (y€ Y') (Notation of Proposition 2.1), select a representative element U(g,j)y in Sy. We
first show that every element of S may be uniquely expressed in the form W(ey,i)y¥(g,i)y
where w(ey ;) € (ey,5)y(6 N L)~1. Let (9:4,7)y € Sy and suppose Uiy = (95 %0,7)y-
Then, (g;7,7)y = (ey;i,5)y(9;40,5), Where (ey;i,5)y € (ey,§)y(6 N L)1, It is easily
checked that the above expression is unique. If ; = (g,5),, let ¥ = (ey,7)y- Thus every
element of S may be uniquely expressed in the form wiu, where wf €} (6n Lyt
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Let ; € S/6NL and , €, (6N L)"!. Hence, we may write u; = f(;s)uiz Where
f(s,s) € (tz)Y(6 N L), First assume S has an identity. For (s,5:(s(6 N L))) € D(6 N
L) — {0}, define (;5.:(s(6 N L)))0 = f(s,5). We will show that § : D(6 N L) — {O} —
E(S) is a parametrization of D(6 N L). It is easily checked that 6 defines a mapping
of D(6 N L) — {O} into E(S). Next, we show that 6 defines a partial homomorphism.
Let (:,.5,,(s,(6 NL))), (t,52,6.(s26 N L))) € D(6 N L) with ¢,(5,(6 N L)) =¢,. We must
show f(tx,-’l)f(tz.h) = f(th-’h-’z)' Suppose Sa e='—'1 (6 n L)_l and s2 Exz (6 n L)_l'
Then, ufx(sl’s2) = f(fh-’xﬂz)utx-‘l'xzz = f(h.-’x-’:)ufzfz where f(‘].:"l-’ﬂ) € (f232)+(6nL)-1'
However, (uhsl)s2 == f(h,h)(ufz‘”) = f(h-’:.)f(f:.-’a)utz-‘rz' Let t, € M.V and z; € M;,
say. Hence, 1,5, € My;. Furthermore, { € E(My) and (t,5,)7 € E(M,;). Using
the last sentence of Proposition 2.1, £ (t,2,)* = (F:(t202)1)(t222)T = (t22,)T. Hence,
f(h,sx)f(fz,u) € (1232)+(6 n L)‘I' Thus) f(tx,n)f(fzy-’z) = f(h,sh’z): a‘nd’ hence, 0 is a
partial homomorphism. We next show the embedding condition is valid. Let e denote
the identity of S/6N L and let u. = 1, the identity of S. Thus, if ,,(6NL) =, (6NL) =
and f(es,) = fle,s5), then 5, = ues1 = fleys,)Us = f(e,00)Us = UeS2 =s,. Hence, E(S)
is a parametrization of D(6 N L). Thus, using Remark 2.2, S < E(S)oS/6 N L. If S has
no identity consider S!. Note that a(6 N L); (in S*) implies a =;. Hence, S'/6 N L =
(S/6N L)*. Furthermore, E(S') = (E(S))!. Hence, S < S* < (E(S))*o(S/6NL)'. Thus
utilizing [24, Theorem 1.24, Remark (1.24), Lemma 1.23, and Lemma 1.25], we obtain
(1). We next establish (2). Let M = S/§N L. Utilizing [9, Corollary 6.2 and Proposition
6.5], Proposition 2.1 and Lemma 1.4, M/e is the strong semilattice Y of cancellative
monoids (Ty € Y). If ; € Ty, let § = ey, the identity of Ty. For each , € M/e,
select a representative element u, €, e~!. We show that every element of M may be
uniquely expressed in the form u,w! where w? €% e~!. Let (g,j)y € My and suppose
u, = (g,jo)y € My. Hence, (9,7)y = (9, jo)y(ey, )y Where (ey,5)y € eye™! and g* = ey.
Suppose 4,9 = u h*. Then, since My (y€ Y) is left cancellative, g; = h;. Let € M/e
and ; €, e~!. Hence, we may write ;u; = uztf(s,:) where f(s:) € (,,)"e‘l. First,
assume that M has an identity. For ((,€):,:) € D®(e) — {0}, define ((s€)z,s,:)0 = f(s,¢)-
Using the fact that M/e is a strong semilattice Y of cancellative monoids (T :y€ Y),
we proceed as above to show that § : DF(e) — {O} — E(M) is a parametrization

of DE(e). Thus, using Remark 2.2, M < M /egE(M ). Again, proceeding as above,
M< ML (M/e)lg(E(M))l. Using Proposition 2.1, E(M) =2 E(S)/L. Hence (2) is
valid. To complete the proof, utilize Proposition 2.1.

Remark 2.5. W is a lower partial chain Y of L-classes of E(S). Each J-class of
E(S) contains precisely one of these L-classes (see [24, Theorem 1.24]).

Remark 2.6. Let S be a generalized L-unipotent union of groups. Then, 6N L is the
smallest L-unipotent congruence on S (6 is the smallest inverse semigroup congruence on
S), e is the smallest inverse semigroup congruence on S/6N L, Ty is a maximal subgroup
of S, and J* = J in the statement of Theorem 2.4. Thus, Theorem 2.4 generalizes [24,
Theorem 1.27, Theorem 1.28, and Theorem 1.26] in the case S is also a union of groups
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(our structure theorem for generalized L-unipotent unions of groupé). A different type
structure theorem for generalized R-unipotent unions of groups is given in [22, Theorem
4.7].

Section 3 Super R*-unipotent Semigroups

In this section, we give a structure theorem for super R*-unipotent semigroups
(Theorem 3.1)

Theorem 3.1. Let S be a super R*-unipotent semigroup. Thus, * S < (E(S))'o
(S/6)! where E(S) is a semilattice Y = S/J* of left zero semigroups, § is the smallest
adequate good congruence on S, and S/é is a strong semilattice Y of cancellative monoids
(Ty w€Y) (Ty is a subsemigroup of S).

Proof. Using Lemma 1.1, Sy = T, x E(S,) where E(S,) is a left zero semigroup.
Hence, by a routine calculation, 6 N L = §. Thus, utilizing the proof of Theorem 2.4,
is valid. Use Proposition 1.3 and Lemma 1.4 to complete the proof.

Remark 3.2. Let S be an R-unipotent union of groups. Then, § is smallest inverse
semigroup congruence on S, Ty is a maximal subgroup of S, and J = J* in the statement
of Theorem 3.1. Hence, Theorem 3.1 generalizes [24, Remark 1.14, Theorem 1.12, and
Theorem 1.8] (our structure theorem for R-unipotent unions of groups). A different type
structure theorem for L-unipotent unions of groups is given in [22, Theorem 7.2].
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