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SUPER QUASI-ADEQUATE SEMIGROUPS 

R. J. WARNE 

Let S be a semigroup and let L denote Green's relation on S, For a, b E S, let 
(a, b) E L* if and only if (a, b) EL in some cversemigroup of S .. R* is defined dually and 
let H* = L* n R*. From ([11] or [12]), (a, b) E L* if and only if, for all x, y E S1 (S 
with an appended identity), ax = ay if and only if bx = by. So L"' is a right congruence 
relation and R"' is a left congruence relation. Fountain [9] terms a semigroup S abundant 
if each L * -class of S and each R* -class of S contains an idempotent, and Fountain [9] 
terms S superabundant if each H"'-class of S contains an idempotent. If Sis a regular 
semigroup, L* = L and R* = R. Hence, regular semigroups are abundant semigroups 
and unions of groups are superabundant semigroups. 

In (9], Fountain gave superabundant analogues to the Rees Theorem and Clifford's 
well known theorem that a semigroup is a union of groups if and only if it is a semilattice 
of completely simple semigroups. In [7], El-Qallali terms an abundant semigroup S to 
be L * -unipotent if E( S), the set of idempotents of S, form a subsemigroup and each L"' - 
class of S contains precisely one idempotent. In (7], El-Qallali gives a structure theorem 
for super L"' -uni potent semigroups on which H* is a congruence (L * -unipotent bands 
of cancellative monoids [7]). A semigroup Sis termed L-unipotent if each L-class of S 
contains precisely one idempotent (equivalently, Sis orthodox and each J-class of E(S) 
is a right zero semigroup [201). El-Qallali's theorem is a superabundant analogue to 
Bailes' structure theorem for L-unipotent union of groups on which JI is a congruence 
(L-unipotent bands of groups) [1]. 

Let S be an abundant semigroup. Fountain [8] terms S an adequate semigroup if 
E(S) is a semilattice. El-Qallali and Fountain [6] terms Sa quasi-adequate semigroup if 
E(S) is a subsemigroup. If, furthermore, Lis a congruence relation on E(S), we term S 
a generalized L*-unipotent semigroup. El-Qallali and Fountain (5], term a congruence e 
on S good if a L*b implies aeL*be and aR*b implies aeR*be. 

In section 1, we give a structure theorem for super quasi adequate semigroups S 
(Theorem 1.11). We first specialize the above mentioned results of Fountain to super 
quasi-adequate semigroups S. In particular, S is a semilattice Y of semigroups (Sy : 
y E Y) where Sy = Ty x E(Sy) ( algebraic direct product) where· Ty is a cancellative 
monoid and E(Sy) is a rectangular band (Lemma 1.1). For (g; i, j), (h; r, s) E S, define 
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(g;i,j)8(h;r,s) if (g;i,j), (h;r,s) E Sy, say, and g = h. Then, 8 is the minimum 
adequate good congruence on S (Proposition 1.3) and S/8 is a strong semilattice Y of 
the Ty (Lemma 1.4). Then, S1 divides Vo(s/6)1 where Vis an L-trivial and idempotent - monoid, o is wreath product,~ is the Rhodes expansion, (S/8) is a semilattice Y of left -- . 

cancellative semigroups {Xy : y E Y) with idempotents, and E((S/8)) is a semilattice 
Y of right zero semigroups (E{Xy): y E Y) (Theorem 1.11). If Sis an orthodox union 
of groups, 8 b~~omes the smallest inverse semigroup congruence on S, Ty becomes a 
maximal subgroup of S, and Xy = Ty x E(Xy) (algebraic direct product) (see Lemma 
1.12). Hence, Theorem 1.11 is a superabundant semigroup analogue to our structure 
theorem for orthodox unions of groups [26]. 

In section 2, we give a structure theorem for super generalized L * -uni potent semi 
groups S (Theorem 2.4). We first show that 8 n L is the smallest L"'-unipotent good 
congruence on S and S/8 n Lis a semilattice Y of the semigroups ((Ty x 1y) : y E Y) 
were 1y is an R-class of E(Sy) (Proposition 2.1). Then, 

s ::; W1 0 (E(S)/ L)1 0 (S/8 n L)1 
(::; means "is embedded in") and S/8 n L 
::; (S/8 n L/e)1 ~ (E(S)/ L)1 

where Wis a lower partial chain Y of left zero subsemigroups of E(S), e is the smallest 
adequate good congruence on S/8nL, S/8nL/e is a st~ong semilattice Y of the Ty, and~ 
is reverse wreath product (Theorem 2.4). An orthodox semigroup Sis termed generalized 
L-unipotent if Lis a congruence· relation on E(S). If Sis a generalized L-unipotent union 
of groups, 8 n L becomes the smallest L-unipotent congruence on S. Hence, Theorem 
2.4 is a superabundant analogue to our structure theorem for generalized L-unipotent 
unions of groups [24]. 

In section 3, we show that if Sis a super R*-unipotent semigroup, then S::; (E(S))1o 
(S/8)1 where E(S) is a semilattice Y ofleft zero semigroups (Theorem 3.1). Theorem 3.1 
is a superabundant analogue to our structure theorem for R-unipotent unions of groups 
[24]. 

Abundant semigroup analogues to many theorems in regular semigroup theory have 
been given by Fountain ([8], [9]), El-Qallali and Fountain ([5], [6]), and El-Qallali [7]. 

We have studied the structure of generalized L-unipotent semigroups in ([21], [22], 
[23], [24]), R-unipotent semigroups have been studied extensively by many authors-most 
recently by Szendrei ([14], [15]). 

A submonoid of a monoid Sis a subsemigroup of S containing the identity of S. 
A semigroup (monoid) S is said to divide a semigroup ( monoid) T if there exists 

a homomorphism of a subsemigroup (submonoid) of Tonto S. We also say T covers 
S in this case and write S < T. If there exists an isomorphism of S into T, we write 
S::; T. R, L, H, D and J will denote Green's relations and E(S) will denote the set of 
idempotents of a semigroup S. 
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See [9] for the definition of J*. If S is a regular semigroup J* =· J. 
We adopt the following notation and definitions from [24, p. 181-182]: S1 (S with 

appended identity), S0
, wreath product "o" of semigroups, reverse wreath product "~" 

of semigroups, type A semigroup congruence (for example, inverse semigroup congru 
ence), ae ( a E S, a semigroup) ( e, a congruence on S, will also denote the natural 
homomorphism of S onto S / e), and unions of groups. 

For other definitions not given in this paper, see [2) or (10). We also adopt the 
notation of (2) unless otherwise specified. 

A monoid S is termed L-trivial and idempotent if each L.:.class of S is a singleton 
and S is a band. 

SecHon 1 - The Structure of §upel" Quasi-Adequate Semigiroups 

In this section, we describe the minimum adequate good congruence 6 on a super 
quasi-adequate semigroup (Proposition 1.3 and Lemma 1.4) ahd give a structure theorem 
for supe~ quasi-adequate.semigroups (Theorem 1.11). 

Let S be a semigroup. For a E S, L: or L:(s) (in case of ambiguity) will denote 
the L * -class of S containing a ( notation of [9)). 

Let S be a semigroup and I and J be sets and let P: J x I - S with (;,i) P = Pii· 
Let M(S, I, J, P) denote S X IX J under the multiplication (a;i,j )(b;r,s) = (aPjr b;i,s ). 
We term M(S, I, J, P) a Rees Matrix semigroup over S with entries in P. 

The following lemma gives the "gross" structure of super quasi-adequate semigroups. 

Lemma 1.JI.. A semigroup S is super quasi-adequate if and only if S is a semilattice 
Y = S/J* of semigroups (Sy :yE Y) where Sy = Ty x E(Sy) where Ty is a cancellative 
monoid and E(Sy) is a rectangular band, L:(S) = L:(Sy) and R:(s) = R:(Sy) /or11 E Y 
and a E Sy and E(S) is a semilattice Y of rectangular bands (E(Sy) :yE Y). 

Proof. Utilizing [9, Theorem 6.8 and its proof and Corollary 5.2], we obtain the 
above theorem (except the statement about E(S)) with Sy= M(Ty,Iy,Jy,Py), a Rees 
matrix semigroup over a cancellative monoid Ty where the entries of Py are units U of 
Ty. As is easily shown, [2, Lemma 3.6] is valid for the above matrix semigroups if we 
require the mappings to have range U. Using this Lemma, we may "normalize" Py such 
that all the elements in a given row and a given column are the identity e of Ty. Then, 
using the assumption that E(S) is a subsemigroup, we may show Pii = e for all j E ly 
and i Ely, Hence, M(Ty,Iy,ly,Py) = Ty x E(Sy) where E(Sy) is a rectangular band. 

To show 6 is a congruence relation (Proposition 1.3), we will need the following 
lemma. 

Lemma 1.2. Let Sy = Ty x Ey and S:i: = T:i: x l:r: x J:i; where Ty and T:i; are 
cancellative monoids, Ey is a rectangular band, Ix is a left zero semigroup, and J:i; is a 
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right zero semigroup. Assume these exists 
( a} a left representation A - AA of Sy by transformations of I:1: 
(b) a right representation A--+ eA of Sy by transformations of 1:z: 
(c) a homomorphism <P of Ty into T:z:, 

Define a binary operation on Sy U S:z: extending the given ones on Sy and Sr by 
defining products of A = ( a, e) E Sy and (b; i, j) E S:z: as follows: 

(a,e)(b;i,j) = (a<f,b;AAi,j) 

(b;i,j)(a,e) = (b(a</J);i,jeA). 

Then, Sy U Sr becomes a semigroup with S:z: an ideal. 
Conversely every possible binary associative operation on Sy USr extending the given 

ones on Sy and Sr, and such that Sr is an ideal, can be constructed in the above manner. 

Proof. Lemma 1.2 has been established by Clifford (3, Lemma 2.5] in the case Ty 
and Tr are groups. Clifford's proof is easily seen to be valid when Ty and Tr are just 
cancellative monoids. 

Proposition 1.3. Let S be a super quasi-adequate semigroup. Then, 6 is the 
minimum adequate good congruence on S. 

Proof. We first show that fJ is a congruence relation on S. Let 8 denote the smallest 
congruence on S containing 6. Suppose a 8b. Then, there exists a= a1,a2, ... ,an= b E 
S such that ai = x, UiYi, a.+1 = XiViYi where Xi, Yi E S1 and ( Ui, w) E 6 for 1 ::; i < n-1. 
Let Xi= (w; i,j)a E Sa, Yi= (h; r,s)13 E S13, Ui = (g; m, n)-y, and Vi= (g; c, d)..,. Hence, a. = (A; p, q)af3-y E S~/3-Y and ai+1 = (B; k, l)a/3-y E Saf3-y say. Let (J =af3-y. Thus, 

(A;p,q)8 = (w;i,j)0(g;m,n)--,(h;r,s)13 
(B;k,1)1:1 = (w;i,j)a(g;c,d)..,(h;r,s)13 

Multiply both of the above equations on the left and right by (e; p, q)1:1 where e is 
the identity of T1:1. 
Hence, 

(A;p,q)8 = (W;i,})8(g;m,n)..,(h;r,s)e 
(B;p,q)1:1 = (W;i,1)1:1(g;c,d)..,(h;r,s)e 

say, 
Using Lemma 1.2 

(A;p, q)e (W(gw..,,e ); i,Je(g,m,n)-y)e(h; r, s)e = (W(gw--,,1:1 )h; i, s)e. 

where w-y,9 is the homomorphism of T-y into T9 given by Lemma 1.2 and (B;p, q)9 
(W(gw

1
,e);z,1e(g,c,d)'Y)e(h;r,s)e = (W(gw-y,e)h;i,s)e. Hence, A= B. Thus ai.Sai+1 for 

1 ::; i ::; n - 1. Hence, a6b. Thus, 6 = 6, and, hence, cS is a congruence on S. 
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Let a E S and let a+, a* E E(S) such that a+ R* a and a* L * a. Using (9, Corollary 
6.2 and Proposition 6.5] and Lemma 1.1, a+, a*, a E Sy, say. Hence, using [6, Corollary 
2.4 and Proposition 2.6], 8 is the minimum adequate good congruence on S. 

Lemma 1.4. Let S be a super quasi-adequate semigroup. Then, S/8 is a strong 
semilattice Y of cancellative monoids (Ty;y E Y). 

Proof. Let (g;i,j) denote the 8-class of S containing (g;i,j). Since (g;i,j)r = g 
defines a 1-1 map of S/8 onto T = U(Ty :yE Y), T becomes a groupoid under the 
multiplicatioO: ab= (ar-1br-1)r and T defines an isomorphism of S/8 onto T. If g, h E 
Ty, gh = ((g;i,j)(h;k,e))r = (gh;i,e)r = gh (the last product is multiplication in 
Ty)· Hence, T is a semilattice Y of cancellative monoids (Ty :yE Y). For a E T:,; 
and x ~y, define a ~x,y = aey where ey is the identity of Ty. It is routine to verify 
that ~x,y is a homomorphism of T:,; into Ty, ~Y,Y is the identity map on Ty, and, for 
a E Ty, b ET:,;, ab= a~y,yxb~x,yx· Using the fact that the idempotents of T commute 
by Proposition 1.3, its easily seen that ~y,x~x,w =~y,w for y ~x~w. Hence, Tis a strong 
semilattice t;(Y;_Ty;~y,x) of cancellative monoids (notation of [10]). We identify S/6 and 
T. 

We next describe the Rhodes expansion S of an arbitrary semigroup S (see [17] and 
[13]). The Rhodes expansion and certain of its properties will be crucial in developing 
our structure theory of super quasi-adequate semigroups. If a, b E S, a =:; b means 
aUSa::; bUSb and a< b means a::; b but aLb. Let S+ = {(sn,···,s1): s; ES 
for 1 ~ i ~ n and s1::; s2::; ... ::; sn}. If x = (sn, ... ,si), y = (tm,···,t1) define 
xy = (sntm, , sitm, tm, ... , t1). Then, S+ is a semigroup under this multiplication. 
If a = (sn, , s1) E S+ and s1c+1Ls1c for some 1 ::; k ·::; n - I delete Sk to obtain 
a1 E S+ and denote the deletion by a - a1. Perform a - a1 - ... - a1c where 
a1c = (sn, Sn1, ... , Snr) with Sn < Sn1 < ... < Snr (such an a1c is termed an irreducible 
element of S+)· Write a1c = red a and a,...., b if red a = red b. The equivalence relation 
,...., is a congruence :relation on S+. Let S = S+ /....,. S is termed the Rhodes expansion of 
S after its inventor John Rhodes. S will be treated as the set of irreducible elements of 
S+ under the multiplication ab = red (ab). 

Lemma 1.5. Let S be a super quasi-adequate semigroup. Then, S is a semilattice 
Y of subsemigroups (Fy :yE Y) where Fy = {(an, an-1, ... , a1) : an E Sy, aj E S} and 
E(S) is the semilattice Y of rectangular bands 

E(Fy) = {((ey;i,j),an-1, ... ,ai): (ey;i,j) E E(Sy), ai ES}. 

-- u = (S/b) is a semilattice Y of left cancellative semigroups with idempotent (Xy :yE 
Y) where Xy = {(an, an-1, ... , ai) : an E Ty, ai E S/8}. E(U) is a semilattice 
Y of right zero semi groups (E(Xy) :yE Y) where E(Xy) = {( ey, an-l, , at) : ey, 
the identity o/Ty, aj E S/8}. For (an,an-1, ... ,ai) ES, let (an,an-1, ,a1)b 
red(an6, an-18, ... , a16). Then, 6 defines a homomorphism of S onto (sfi>). 
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Proof. To establish the second sentence of the lemma, utilize Lemma 1.1 and (16, 
Lemma 6.7] (see also [17, Lemma 11.4] and [24, Theorem 3.l(f)J). Utilizing Lemma 1.4 
and [24, Theorem 3.l(f)J, it is easily checked that U is a semilattice Y of the semigroups 
(Xy :yE Y) and that the fourth sentence of the lemma is valid. We next show Xy is left 
cancellative for y E Y. Let (xr, Xr-1, ... , x1), (an, an-1, ... , a1), and (bs, bs-1, ... , bi) be 
elements of Xy and suppose that (xr,Xr-1, ... ,x1). (an,an-1, ... ,ai) = (xr,Xr-1, ... , 
x1) . (b.,, bs-1, ... , b1). Hence, red(xran, Xr-lan, ... , X1an, Un, an-1, ... 1 a1) = red(xrbs, 
Xr-1bs, ... , x1b.,, b.,, bs-1, ... , b1). Thus, Xran = Xrbs. Hence, since Ty is a cancellative 
semigroup, an = bs. Thus, n = s and ai = bi for 1 :5 i :5 n. The last sentence of the 
lemma is a consequence of [16, Prop0sition 6.6] (see also [17] and (24, Theorem 3.ll(b)]). 

In the remainder of this section, Swill denote a super quasi-adequate semigroup. 
If A is a semigroup and a =(an, ... , a1) E .A, let !al = n. We term lal the length of 

a. 

Lemma 1.6. If z E S, lzl = lz61 
Proof. Let z = (an, an-1, ... , a1). Suppose ak+18Lak8 for some 1 :5 k < n - 1. 

Using Lemma 1.1, let ak+l = (9k+1;ik+1,ik+1) E Sy, say, and ak = (gk;ik,ik) E 
Sx, say. Thus, ak+18 = 9k+l E Ty and ak8 = 9k E Tx, and, hence, 9k+1Lgk (in 
S/8). Using Lemma 1.4, it easily seen that y = z and 9k+l = µgk where µ is a 
unit of Ty, Since ak+l < ak, ak+1 :::: sak for some s E S. We may take s = 
(s'; m, n) E Sy, Hence, (g;k+l ik+1,ik+1) = (s'; m, n)(gk; ik, ik)- So, ik+1 = ik. Thus, 
(gk;ik,ik) = (µ-1;ik,ik). (9k+1;ik+1,ik+1). Hence, ak+ILak, a contradiction. Thus, 
red(an6, an-16, ... , a16) = (an6, an-16, ... , a16) and lzl = jz61. 

Fort EU= (sfi), let Ut = {x E U :t x =t} 
Lemma 1.7. Fort EU, Uti-1 :5 E(S). If t E Xy, Uti-1 $ U(E(Fx) :x>11). 

Proof. Let s E Uti-1. Hence, s8 E Ut. Using an important theorem of Rhodes 
[13, Theorem A.lV.l], (s6°)1tl+l = (s6)1t1. Let s = (sn, Sn-l, ... , s1). Then, s8 = 
(sn6,sn-18, ... ,s16). If Sn= (g;i,j) E Sy, Sn6 = g E Ty, Thus, pr1(s6°)1tl+l = gltl+l 
and pr1 ( s6°)1tl = gltl. Let e denote the identity of Ty. Thus, since Ty is a cancellative 
monoid, gltle = gltlg implies e = g. Hence, Sn E E(S). Thus, using [24, Theorem 3.l(f)J, 
s E E(S). Hence Uti-1 $ E(S). The last sentence of the lemm~ is a consequence of the 
definitions of Ut and 6, Lemma 1.5, and the first sentence of the lemma. 

If we replace "e" by "8" "X " by "F. " ''G " by "T. " and "U. " by "X " in ' y y, y y, y y 
[26, Lemma 5, Lemma 7, Lemma 8, Lemma 9, Lemma 11] (if Uti-1 # <P and the last 
sentence is omitted), Lemma 12, Lemma 13, the first two sentences of Lemma 15, Lemma 
16, Lemma 17, and Lemma 18 (with "and·.· yx" omitted)], these lemmas are valid for 
quasi-adequate semigroups S. The proofs of these modified lemmas are the same as the 
proofs of the original lemmas in [26] except that we replace Lemma 1 of [26) by Lemma 
1.1, 1.4, and 1.5 and Proposition 1.3; Lemma 2 of [26] by Lemma 1.6; and Lemm_a 6 of 
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[26] by Lemma 1.7 in the proofs of the original lemmas. Using Lemmas 1.1, 1.4 and 1.5, 
Proposition 1.3, Lemma 1.6, [26, Lemma 3], Lemma 1.7, and the modified Lemmas, we 
obtain 

Lemma 1.8. IJU/i-1 # <p, then U/i-1 is a chain Pltl of rectangular bands (W; :;E - ,.., 
Pltl) where Pltl is a sub-chain of Pltl = {1, 2, · · ·, ltl} under the reverse of the usual order. 
Furthermore, every element of Wj has length i. 

Lett E Xy and suppose that ltl =k· If x,y E Uti-1, define xu'y if and only if - ax= ay for all a E Wk where k is the least element of Pk. 
If we make the usual modifications and furthermore replace "<T" by "u'", [26, Lemma 

21 and Lemma 23] are valid for super quasi-adequate semigroups S. The proofs also 
remain valid of we replace "u" by "u"', "e" by "6", k by k, and Lemma 7 by modified 
Lemma 7 if we note th.at e; Lg; (notation of [26, Lemma 23]) by virtue of the modified 
Lemma 5. 

Lemma 1.9. If Ut°6-1 f. </), L is a congruence relation on u/i-1• Hence, Ut6-1 / L - - is a chain Pltl of right zero semigroups (W; / L :; E Pit!). 

Proof. Replace "6" for ''e", Lemmas 21 and 23 by their modifications, and Lemma 
1.8 for Lemma 20 in the proof of [26, Lemma 24]. 

Let r be a homomorphism of a monoid S onto a monoid T, we define a category 
Rr as follows: obj Rr = T. For t1, t2 E T, Rr(t1, t2) = {(t1, s, t2) : s E S and t2 = 
t1(sr)}. For (t1,s1,t2) E Rr(t1,t2) and (t2,s2,t3) E Rr(t2,t3), we define the composition 
(t1;s1,t2)(t2,s2,t3) = (t1,s1s2,t3). It is easily checked that (t1,s1s2,t3) E R,.(t1,t3) and 
the composition is associative where defined. The identity arrow of Rr(t, t) is (t, 1, t) 
where 1 is the identity of S. So, Rr is a category. Let o be a congruence on S and for 
(t1, S1, t2), (t1, S2, t2) E Rr(t1, t2) define (t1, S1, t2)n(t1, S2, t2) if and only if SS1 = SS2 for 
all s E t;:-1 and s1os2. Then, by (26, Lemma 25], n is a congruence on the category 
Rr· Let Dr;! = Rr/n. Following Tilson [18J, we term Dr;! the derived category of r. Let 
[t1,s1,t2] E Dr;!(t1,t2) denote the f2-class of Rr containing (t1,s1,t2) E Rr(t1,t2). We 
define x>..y (in S) if x, y E Fv for soine v. Clearly, >.. is a congruence relation on S. 

-- Lemm& 1.10. Fort E (S/6), [t,s,t]r = sL defines an isomorphism of D~(t,t) onto 
0 

roof. Suppose sLz(s, z E Ut"l-1) Hence, using Lemma 1.8, s, z E W; for some; E 
Pltl· Thus, using modified [26, Lemma 231, su'z. Hence, xs = xz for all x E Wk 
where k = !ti- Since t(x8) =t, t $ x8. Lett= (gk,gk-l, ... ,91). If;; =k, using [16, Propo 
sition 7.1] (valid for arbitrary semigroups) (see also [17, Proposition 12.11), Lemmas 1.6- 
1.8, and (24, Lemma 3.l[f], x8 = (ek, 9k-1, ... , 91) where ei = ekL9k· Using Lemmas 1.5, 
1.6 and 1.8 if u Et "l-1, then u = ((gk; ik, jk), (9k-1; ik-1,ik-d, ... , (g1; i1, ii)), say. Since 
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wk= wk = E(F1;1) n Ut'i-1 (where k -+1;1 defines isomorphism of P1; into Y) (see [26]), 
let x = ((e1:; i1;,j1;), (91:-1; i1;_1,j1;_1), ... , (g1; i1,ii)). Since (g,.; i,., j1;)L(e1;; i1:,h:), it is 
easily checked that ux = u. Hence, us = uxs = uxz = uz. Since s, z E W;, sAz. Thus, 
[t, S,t] = [t, z,t ]. Next, assume 1: >f· Then, using [17, Proposition 12.1]), Lemma 1.7 and 
[24, Theorem 3.l(f)], t = (g1:,9k-l, ... ,9f,9"f_1, ... ,g1) and x6 = (e"f',9"f_1, ... ,g1) where 
gkLek = ef. Hence, u = (g1;;i1;,j1;),(g1:-1;i1:-1,i1:-1), ,(g"f',i"f',if),(g"f_1;i"f_1,i-f_1), 
... , (g1; i1, i1)) and x = (( e"f; i"f', h), (g"f_1; i"f_1, i-f _1), , (g1; i1, ii)). · 

Since (g,;i,,js) < (gk;ik,jk) fork <.,=:;1;, (g.,;i8,j8)(ek;i"f,i"f) = (g.,;i.,,j.,). Fur 
thermore (gk;i"f,h)L(ek;ik ,j"f')· Hence, by a routine calculation, ux = u. Thus, as 
above, [t, s,t] = [t, z,t]. Conversely, assume [t, s,t] = [t, z,t]. Hence, s, z E Fq, say and 
xs = xz for all x Et 'i-1. Using [26, Lemma 22], s::; z or z < s. Using Lemma 1.7, sz = s 
or zs = z. Since s, z E W; for some j, sLz in either case. Thus, [t, s,t]r = sL(s E u1'i-1) 
defines a 1-1 map of D~(t,t) into {U16-1/L)1. Clearly, Tis a surjection. Using Lemma 
1.9, T is an isomorphisJi. 

Theorem 1.11. Let S be a super quasi-adequate semigroup. Then, 

S1 < Vo (S/6)1 (1) 

where V is an L-trivial and idempotent monoid, 6 is the minimum adequate good congru 
ence on S, (s/6) is a semilattice Y = S/ J* of left cancellative semigroups (Xy :yE Y) 
with idempotents, and E((S/6)) is a semilattice Y of right zero semigroups (E(Xy) :yE 
Y). 

Proof. Utilize Lemma 1.5 (define 16 = 1), Lemma 1.10, [26, Lemma 29], and [26, 
Theore:rp. 26] to establish (1). To complete the proof utilize Proposition 1.3 and Lemma 
1.5. 

Remark 1.12. If E is the edge set of the graph obtained from D~ by removing 
6 the identity arrows, then V is the free monoid over E relative to the equation xyx = 

yx(x, y E E1) (see [26]-especially the proof of [26, Lemma 29]). V is a semilattice A 
(set of all finite subsets of E under union) of right zero semigroups (Up : PE A) where 
Up denotes the set of all elements of V with content P (see [2], [10] and [26, especially 
Theorem 27]) 

Lemma 1.12. Xy = Cy x Ey where Cy is a cancellative monoid and Ey is a right 
zero semigroup if and only if Ty is a group. In the case, Xy = Ty x E(Xy ). 

Proof. Suppose Xy = Cy x Ey. Then, Using [19, Theorem 2], a E aXy for all 
a E Xy. Thus, (an) = ( an)e for some e E Xy. Hence, ( an)e = ( an )e2. Thus, using 
Lemma 1.5, e = e2• Hence, using Lemma 1.5, (an)= (an)(ey,~k-i, ... ,x1) where ey 
is the identity of Ty. Thus, (an)= red(an,ey,x1;_1, ... ,x1). So, anLey. Hence, using 

_ Lemma 1.4, ey = san where s may be taken as an element of Ty. Thus, ans ans = 
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aneys =ans= ansey. So, ans= ey and, hence, Ty is a group. Conversely, suppose T31 is 
a group. Let (an, an-1, ... , ai) E Xy. Then, (an, an-1, ... , ai) = (an)(ey, an-1, ... , a1). 
Since (an) ( bn) = ( an·bn) for an, bn E Ty, Ty ,..., {( an : a0 E Ty}. Thus, it is easily checked 
that every element of Xy may be uniquely expressed in the form (a)e where a E Ty and 
e E E(Xy) and (a, e)--+ (a)e defines an isomorphism of Ty x E(Xy) onto Xy. 

Remark 1.13. In the case Sis an orthodox union of groups in Theorem 1.11, 8 
becomes the minimum inverse semigroup congruence on S, J"'" = J and Xy = Ty x E(Xy) 
where Ty is a maximal subgroup of S (hence, Xy is a right group). These facts are a 
consequence of Proposition 1.3. Lemma 1.1, and Lemma 1.12. In this case, the structure 
of (Sµ) is further refined by (25, Theorem 2.6) (see also (26, Theorem 31)). 

Section 2. The Structure of Supe:ir Gene:iralized L * -unipotent Semigrouptr. 

In this section, we describe the smallest L*-unipotent good congruence on a super 
generalized L*-unipotent semigroup (Proposition 2.1) and give a structure theorem for 
super generalized L * -unipotent semigroups (Theorem 2.4). 

Proposition 2.1. Let S be a super generalized L * -unipotent semi group. Then, 6 n L 
is the smallest L*-unipotent good congruence on S. S/b n L is a semilattice Y = S/J* 
of semigroups ( My :y E Y) where My = Ty x 1y where Ty is the cancellatiue monoid of 
Lemma 1.1 ant! ly is an R-class of E(Sy), E(S/8 n L) is a semilattice Y of the right 
zero semigroups (Jy :yE Y). 

Proof. We first show that 8 n L is a congruence relation on S. Utilizing Propo 
sition 1.3, 8 n L is a right congruence relation on S. Let 8 n L be the smallest con 
gruence relation on S containing 8 n L. We will show that 6 n L = 6 n L. Sup 
pose a ( 8 n L )b. Then, there exists a = a1, a2, ... , an = b E S such that ai = 

- 1 . ; xiui, ai+l - xivi where Xi ES and (ui,vi) E 8 n L for 1 ~ i < n -1. Let 
Xi = (g;i,k)-y E S-y, ui = (w;s,j)>.. ES>.., and Vi = (w;t,j)>. ES>,.. Since 8 is 
a congruence relation, ai = ( m; p, q)-y>.. and a,+1 = ( m; i, d)-y>.., say. Let a =,..>... 
Then, a-y =a>.= a, Hence, (m;p,q)a = (g;i,k)-y(e-y;i,k)-y(e>..;s,j)>..(w;s,j)>.. and 
(m; c, d)a = (g; i, k)-y (e,.; i, k),, (e>..;t,j)>, (w; s,j)>.. where e-y is the identity of T-y, 

Since Lis a congruence relation on E(S), (e-y;i,k)-y (e>..;s,j)>..L(e,.;i,k),. (e>.;t,j),,.. 
Hence, (e>,.;i,k),,(e>,.;s,j)>. = (ea;s',j')a and (e-y;i,k),.(e>,.;t,j)>.. = (ea;t',j')a, say. 
Hence, 

(m;p,q)0 = (g;i,k),.(ea;s',j')a(w;s,j)>.. 
(m;c,d)0 = (g;i,k),.(ea;t',j')0(w;s,j)>.. 

Since Lis a right congruence relation on S, (ea; s',j')a (w; s,j)>.. L(ea; t',j')a (w; 
') ( I '') ( 

0

) ( * * "*) d ( / •/) ( ') c- -. •,:,) s,J >,_. Hence, e0;s ,J a w;s,J >.. = w ;s ,J a an e0;t ,J or w;s,J >.. = w;s,J 0, 
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say. Thus, 
(m;p,q)at = (g;i,k)..,(w*;s*,j"')a 
(m;c,d)a = (g;i,k)..,(w;s,f")a 

Hence, 
(ea;p,q)a(m;p,q)a = (ea;p,q)a(g;i,k)..,(w*;s*,j*)a 
(ea;p,q)a(m;c,d)a = (ea;p,q)a(g;i,k)..,(w;s,j*)a. 

Suppose that (ea;P, q)0(g; i, k).., = (g; i, k)a. Then, 

(m;p, q)a = (g; I, k)a(w'*; s• ,j•)a 
( m; p, d)a = (g; i, k)a(w; s, j* )a 

Hence, q = d = j*. Thus, ai(6 n L)ai+l for 1 ~ i ~ n - 1. Hence, a(6 n L)b and, thus 
onL = onL. 

We will need to show that 6 n L* = 6 n L. Suppose a(6 n L"')b. Since a6b, a = 
(g; i, i)a E Sa and b = (g; r, s)a E Sa, say. There exists an oversemigroup s• of S such 
that s(g;i,j)a = (g;r,s)a wheres Es•. Hence, (g;r,s)a(e0;i,i)a = (g;r,s)a. 

Thus, j = s. Hence, a(6 n L)b. Thus, 6 nL* ~ 6 n L. Since L 5 L*, 6 n L* = 6 n L. 
We next show that 6 n L is a good congruence. We will use (5, Corollary 1.5]. 

Suppose aV'e where e E E(S). Let ax(6 n L)ay where x, y E S1. Thus, ax(6 n L*)ay. 
Since aL*e, axL•ex and ayL*ey. Thus, exL•ey. Using [5, Corollary 1.5] and Proposition 
1.3, ex6ey for some e2 = e e· L*a. Thus, ex(6 () L•)ey. Hence, ex(6 n L)ey. Next, let 
aR*e where e E E(S). Assume xa(6nL)ya where x,y E S1. Thus, xa = (h;m,n)a 
and ya = (h;p, n)0, say. Let / = (ey; m, n)a. Then, xa · fya. Hence, fxa = /ya. 
Thus, using [11, Lemma 1.7], f xe = /ye. Since xaR'"xe and yaR*ye, it is easily seen 
that xe, ye, and/ E Sa. Hence fxe = /ye implies xe(6 n L)ye. Thus, 6 n Lis a good 
congruence on S by [5, Corollary 1.5]. 

We next show that S/6nL is an L*-unipotent semigroup. Using (6, Proposition 1.6], 
S/6 n Lis a quasi-adequate semigroup. Using (6, Lemma 1.5], E(S/6 n L) = {e(6 n L): 
e E· E(S)}. Suppose e(6 n L)L/(6 n L) (in E(S/6 n L)). Thus, (e/, e) E 6 n L and 
(le,!) E 6 n L. Hence, e, f E S.,, say. Thus, e = e/e = e/. Hence, e(o n L)f. Thus, 
S/6 n Lis an £•-unipotent semigroup. · 

Let e be an L·-unipotent congruence on S. Suppose a(cnL)b. Then, a= (g;m,n)a 
and b = (g; P, n)a, say. Thus a= (ea; m, n)ab. Since (ea; m, n)aL( e0;p, n)a, (ea; m, n)ae 
= (eaiP, n)ae. Hence, ae = (ea; m, n)aebe = (ea;P, n)abe = be. Thus, 6 n L < e. Thus, 
6 n L is the smallest L • -unipotent congruence on S. 

Using Lemma 1.1, Sy = Ty x ly x Jy (algebraic direct product) where ly is a left zero 
semigroup and ly is a right zero semigroup. Let My = Ty x Jy (algebraic direct product). 
Let (g; i, j) denote the 6 nL-class of S containing (g; i, j). Then, (g; i, j)>. = (g, j) defines 
a. 1-1 mapping of S/6 n L onto M = U(My :yE Y). In a similar manner to the proof of 
Lemma 1.4, we may define a multiplication on M such that M is a semilattice Y of the 
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semigroups (My :yE Y) and M :::'. S/6 n L. The last sentence follows since E(M) is a 
sem1group. 

Remark 2.2 will be used in the proof of Theorem 2.4. 

Remark 2.2. Let O be a homomorphism of a semigroup S onto a semigroup T. 
Define D(O) = {(t,s,t(sO)): t E T°;s E S}U{O} under the multiplication (t1,s1, t1(s10))(t2,s2,t2(s~O)) = (t1,s1s2,t1(s1s2)0) if t1(s18) = t2;· 0 if t1(s10) f. t2 and 
O(t, s, t(sO)) = (t, s, t(sO))O = 0.0 = 0.D(B) was termed the derived semigroup of Oby 
its inventor Bret Tilson (see [16J and [171). Let¢, be a mapping of D(O)-{O} into a semi 
group P. Following Rhodes [13, Definition A.I.2.1, p. 94], we term¢, : D(O) - {O}--. P 
a parametrization of D( 0) if 1) ¢, is a partial homomorphism of D( 8)- { O} into P (i.e. if 
x,y E D(O)-{O} and xy f. 0, then xOy(J = (xy)O) 2) <P satisfies the embedding condition: 
s10 = s20 and (t, s1, t(s18))¢, = (t, s2, t(s2B))<P for all t ET"' implies s1 = s2. For brevity, 
we also term Pa parametrization of D(O). ·using [13, Proposition AI.2.3], S < PoT where 
pjS . 0 (p is the projection if PoT onto T). Following Rhodes [13], we define DR(O) 
(dual derived semigroup) as follows: DR(O) = (((sO)t,s,t): s E S,t E T8)U{o}under 
the multiplication ((s18)t1, s1, t1)((s2B)t2, s2, t2) = ((s1B)t1, s1s2, t2) if t1 = (s2B)t2; o if 
ti f. (s2B)t2; o((sO)t, s, t) = ((sO)t, s, t)o = oo = o. A parametrization pR of nR(O) is 
defined as above and S::; To pR with pjS = 0. 

Remark 2.3 will be needed for the statement of Theorem 2.4 

Remark 2.3. Let W be a partial groupoid which is a union of a collection of 
pairwise disjoint subsemigroups (Ty :yE Y) where Y is a semilattice. If a E T

11
, b E T:r: 

and y ~ x (in Y) imply ab is defined (in W) and ab E T:r: and x ~ w and c E Tw imply 
(ab)c = a(bc), we term W a lower partial chain Y of the semigroups (Ty :yE Y). Let X 
be a semilattice Y of semigroups (Xy :yE Y) and let Rand S be semigroups. For the 
definition of WoX oR and S < W oX oR, see (24, p. 188 and p. 189]. 

Theorem 2.4. Let S be a super generalized L * -unipotent semi group. Then, 
(1) S < W1

o(E(S)/ L)1o(S/8 n L)1 where W is a lower partial chain Y = S/ J* of left 
zero subsemigroups of E(S), E(S)/ L is a semilattice Y of right zero semigroups, and 
6 n L is the smallest L * -unipotent good congruence on S. Furthermore, 
(2) S/8 n L::; (S/8 nL/e)1o(E(S)/ L)1 where e is the smallest adequate good congruence 
on S/8nL and S/6nL/e is a strong semilattice Y of cancel/ative monoids (Ty :yE Y) (Ty 
is a cancel/a.tive subsemigroup of S ). 

Proof. VVe will first establish that S::; (E(S))1o(S/8 n L)1. For each (g,j)y E 
My (yE Y) (Notation of Proposition 2.1), select a representative element u(g,j)y in Sy. We 
first show that every element of Smay be uniquely expressed in the form W(ey,j)yU(g,j)y 

_ where W(ey,j)y E (ey,j}y(8nL)-1. Let (g;i,j)y E Sy and suppose U(g,j)y = (g;i
0
,j)y. 

Then, (g;i,j)y = (ey;i,j)y(g;i0,j)y where (ey;i,j)y E (ey,j)y(6 n L)-1. It is easily 
checked that the above expression is unique. If 8 = (g, j)y, let ; = ( ey, j)y. Thus every 
element of S may be uniquely expressed in the form w;u

8 
where w; E; (8 n L)-1. 
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Let t E S/6 n L and II Ex (6 n L)-1. Hence, we may write u; = f(t,s)Utx where 
f(t,s) E (tx)+(onL)-1. First assumes has an identity. For (t,sAs(8nL))) E D(6n 
L) - {O}, define (t,.,,1(11(6 n L)))O = /(1,11). We will show that O: D(6 n L) - {O} --+ 
E(S) is a parametrization of D(8 n L). It is easily checked that O defines a mapping 
of D(6 n L) - {O} into E(S). Next, we show that (J defines a partial homomorphism. 
Let (t1,s1,11(111(8nL))),(t:z,":1,t:i(.,:z6nL))) E D(onL) with 11(.,1(6nL)) =t:z· We must 
show f(t1,si)f(t:z,s.J = /(11,.,1,.,.J. Suppose s1 Ex1 (6 n L)-1 and 112 Ex2 (6 n L)-1. 
Then, Ut1 (s1' s2) = f(t1,11I":Jut1Z1Z2 = f(t1,ll1"2)Ut2Z:z where f(t1,s1s:i) E (t2z:i)+(6 n Lr 1. 
However, (u11s1)s2 = /(11,8i}(u1:is2) · /(11si)f(t:i,.,2)ut:ix:i· Let t:i E My and z:i E Mz, 
say. Hence, t:is:i E Myz· Furthermore, i:z E E(My) and (t:is:i)+ E E(Myz). Using 
the last sentence of Proposition 2.1, i:z(t:iz:i)+ = (i:z(t:iz:J+)(t2x:i)+ = (t:iz2)+. Hence, 
f(ti,s1)/(t2,s2) E (t2x:i)+(6 n L)-1. Thus, /(t1,s1)/(t2,s:i) = f(ti,s1112), and, hence, 0 is a 
partial homomorphism. We next show the embedding condition is valid. Let e denote 
the identity of S/6nL and let Ue = 1, the identity of s. Thus, if s1(6nL) =.,2 (6nL) =z 
and /(e,s1) = /(e,s2), then .,1 = UeS1 = /(e,s1)Ux = /(e,s2)Uz · UeS2 =s2. Hence, E(S) 
is a parametrization of D(8 n L). Thus, using Remark 2.2, S < E(S)oS/8 n L. If S has 
no identity consider S1. Note that a( 6 n L h (in S1) implies a =1. Hence, S1 / 6 n L "" 
(S/8nL)1. Furthermore, E(S1)"" (E(S))1. Hence, S ~ S1 < (E{S))1o(S/8nL)1. Thus 
utilizing (24, Theorem L24, Remark (1.24)', Lemma 1.23, and Lemma 1.25], we obtain 
(1). We next establish (2). Let M. = S/8 nL. Utilizing [9, Corollary 6.2 and Proposition 
6.5), Proposition 2.1 and Lemma 1.4, M/e is the strong semilattice Y of cancellative 
monoids (Ty :y E Y). If II E. Ty, let : = ey, the identity of Ty. For each s E M / e, 
select a representative element Us E., e-1. We show that every element of M may be 
uniquely expressed in the form Usw: where w; E: e-1. Let (g,j)y E My and suppose 
its= (g,jo)y E My. Hence, (g,j)y = (g,jo)y(ey,j)y where (ey,j)y E eye-1 and g• = ey. 
Suppose u11g; = Us h;. Then, since My (y E Y) is left cancellative, g; = h;. Let t E M / e 
and II Ez e-1. Hence, we may write 8Ut = Uzd(s,t) where f(s,t) E (zt)*e-1. First, 
assume that M has an identity. For ((11e)t,s,t) E DR(e) -{O}, define ((se)t,11,t)O = f(s,t)· 
Using the fact that M/e is a strong semilattice Y of cancellative monoids (Ty :yE Y), 
we proceed as above to show that (J : DR(e) - {O} --+ E(M) is a para~etrization 
of DR(e). Thus, using Remark 2.2, M ~ M/e~E(M). Again, proceeding as above, 
M ~ M1 < (M/e)1~(E(M))1. Using Proposition 2.1, E(M) :::'. E(S)/L. Hence (2) is 
valid. To complete the proof, utilize Proposition 2.1. 

Remark 2.5. W is a lower partial chain Y of L-classes of E(S). Each J-class of 
E(S) contains precisely one of these L-classes (see [24, Theorem 1.24]). 

Remark 2.6. Let S be a generalized L-unipotent union of groups. Then, onL is the 
smallest L-unipotent congruence on S (6 is the smallest inverse semigroup congruence on 
S), e is the smallest inverse semigroup congruence on S/onL, Ty is a maximal subgroup 
of S, and J* = Jin the statement of Theorem 2.4. Thus, Theorem 2.4 generalizes [24: 
Theorem 1.27, Theorem 1.28, and Theorem 1.26] in the case Sis also a union of groups 
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(our structure theorem for generalized L-unipotent unions of groups). A different type 
structure theorem for generalized R-unipotent unions of groups is given in (22, Theorem 
4.7]. 

Section 3 Super R* -unipotent §emigroups 

In this section, we give a structure theorem for super R* -unipotent sem1groups 
(Theorem 3 .1) 

Theorem 3.1. Let S be a super R,:,-unipotent semigroup. Thus, * S ::; (E(S))1o 
(S/ 6)1 where E(S) is a semilattice Y = S/ J,:, of left zero semigroups, b is the smallest 
adequate good congruence on S, and S/6 is a strong semilattice Y of cancellative monoids 
(Ty :yE Y) (Ty is a subsemigroup of S). 

Proof. Using Lemma 1.1, Sy = Ty x E(Sy) where E(Sy) is a left zero semigroup. 
Hence, by a routine calculation, 6 n L = 6. Thus, utilizing the proof of Theorem 2.4, * 
is valid. Use Proposition 1.3 and Lemma 1.4 to complete the proof. 

Remark 3.2. Let S be an R-unipotent union of groups. Then, 6 is smallest inverse 
semigroup congruence on S, Ty is a maximal subgroup of S, and J = J"' in the statement 
of Theorem 3.1. Hence, Theorem 3.1 generalizes [24, Remark 1.14, Theorem 1.12, and 
Theorem 1.8] (our structure theorem for R-unipotent unions of groups). A different type 
structure theorem for L-unipotent unions of groups is given in [22, Theorem 7.2]. 
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