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ON COMPANION INEQUALITIES RELATED TO HEINIG’S

GOU-SHENG YANG AND YU-JEN LIN

Abstract. A number of companion inequalities related to

Heinig’s and their dis-
crete analogues are investigated.

I. Introduction.

In [1], Heinig established the following three inequalities:

Theorem A. Let p,s, ) be real numbers satisfyingp+ s> A\, p > 0. If

/wt*-s | () | dt < oo,
0 %

then,

/ :z:’\exp[px"’/ = llog |27 f(2) | dt]dz < el/"A/ ¢ | f(2) | dt,
0 0 0
where A =p/(p+s— ).
Theorem B. Let2p—1> )\ — sp, p> 0 and

(o]
/ = | Ft) P dt < oo.
0
Then

/°° x’\ex'p[Pz-'L‘_p /” P log | 27 £(t) | dt]dz < eB/oo AP | f£(¢) |P dt,
0 0 4

where B =p/(2p+sp— X — 1).

Theorem C. Suppose {a,
A<s+p, If Y2 0%, = M < 00,
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(1)

@)

}ox1 is @ non-negative sequence and s > 0, p> 1, 0 <
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ithen
(o o] o0
Z nA=eP H(an ,p) < ellpC E "A_’am (3)
n=1 n=1

where [[(an,p) = alazw—l---a""_l P/ n=1,2,3,---, and C=p[l+ 1/(p+s5—]N)|.
2 n

The following improvement of the inequalities (1), (2) and (3) are given by Cochran
and Lee [3].

Theorem D. Let p,r be real numbers with p > 0. If

/oot'|f(t)|dt £ o
0

then

s o] T (o o]
/ R — / #1log | £(t) | de]dz < VP / C1FE) A (4)
0 0 0

Theorem E. Let p,r be real numbers withp > 1, r > 0. If {a,}3; is a sequence
of non-negative real numbers less then or equal to unity with ¥ . n"a, < co, then

i n" H(an,p) < elrtile f: n"a,. (5)
n=1

n=1

The purpose of this paper is to establish some companion inequalities that are related
to inequalities (1)-(5).

II. Companion inequalities related to Heinig’s.

Theorem 1. Let p,s, A be real numbers satisfyingp+s< A, p<O0, If

[ e ismia < o,
0

then

o0 o0 o]
f z*exp [—pa:"”/ t?~llog | z™*f(t) | dt]dz < elh’A/ t*=* | f(t) | dt, (6)
0 0

z

where A =p/(p+s—A).

Proof. Since -
ellr = exp[p/ y?llog y dy}
1
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a change of variable shows that (6) has the form

oo o o]
/ :r:’\exp[—-p:z_”/ zP~1yP=1]og | z7°f(zy) | zdy|d=
0 1

<ellrg / =2 | £(1) | dt,
0

which is equivalent to

[ Pexplop [ o e us (o) sl < 4 [ o114
0 1 0

315

But by Jensen’s inequality ([5], p.62) the left side of the above inequality is domi-

nated by

o[ P 1a7v s | dde
s . +s—A-1 ooA-s

= —p [ [T 0 10 day
) A—3s

..A/O =0 | £(2) | dt

Theorem 2. Let 2p—1< A —sp, p< 0 and
/ AP | F(@) P dt < oo.
0
Then
/ x’\exp[—pzm_"/ ?"1log | z*£(t) | dt]d=
0 - T
< eB f AP | f(2) P dt,
0
where B =p/(2p+sp— A —1).

Proof. Since

€ == exp[p2/1 y*~1log y dy]

a change of variable shows that (7) has the form

(o] o0
./o z’\exp[——pzz‘p/ P~ 1yP=11og | z~*f(zy) | zdy]d=
1

<en [" 0| 1) P a
0

which is obtained by an interchange of order of integration which is justified by Fubini’s

Theorem.

(7)
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which is equivalent to

[ Pl [T v togl s usen 1alas < B [T oo sy p
0 1 0 .

By Jensen’s inequality the left side of the above inequality is dominted by

[ = [ 127 ui(e) P (ot dg]s

0 1
- /1 g1 / 227 | f(zy) P dz]dy
- B /omt*"’lf(t) P dt,

which is obtained by an interchang of order of integration which is Jjustified by Fubini’s
Theorem.

For the discrete analogue of theorem 1 it is convenient to introduce the following
notation. Let {a,}5%; be a sequence of non-negative real numbers and P < 0. Then we
write

Q(an,P) _ [a:rﬂasril)p-l.“]-p/mv, e LB e,

Theorem 3. Suppose {a,}3%, is a non-negative sequence and s < 0, p < —1,
A20. If 350, n*%a, = M < oo,

then - -
> n*"**Q(an,p) < PCY n*tay, (8)
n=1 n=1

where C = —p[l +1/(A - p —s5)].
Proof. Without loss of generality, we may assume that
n’ar < 1, k=mnn+1,--..

If 0 < M < 1, this is obvious.
If M > 1, then divide both side of (8) by M to obtain

1 - A— an o 1/ = A—s@n
ﬁZn ’PQ(M,p)M < B "CZn "M:.
n=1 n=1
where @ = (—p Y po kP~1)/n? > 1> p.
It follows that
1 io: A—spQ(a_n < llpci A-s ar;
% n M,p) < e 2 n Tt

n=1
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Replacing a,, /M by a,,, we obtain n*~%a, <1 and hence n~*a, < n~* < 1 which
implies n™%a; < 1, k =n,n+1,-..
Now to prove (8), observe that

n=1
o0 SP oo ]
hid 4 kP
< St =t )
e -» . P
— z n? [n—sny-ln_a(n+1)p-1 . ] nP [a:l’_lag_l:il) . ] n?
no_ol o
= Z nAexp[;pg Z kPl log(n™*az)]
n=1 k=n
©0 - (e}
— Zn"exp[n—f Z kP~ log(n=*ay)]
n=1 k=n
- “ A ___p = p—1 . —s
— Zn exp{ = Zk : log[n f(t)]dt},
n=1 k=n

where

@) = {ak, E<t<k+1,

0, otherwise.

But since n7° f(¢) < 1 the last equality is dominated by

o0 _ 0 k41
En'\exp{n—f Z/k tp‘llog[n°’f(t)]dt}
n=1 k=n

= Z n*exp{ ;—f /oo p-1 log[n=*f(2)] dt}
n=1 5

= rtenfp [y logln= r(nu)]ay),
nz=1 1

which is less than or equal to Cel/? >ome1n*"%a, if , and only if

Zn"exp{~p/£ y”’llog[n""yf(ny)]dy} < C’Zn’\_’an. (9)
n=1 n=1
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By Jensen’s inequality, the left side of (9) is dominated by
©0o co
> nr[-p / ¥*n~* f(ny)dy]
n=1 1
o oo
= En’\ [—p/ tpn_"_"lf(t)dt]
n=1 L

o0 [oe] k41
= —pz:n>"”"’"1 Zak/ tPdt
n=1 k

~ kozon.
< —PZHA—P_"'I Zakk"
n=1 k=n
(S =] 00
= —szpakzn'\_’”"_l
k=1 n=1
(o] k-1
= —p) Fa[) nempmt 4 proemr]
k=1 n=1
et k
< —pzk"ak[/ ety 4 e
k=1 0
oo 1 1
= —pzk”ak[k)‘_-"'P(————-—A v + Z)]
k=1
= 1
— A—=s—p
< Pkglkpak[k (_-—/\—s-—-p o3 1)]
= - ; = A—s
= P(1+/\_s_p)"§1n an.
oo
— CZn’\"a,,.
n=1

This completes the proof of this theorem.
The following theorem has been proved in [4], here, we give a simple proof which is
motivated in part after [3]:

Theorem 4. Let p, be real numbers with p < 0. If fooo tP|f@)|dt < oo and
Jo” ¥ log (1)l dt < oo,
then

B+1

/000 zPexp [—pz P /oo P~ log | f(t) | dt]dz. < exp( )’/:o z? | f(z) | dz (10)
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Proof. Consider the following reslt of Hardy ([2], p-246):
If¢g>1, r<1and F(z) = [ °|g(t)|dt, then

/o T et R < (L /0 " 2"z | ¢ [)9de.

1-7r
Let @ =1—17> 0. Then
{o°e] fo'e) q oo
/0 z""1[/ | 9(2) | dt]dz < (;)9/0 zte=1| g |4 dz.
Let g(z) = 2P~1f/¢ and set # = pg + a — 1. Then
(o0 o0 _ -
/ Ia-l[_p/ tp’1 'f(t) 11/9 dt]“d:c < (_p.&_;%)q/ zq+a—lzpq—g If I dx

so that
{oce] I(XJ 1 _ o0 .
|t lepe [T gy e < @ - £ [ o 1514e
0 E pPq 0
The desired inequality is obtained by taking the limit g — 00.

Remark 1. If we set A — s = 3, then the left-side of the inequality (6) becomes the
left-side of the inequality (10). And the right-side of inequality (6) is equal to

tr (=L [T | 1) |
- 0

Since »
(B+1)/p 1/p
e < ellr(—
)
for A — s = 8 > p, except = 0.
_This shows that the inequality (6) can not be sharp in general and theorem 4 rep-
resents an improvement of theorem 1.

Remark 2. If we set A — sp = § and replaced [fIP by |f], then the left-side of
the inequality (7) becomes the left-side of the inequality (10) and the right-side of (7) is
equal to

elp/(2p — B — 1)] /Ow | £(2) | dt

Since
eB+D/p e[p/(?p s e 1)]

for 3> 2p—1, except B =p— 1.
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This shows that the inequality (7) can not be sharp in general and theorem 4 rep-
resents an improvement of theorem 2.

Remark 3. When f(t) = t*=Pe~*"""* with b > —1, (10) gives rise to

(o o] {o 0]
BWIegr0H0lp [ v gy < o4vlp [ e

0 0
By letting b — —1, we readily deduce that the multiplicative constant appearing on the

right-hand side of (10) must be best possible.
To prove the finally theorem, which is the principle result in the discrete case, we

need the following:

Lemma. I[f0<s<1 and 0<s+a<l,
then

H
[G+ 1) — #+e] S < ia‘;t"‘, i= 1,23,

[

n=1

Proof. Since

it follows from mean value theorem that

§
[ + 1) ~ 4] 300
n=1
l1—s
5 sta _ ssta)
<[G+1) =l —

1—s
= (s -+ a)C"+“"llz——E, 1< C<i+1l

<(s+ a)i"'*“‘l——il—s
- 1-3s

s+aia
1—-5s °

Theorem 5. Let p,r be real numbers with PS-1,0<r<1 If{a,}2, isa

sequence such that 0 < a, < 1. VYn and Y omeina, < 00,
then
[ 0] o]
2 1" Q(an,p) < (=p)eC=2? Y nra,, (11)
n=1 n=1
where

Q(an:p) - [a:p-lag:’il)'-l e ] —P/"P’ n = la 2a3a S
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Proof. Our demonstration is modelled in part after [3]. Since ¢ <a, <1,

i nrQ(an ap)

n=1
o0 o9
= E n"exp [—pn_p Ei’"l log a.-]
n=1 i=n
) 00 gl
= Z n"exp [—pn"’ Z / P 1log f(t)dt]
n=1 i=n V¢
) 0 a4l
< En'exp [~pn—? Z/ t*~1 log f(t)dt]
n=1 i=n v?

n

[o o] (o o]
= Y n'exp[—pn~? / P~ log f(t)dt]
n=1
= Pt Y wrexpl-p [ log f(ny)dy]
n=1 1

exp[—p /1 y*~logy P Hidy]

00 co
= e(r=p+3)/p Z n'exp{"p/ ¥~ llog [yr—p+‘f(”y)] dy},
1

n=1
where
0, otherwise.

f(t) = {a,-, i<t<i+l, i=mnn+1,...

and s is chosen so that 0 < s < 1, and 0 < s+r < 1. By Jensen’s inequality, the final
summation is dominated by

©0 00
I=-p) a / f(ny)y™*~1dy
n=1 1
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and for this equality, we have

[eo] oo
I = —pZn’/ J@)rte-lp—r—stl -1y
n=1 1

00 co

=—p)y n* / Fet+e-1g
n=1 7
(o] co

i+1

[6+ ™ - +)

r+s ir+s] zi:n—a

n=1

n=1 t=n

H

(by Lemma)

ll

for0<s<1,and0<s+r €1, by vn‘tue of the definition of f(¢) and the previous
lemma. The proof is completed by noting that

—pe(r=P)p _ mm[ e("-p+8)/P]

)

where the minimum occurs for s = 0.

Remark 4. Since
e(r=p)/p < 61/1’{1 + [1/(1- —p)]} for P =l 0 <r<l

If we set r = A — 5, then our inequality (11) of theorem 5 represents a substantial
improvement over (8) of theorem 3 in case ) — s <L
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