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A NOTE ON A COVERING THEOREM OF KY FAN

HWEI-MEI KO AND KOK-KEONG TAN

Abstract. A covering theorem by open sets is proved to be equivalent to a covering
theorem by closed sets due to Ky Fan. Dual theorems of Shapley and Knaster et
al. are obtained as applications.

Throughout this note, we shall denote by ¢ an n-dimensional simplex in a Euclidean
space and F the family of all faces of o.
The following covering theorem by closed sets was proved by Fan in [1, Theorem

13]:

Theorem 1. (Fan). For each 7 € F, let p(7) and g(7) be two given poinis in o and
let A(T), B(7) be two closed subsels of o such that

(a8) Urexr A(T) = Urer B(T) = 0.
(b) For each 7 € F of dimension < n and for any point z € 7, there tis a p € F
such that z € B(p) and g(p) € 7.
Then there exist two non-empty subfamilies G and H of F such that
(c) [PreaA(T)] N [MpenB(p)] # ¢
and

(d) the convez hull of {p(7) : 7 € G} meets the convez hull of {q(p) : p € H}.

As is observed by Fan, the condition (b) in Theorem 1 above is implied by the
combination of the following two conditions:

(%) For each T € F, ¢(7) is a point in 7,

(") For each 7 € F of dimension < n and for any point z € 7, there is a p € F such

that p C 7 and z € B(p),

and the less general result obtained by replacing (b) by (¥) and (b”) in Theorem 1
includes Shapley’s theorem [3] as a special case which in turn generalizes the classical
theorem of Knaster-Kuratowski-Mazurkiewicz [2]. We remark here that Shapley’s result
plays an important rule in game theory.
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In this note we shall show that Fan’s Theorem 1 above is equivalent to the following
result, namely, Theorem 2, which is a covering theorem by open sets and is a dual to
Theorem 1:

Theorem 2. For each 7 € F, let p(7) and q(7) be two given points in o and let
A(7), B(t) be two open subsets of o such that

(a) UrerA(T) = Urer B(r) = 0.

(b) For each 7 € F of dimension < n and for any point z € T, there is a p € "

such that z € B(p) and g(p) € 7.

Then there erist iwo non-empty subfamilies G and H of F such that

() [MrecA(n)] 0 [foenBlo)] # ¢
and

(d) the convez hull of {p(7) : T € G} meets the convez hull of {q(p) : p € H}.

To prove that Theorems 1 and 2 are equivalent, we first need the following simple
lemma:

Lemma. Let X be a compact Hausdorff space and A,,...,A, be open subsets of
X such that X = U™, A;. Then there exist closed subsels By, ..., Bn of X such that (i)

1

B; C A; foreachi=1,---,n and (11) UL, B; = X.
Proof. For each y € X, let

then H, is an open set containing y; as X is regular, there exists an open set Gy in X
such that y € Gy C Gy C Hy. Now as {G, : y € X} is an open cover of X which is
compact, there exist ¥1,...,Ym in X for which X = U;-"zleJ.. Foreachi=1,---,n, let

B,' = U{@w & y,- EA;};

then B; is closed in X and B; C A;. The fact t.hat U?_,B; = X follows from the fact
that X = U2 ,Gy; = U, Ai. This completes the proof.

We now show that Theorem 1 and 2 imply each other:

Proof of Theorem 2 From Theorem 1:

By Lemma above, there exist families {C(7) : T € F } and {D(7) : T € F} of closed
subsets of o such that

(1) C(r) C A(r) and D(r) C B(r) for each 7 € F,

(2) UrerC(r) = UrerD(7) = 0.

Fix any 7 € F of dimension < n. Let

F, = {peF:B(p)nt # ¢pandq(p) €T}



A NOTE ON A COVERING THEOREM OF KY FAN 331

then by hypothesis (b), 7 C Uyex, B(p). By Lemma above again, there exists a family
{D(r,p) : p € Fr} of closed subsets of 7 (and hence also of o) such that

(3) D(r,p) C B(p) for each p € F;,
(4) 7=Upez, D(7,p)-
Note then for each z € 7, there exists p € F, such that

z € D(r,p) and g(p) € T. *)
Define
D = {D(r): 7€ F}YU {D(r,p) : p € Fr, T € F is of dimension < n}.
For each p € F, let
E(p) = U{H € D: H C B(p)};

then E(p) is a closed subset of o such that E(p) C B(p). Now that U,e sE(p) = 0. Now
if 7 € F is of dimension < n and if z € T, by (*) there exists p € F, such that z € D(r, p)
and g(p) € 7; it follows that z € E(p) as D(r,p) C B(p). Hence by Theorem 1, there
exist non-empty subfamilies G and H of F such that

[Ne@] n [[) E@)] # ¢

TEG pEH

and the convex hull of {p(7) : 7 € G} meets the convex hull of {g(p) : p € H}; but then
by (1) and (3), we have

[N AM)] n [[] B)] # ¢

TEG pPEH

This completes the proof.

Proof of Theorem 1 form Theorem 2:

For each n = 1,2... and for each 7 € F, define

An(1) = {z €0 : dist(z,A(r)) < 1/n},
B,(7) = {z €0 : dist(z,B(r)) < 1/n},

then by Theorem 2, there exist two non-empty subfamilies G, and H, of F such that

M N A@]n] EQ Ba(p)] # ¢,

TEGn P n
(2) the convex hull of {p(7) : T € G»} meets the convex hull of {g(p) : p € Hn}.

Since F is finite, there exist non-empty subfamilies G and H of 7 and a sequence
(nx)32, of positive integers such that G,, = G and H,, = H for each k, and
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(1) [N Ann()] 0 [N Ban(p)] # dforallk = 1,2,
[« pEH

T€
(2') the convex hull of {p(7) : T € G} meets the convex hull of {a(p) : p € H}.
For each k = 1,2,..., choose any zi € [ ) A N[N Ba,(p)]. By compact-
TEG PEH

ness of o, there is a subsequence (zx,)f2; of (zx)z21 such that zp, — z for some z € 0.
But then for each 7 € G,
dist (z, A(1)) < dist (z,zy,) + dist (zx;, A(T))
< dist (z,zx;) + 1/nx;, — 0 as i — 00,

so that z € A(7) as A(7) is closed; thus z € () A(r). Similarly we can show that
TEG

z € () B(p). Therefore [ N ADn [N B(p)] # ¢. This completes the proof.
pEH TEG pEH

As an immediate consequence of Theorems 1 and 2, we have the following:

Corollary. For each 7 € F, let g(7) be a given point in o and B(T) be an open
(respectively, a closed) subset of o such that

(%) lleB(T) = o,
(¢8) for each 7 € F of dimension < n and for any point z € 7, there is p € F such

that z € B(p) and g(p) € 7.
Then for each y € o, there erisis a non-emply subfamily H of F such that

(1) ‘Qu B(p) # ¢,
p
(2) the convez hull of {g(p) : P € H} contains y.

Proof. Take A(o) = o and A(t) = ¢ for all 7 € F with 7 # o and take p(p) = y
for all p € F. The conclusion follows by applying Theorem 2 (respectively, Theorem 1).

In view of Theorem 2 and Fan’s observation, by taking A(r) = ¢ for 7 # a and
A(e) = o and p(r) = ¢(7) is the barycenter ¢(r) of 7 for every T € F, we have the
following result which is a dual, and is in fact equivalent to Shapley’s result [3]:

Theorem 3. If {B(7) : 7 € F} is a family of open subsets of o such that T C

U B(p) for each T € F, then there ezists a non-emply subfamily D of F such that
TCPEF

(1) QD B(r) # ¢,
(2) the convez hull of the set {c(t) : T € D} coniains lhe barycenter of o.

Moreover, by taking B(7) # ¢ only for 0-dimensional faces 7 of ¢ in Theorem 3,
we have the following result which is a dual, and is in fact equivalent to the classical
Knaster-Kuratowski-Mazurkiewicz Theorem [2]:

Theorem 4. If 0 = apa; ...a, and By, Bi,...,Bn are open subsets of o such that

y : k n
for each subset {io,i1,...,ix} of {0,1,...,n}, @144, -..a;, C U Bi;, then N B; # ¢.
’ j=0 1=0
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