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A NOTE ON A COVJERXNG THEOREM OF KY FAN 

HWEI-MEI KO AND KOK-KEONG TAN 

Abstli'&ct. A covering theorem by open sets is proved to be equivalent to a covering 
theorem by closed sets due to Ky Fan. Dua.I theorems of Shapley zmd Knaster et 
al. are obtained a.s applications. 

Throughout this note, we shall denote by u an n-dimensional simplex in a Euclidean 
space and :F the family of all faces of u. 

The following covering theorem by closed sets was proved by Fan in [1, Theorem 
13]: 

Theol!."em 1. (Fan). For each r E :F, let p( r) and q( r) be two given points in u and 
let A( r), B( r) be two closed subsets of u such that 

{a) UreFA(r) = UreFB(r) = u. 
(b) For each r E :F of dimension < n and for any point x E r, there is a p E :F 

such that z E B(p) and q(p) Er. 
Then there exist two non-empty subfamilies g and 1l of :F such that 
(c) [nreaA(r)] n [npe1iB(p)] # 4> 

and 
{d) the convex hull of {p(r): r E g} meets the convex hull of {q(p) : p E 1l}. 

As is observed by Fan, the condition (b) in Theorem 1 above is implied by the 
combination of the following two conditions: 

(b') For each r E :F, q( r) is a point in r, 
(b") For each T E :F of dimension < n and for any point x E r, there is a p E :F such 

that p Cr and x E B(p), 
and the less general result obtained by replacing (b) by (b') and (b") in Theorem 1 
includes Shapley's theorem [3] as a special case which in turn generalizes the classical 
theorem of Knaster-Kuratowski-Mazurkiewicz [2]. We remark here that Shapley's result 
plays an important rule in game theory. 

Receive August 13, 1990. 
1980 Mathematics Subject Classification: 52A20. 
This worlc partially supported by NSERC of Canada under grant A-8096. 

329 



330 
HWEI-MEI KO AND KOK-KEONG TAN 

In this note we shall show that Fan's Theorem 1 above is equivalent to the following 
result, namely, Theorem 2, which is a covering theorem by open sets and is a dual to 
Theorem 1: 

Theorem 2. For each T E :F, let p( T) and q( T) be two given points in (1 and let 

A( T), B( T) be two open subsets of <1 such that 
(a) UTeFA(r):::: UTeFB(r) = u. 
(b) For each T E :F of dimension < n and for any point x E r, there is a p E :F 

such that x E B(p) and q(p) ET. 
Then there exist two non-empty subfamilies g and 1{ of :F such that 
(c) (nTe9A(r)] n [ripe?iB(p)) -I ef, 

and 
(d) the convex hull of {p(r): TE g} meets the convex hull of {q(p): p E 1l}. 

To prove that Theorems 1 and 2 are equivalent, we first need the following simple 

lemma: 

Lemma. Let X be a compact Hausdorff space and A1, ,An be open subsets of 
X such that X = Ui=l Ai. Then there exist closed subsets B1, , Bn of X such that {i) 
Bi C Ai for each i = 1, · · ·, n and (ii) Ui=l Bi = X. 

Proof. For each y E X, let 

then Hy is an open set containing y; as X is regular, there exists an open set Gy in X 
such that y E Gy C Gy C Hy. Now as {Gy : y EX} is an open cover of X which is 
compact, there exist y1, ... , Ym in X for which X = U~1 Gy;. For each i :::: 1, · · ·, n, let 

then Bi is closed in X and Bi C Ai. The fact that U?=1Bi = X follows from the fact 
that X == U~1Gy; = Uf=1Ai. This completes the proof. 

We now show that Theorem 1 and 2 imply each other: 

lProof of Theorem 2 From Theorem 1: 

By Lemma above, there exist families {C(r): TE :F} and {D(r): TE :F} of closed 
subsets of u such that 

(1) C(r) C A(r) and D(r) C B(r) for each r E :F, 
(2) UTeFC(r) = UTeFD(r) = u. 
Fix any T E :F of dimension < n. Let 

· :FT = {p E :F: B(p) n r "# q, and q(p) Er}; 
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then by hypothesis (b), TC UpeF .. B(p). By Lemma above again, there exists a family 
{ D( T, p) : p E :Fr} of closed subsets of T ( and hence also of q) such that 

(3) D(r,p) C B(p) for each p E :Fr, 
(4) r = Upe.r .. D(r, p). 

Note then for each x E r, there exists p E :Fr such that 

x E D(r,p) and q(p) E r. (*) 

Define 

V = {D(r): r E :F} U {D(r,p): p E :Fr, TE :Fis of dimension < n}. 

For each p E :F, let 
E(p) = U { H E 1) : H C B (p)}; 

then E(p) is a closed subset of u such that E(p) C B(p). Now that UpeFE(p) = O', Now 
if r E :F is of dimension < n and if x E r, by (*) there exists p E :Fr such that x E D( r, p) 
and q(p) E r; it follows that x E E(p) as D( r, p) C B(p). Hence by Theorem 1, there 
exist non-empty subfamilies g and 1l of :F such that 

[ n C( r)] n [ n E(p)] ;p <p 
pE1i 

and the convex hull of {p( r) : r E t;;} meets the convex hull of { q(p) : p E 1i}; but then 
by (1) and (3), we have 

rEQ pE1i 

This completes the proof. 

roof of Theorem 1 form Theorem 2: 

For each n = 1, 2 ... and for each r E :F, define 
An(r) = {x Eu : dist (x,A(r)) < 1/n}, 
Bn(r) = {x Eu: dist(x,B(r)) < 1/n}, 

then by Theorem 2, there exist two non-empty subfamilies Yn and 1ln of :F such that 
( 1) [ n An ( r)] n [ n Bn (p)] ;/; </J, 

rHi,, pE1'n 
(2) the convex hull of {p(r) : r E Yn} meets the convex hull of {q(p) : p E 1ln}. 
Since :F is finite, there exist non-empty subfamilies g and 1l of :F and a sequence 

(nk)k=l of positive integers such that Yn1c = g and 1ln,. = 1l for each k, and 
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(l') [ n Anr.(r)] n [ n Bnr.(P)] # 4, for all k = 1,2, ... , 
rEO pE'H. 

(2') the convex hull of {p(r): r E g} meets the convex hull of {q(p) : p E 1l}. 
For each k = 1,2, ... , choose any XA: E [ n Anr,(r)] n [ n Bnr.(P)]. By compact- 

TEO pE'H. 
ness of u, there is a subsequence (xA:Ji=1 of (xk)k==l such that XA:; -+ x for some x E <T. 
But then for each r E g, 

dist (x,A(r)) ~ dist (x,xkJ + dist (xk;,A(r)) 
< dist (x, x1:.) +; 1/nk; -+ 0 as i-+ oo, 

so that X E A( r) as A( r) is closed; thus X E n A( r). Similarly we can show that 
rEQ 

x E n B(p). Therefore [ n A(r)] n [ n B(p)] # 4,. This completes the proof. 
pE'H. rEQ pE'H. 

As an immediate consequence of Theorems 1 and 2, we have the following: 

Corollary. For each r E :F, let q( r) be a given point in u and B( r) be an open 
( respectively, a closed) subset of u such that 

( i) u B ( T) = <TI 
TEF 

( ii) for each T E :F of dimension < n and for any point x E r, there is p E :F such 
that x E B(p) and q(p) Er. 

The'!- for each y E ", there exists a non-empty subfamily 1l of :F such that 
(1) n B(p) # 4,, 

pE1i 
(2) the convex hull of { q(p) : p E 'H} contains y. 

Proof. Take A(<1) = u and A( r) = 4> for all T E :F with T # u and take p(p) = y 
for all p E :F. The conclusion follows by applying Theorem 2 (respectively, Theorem 1). 

In view of Theorem 2 and Fan's observation, by taking A( r) = 4> for T # a and 
A( u) = u and p( T) = q( T) is the barycenter c( T) of r for every r E :F, we have the 
following result which is a dual, and is in fact equivalent to Shapley's result (3]: 

Theorem 3. If { B( T) : r E :F} is a family of open subsets of u such that r C 
U B(p) for each r E :F, then there exists a non-empty subfamily 'D of :F such that 

rCpE:F 
(1) n B( T) # 4,, 

TE'D 
(2) the convex hull of the set { c( r) : r EV} contains the barycenter of u. 

Moreover, by taking B(r) # 4, only for 0-dimensional faces r of" in Theorem 3, 
we have the following result which is a dual, and is in fact equivalent to the classical 
Knaster-Kuratowski-Mazurkiewicz Theorem [2]: 

Theol!."em 4. If u = aoa1 ... an and Bo, B1, ... , Bn are open subsets of" such that 
k · n 

for each subset {io, i1, ... ,ik} of {O, 1, ... ,n}, a10ai1 .•• ai,. C U Bi,, then n Bi# 4,. 
j::O i=O 
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