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GEOMETRIC VERSION OF MIXED MEAN INEQUALITIES

YUAN JUN AND LI AIJUN

Abstract. In this paper, we introduce the mixed mean of star bodies and give
geometric version of mixed mean inequalities.

1. Introduction

The classical arithmetic-geometric-harmonic mean inequality is one of the most im-
portant analytic inequalities, which is used in almost every branch of mathematics. There
is a huge amount of work on its generalization (see [1, 2, 3, 4, 5], [7, 8, 9, 10, 11, 12, 13]).

In this paper, we introduce several kinds of mixed means for star bodies, which
involve the geometric mean and one of the arithmetic and harmonic means, and prove
some related mixed mean inequalities.

For star bodies K, L, let K+L and K L denote the radial addition and multiplication
of K and L, respectively. Our result is the following theorem, which is a special case of
Theorem 4.1 of this paper:

Theorem 1. Let the arithmetic and geometric means of the star bodies K1, Ko, ..
K, taken n—1 at a time be denoted by

)

_ Kit - Ki 1 +Kigt - +K,y

A; S , GZ-:(Kl...KFlKHl...Kn)ﬁ.
Then forn > 3; ) )
(e o) 2 w (1.1)
with equality holds if and only if K1 = Ko = --- = K,,. Note that K > L means that

KDL

Remark 1. The inequality of (1.1) can be viewed as a geometric version of mixed
arithmetic and geometry mean inequality established in [3, 4] for positive scalars.
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Please see the next section for above interrelated notations and definitions.

2. Basic Definitions and notation

As usual, let B,, denote the unit ball in Euclidean n-space, R™. While its boundary
is S"~1. For a compact set K of R™, which is star-shaped with respect to the origin,
define the radial function p(K,-) of K by ([6], [16])

p(K,u) =max{\>0: \uc K} wuecS" ' (2.1)

If p(K,-) is continuous, K will be called a star body. Let S™ denote the set of star bodies
in R™.
From the definition of radial function it follows that if K, L € S™, [6]

K > L& p(K,u) > p(L,u), (2.2)

for all u € ™1,

If z; € R™, 1 <4< m,then 21+ ...+, is defined to be the usual vector sum of the
points x;, if all of them are contained in a line though o, and 0 otherwise.

Let K; € 8", and t; > 0,1 < i < m, then

t1K1;|1 Ce ;thm = {tll‘l; .. :lltml'm X € Kz};

is called a radial linear combination. The addition and scalar multiplication are called
radial addition and radial scalar multiplication. Moreover,

p(thl—T_tQKQau) = tlp(KhU’) +t2p(K25u)7 (23)

for all u € S™~L.

Also associated with a star body K € S™ is its star dual K°, which was introduced
by Moszynska [14] (and was improved in [15]). Let ¢ be the inversion of R™\{0}, with
respect to S™1:

i(z) == L
[|z]?

Then the star dual K° of a star body K € 8™ is defined by
K° = cl(R™\i(L)).

It is easy to verify that for every u € S™~1 [14],

and
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Moreover, for K, L € 8™,
K>L&s K°<L°.

Let Ky,..., K, € §"(n > 2). We define the arithmetic mean of K,..., K,, as

Ki+---¥K, 1
AKy, ... K,) = % ==Y K. (2.6)

3

and the harmonic mean of K,..., K, as
KT FEe\® (1< :
H(Ky,...,Kp) = —+—2) ==Y K| . 2.7
<><n><ng> 2.7

n
Throughout the paper, for notation Z X, if X; is a star body, then the >~ denotes

1
the radial addition, and usual sum otherwise.

3. Geometric mean inequalities for star bodies

Let K; € S™(1 <i <n). The multiplication, K --- K,,, of K1,..., K, is a star body
whose radial function satisfies for u € S*~1,

p(Kl e Knau) = p(Klvu)p(KQau) o p(Knau) (31)

The geometric mean, G(K71, ..., K,), of Ki,..., K, is a star body whose radial function
satisfies for u € S"1,

PG(EL o 1), w) = o, (w)pis () -+ prc, (u)] (3.2)

From the definition of radial function it follows that G(Ki,...,K,) is symmet-
ric in its arguments. It also follows that G(K,...,K) = K. We use the notation
G(K,...,K,L,...,L) with p copies of K and n — p copies of L.

——— ——

n—p
Now, we develop some basic properties of the G(K71,. .., K,) which are useful in our
discussion.

Lemma 3.1. Let K;,L; € S"(1 <i<n) and o,3 > 0. Then

G(aKi+8Ly,...,aK,+BLy)
>aG(Ky,...,K,)+B8G(Ly,...,Ly,). (3.3)
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Proof. For every u € S"~ !, by (2.3), (3.1) and Maclaurin’s inequality, we have
p(G(aK,+8Ly,...,aK,+BL,),u

= (H ap(K;,u) + Bp(Li, u))

i=1

S~

i=1 i=1
=p(aG(K1,...,K,)+BG(L1,...,Ly),u).
By (2.2), we complete the proof of the lemma.

Lemma 3.1. and the mathematical induction yield immediately the following property
of G(Kq,...,K,).

Lemma 3.2. Let K;; € 8", (1<i<n,1<j<m). Then

m m
ZKU, .. Z K| > Z (Kij,. - Knj). (3.4)
j=1 =1

In lemma 3.2, if we choose m = n — 1 and (Kj1,..., Kim) = (Kj); for given star

bodies K, ..., K,. We get
Lemma 3.3. Let Ky,..., K, € ", (n > 3). Then

n—1
2
ZK LY K| > SES) Z Y G(Ki,...,Ki, Kj,...,K;). (35)
i#1 i#n 1<i<j<n k=1 L ek
Proof. Let m be an arbitrary permutation of (1,...,n). By symmetry and Lemma

3.2, we have

ZK,-,...,ZK,- =G ZK,,(Z-),...,ZKW)

i1 i#n i#1 i#n
> G (Kr2), Knrys - - Krqy)
+G( 7 (3)s Kr(3)s Kn(2)s - Kn2))
A+ G (Krmys - Ky Kn(n-1y)
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Since the number of all permutations of (1,...,n) is n!,

n!G ZKzaasz >Z{G 7(2) 7T(1)77K7T(1))

i#1 i#n
+G (KTr(S)a KTI'(?))) K7T(2)) EEEE) KTr(Q))
-+ G ( m(n)s- - 7K7r(n)a Kﬂ'(nfl))} (36)
= ZZG 2t 1) -+ B (o) K (ys -0 K (i) }
T k=1 % ek

Note that each term

G(Ki,...,Ki,Kj,...,Kj) (1§k§n71)

k n—k

for i # j appears (n — 2)! times in the summand of the right side of (3.6), because the

number of the permutations 7 such that
mk+1) =i, wk)=j 1<k<n-1)

fori # j is (n — 2)!. Thus,

n—1
nn—1G (> Ki...,) Ki| =Y Y G(Ki,...,Ki,Kj,...,K))

i#1 i#n i#j k=1 L

n—1
=2 > Y G(Ki... K Kj.. K.

1<i<j<n k=1

From the last equation we deduce immediately the inequality (3.5).

The following lemma gives an upper bound of G(K7,..., K,) in terms of G(K;, Kj)
(i # ).
Lemma 3.4. Let Ky,..., K, € §",(n > 3). Then

G(Ki,...,K,) < Z G(K;, K;). (3.7)

1<z<j<n



134 YUAN JUN AND LI AIJUN

Proof. For every u € S" 1,

2 2
— GKiaK'a = GKiaK'v
oy X Gk ==t S G
1<i<j<n 1<i<j<n
2 1 1
:ﬁ Z p(Ki,u)? p(Kj, u)?
nn 1<i<j<n

2
nn—1)

Y

H p(Kivu)%p(Kjvu)%

1<i<j<n

=p(G(Ky,...,Kp),u)
This complete the proof of the lemma.
Lemma 3.5. Let Ky,..., K, € 8", (n > 3). Then

A(Ky, ... Kn) > G(Ky,...,K,) >H(Ky,..., K,). (3.8)

Proof. For every u € S"!, by (2.6), (3.1) and (2.4), we have

_ p(K1,u) + p(K2,u) + -+ + p(Kn, u)
(p(K1,u)p(Ky,u) -+ p(Kn,u))
p(G(Ky,...,Ky),u)

p(Kfvu) + p(ngu) +ot p(Krowu)
=p(H(KY,...,K;),u).

p(A(Kl, . ,Kn),u)

IV
3=

Y

This complete the proof of the lemma.

4. Mixed mean inequalities for star bodies

In this section, we turn our attention of four types of mixed means for star bodies,
and derive some related star body mean inequalities.

Let Ky,..., K, € 8™, (n > 3). We introduce the following four types of mixed means:

(1) A(K1,..., Ky) = A(G((K))iz1), G((K)iz2), - - -, G((Ki)izn));
(2) G(K1, ..., Kn) = G (A((Ki)iz1), A((Ki)is2), - -, A(Ki)izn));
(3) G(K1, ..., Kn) o= G (H((K)iz1), H((K)iva), -, H((K;)izn);
(4) H(Ky, ..., Kp) = H(G((K:)iz1), G((Ki)iza), - - G((Ki)ien));

The following main theorem refines upon the star bodies arithmetic-geometric mean
inequality given in (3.8).
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Theorem 4.1. Let K; € S"(1 < i <n). Then
A(Ky, ..., K,) > G(Ky,...,K,) > A(Ky, ..., K,) > G(Ky, ..., K,). (4.1)
Proof. Observe from (3.2) and (3.8) that

A(Ky,... K, = G((K")#l)lG((Ki)zﬂ):L G )izn)

> G(G((Ki)iz1), G((Ki)iz2)s - - - G((Ki)izn))
— G(K1,..., Ky).

Then the last inequality of (4.1) holds.
Furthermore, by the first inequality of (3.8), we get

G(Ky,...,K,) < A((K:) i) FA(K)iz2)F - oo FA(K)ien)

TKF K,
_ Bl AR kLK),

n

This proves the first inequality of (4.1).
Now it remains to prove

G(K1,...,K,) > A(Ky,..., Ky). (4.2)

Application of Lemma 3.4 yields
< G((Ki)iz1)+G((Ki)iga)F - .. +G((Ki)izn)

AKy,... K,) = -
2 ~ ~
QL — G(K, K)F-F G(K,;, K;)
n(n—1)(n —2) Z ’ Z '
Q,j#1 EVESD
2
S G(Ki, K;). 4.3

1<i<j<n

On the other hand, from Lemma 3.3 we obtain

- 1 1 1
G(Ki,...,K,)=G nJ;K’“ﬁZK““"nJZK"

i#2 i#n
2 n—1
ZW Z > G(Ki,... K, Kj, ..., K)). (4.4)
1<i<j<n k=1 k ek
Next it suffices to check that for all i, j(i # j),
n—1
ZG(Km KZ;K]'; 'aKj) > (nil)G(KﬂKJ) (4 5)
k=1
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For every u € "1,

n—1 n—1
p D GWE,. KiK. Kp)u|=Y p|GE,. .. KiK. ... K)u
k=1 L ek k=1 L ek
n—1
k n—k
= p(Kuu)"p(KJau) "
k=1

n—1

> (n—1) [T U )™ p(£ ) 760
k=1

= (n = Dp(G(KL K)),u).

Hence the inequality (4.5) is verified.
From (4.3), (4.4) and (4.5), we infer finally the inequality (4.2). Theorem 4.1 is
therefore proved.

Replacing K; by K7 (1 < i < n) in (4.1) and taking the star dual of each term,

we arrive at the following mean inequality chain, which refines upon the star bodies
harmonic-geometric mean inequality given in (3.8)

Theorem 4.2. Let K; € S"(1 <i<n). Then
G(Ky,...,K,) > H(Ky,...,K,) > G(K;,...,K,) >H(Ky,...,K,). (4.6)
Proof. Replacing each K; by its star dual in (4.1), we obtain
A(KS,...,K2) > G(K?,...,K°) > A(K?,...,K°%) > G(K?,...,K2).
and therefore
G(KS,...,K2)° > A(K?,...,K2)° > G(K?,...,K2)° > A(K?,...,K°%)°.  (4.7)

From (2.5), we check easily that the following relations hold:

H(Ky,...,K,)=A(K7,...,K,)",
(E(Kla- aKn):(E’(Kfv 'aKrOL)ov (4 8)
H(K,,...,K,) =A(K?,...,K°)°,
G(Ky,...,K,) = G(K7,...,K})°

Inserting (4.8) into (4.7), we get immediately (4.6). Thus we complete the proof of
Theorem 4.2.
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