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LOWER BOUNDS ON L}.,(D) IN TERMS OF RENYI ENTROPY

RAJANI SHARMA, PRITI GUPTA AND R. K. TUTEJA

Abstract. In this paper we obtain the lower bounds for the exponentiated mean
codeword length (as defined by Campbell [4]) for one-one codes of size D by using
the functions which represent possible transformations from one-one codes of size
D to uniquely decodable codes.

1. Introduction

The average length of a noiseless uniquely decodable code for a discrete random

variable X satisfies
H(X) +1 > Lyp > H(X), (1.1)

where H(X) is the Shannon’s entropy of the random variable X. Shannon’s restriction
of encoding or description of X to prefix codes is highly motivated by the implicit as-
sumption that the descriptions will be concatenated and must be uniquely decodable.
Since there is the same set of allowed codeword lengths for uniquely decodable and in-
stantaneous codes c.f. [1], [2], the mean codeword length L is the same for both set of
codes. In some communication situations, a single random variable X is being smitted
tran instead of a sequence of random variables. For this, Leung-Yan-Cheong and Cover
[3] taken one to one codes, i.e. the codes which assign‘different binary codeword to each
outcome of the random variable, without regard to the constraint that the concatenation
of the descriptions must be uniquely decodable. ‘
Campbell [4] introduced the onentiated ezp mean codeword length, given by

1 “ .
Ly = ?log(Zp,- D) (1.2)

i=1

where D represent the size of the code alphabet and ¢;, i = 1,2,...,n are the lengths of
the codewords associated with the values of X and proved the following “noiseless coding
theorem.”

Ho(X) +1 > Ly > Ha(X), (1.3)
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Where H,(X) is the Renyi entropy [5] of order-a, with o = 11?, given by

——log(360); a1l a>0 (1.4)

1=1

Ho(X) =

In limiting case, as t — 0, L};,, reduces to ordinary mean codeword length L.

Kieffer [6], by defining a class of decision rules, showed that Hy(X) is the best
decision rule for deciding which of two sources can be coded with smaller expected cost
for sequences of length n, as n — oo, where the cost of encoding a sequence is assumed to
be a function only of the codeword length. Jelinek [7] showed that coding with respect
to L' is useful in minimizing the problem of buffer overflow which occurs when the
source symbols are being produced at a fixed rate, and the codewords must be stored
temporarily in a finite buffer. A simple generalisation of Huffman algorithm solves the
problem of minimizing L*, was studied by Parker [8]. The determination of Lt along
with its significance to the minimal expense coding problem is given by Aczel [9)].

In this paper, we will define the codes which assign D alphabet one to one codeword
to each outcome of the random variable. By defining the transformations from 1 : 1 to
uniquely decodable codes for D alphabet, we are obtaining lower bounds for L} (D) in
terms of (1.4). A

In limiting case as ¢ — 0, and the codes are binary then results obtained reduces to
that of Leung-Yan-Cheong and Cover [3].

2. Some Possible Transformations from 1 : 1 to UD Codes of Size D-Alphabet

Let X = {z1,2,,...,2,} be an experiment which take finite number of values with
probability distribution P = {p;,p,, ... yPn} € Ay. where A, = {P = (p,, ... yDn); Pi >
L)
0, > pi = 1} be the set of all complete finite discrete probability distribution and

i=1

PL2p22...2pn. Let 4,i=1,2,...,n be the length of condewords in the best 1 : 1
code alphabet of order D, i.e. {0,1,...... (D-1); 00,...(D-1)(D-1); (000),...... }
for encoding the random variable X.

When the code alphabet is of order D, then the set of available codewords is

{0,1,... (D ~1); 00,01,...,(D—1)(D-1); ...},

and by inspection, we precisely have

and thus
D-1,
& = Mlog(=5—i+1)], - (2.1)

‘where [X] denotes the smallest integer greater than or equal to X.
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If f be any function such that }7 D=/(4) < 1. Then from Kraft’s inequality, the set

i
of lengths {[f(¢)]} yields acceptable word lengths for a prefix (or uniquely decodable)
code. If f is integer valued and ZD'f (4) > 1, then {f(%)} can not yield a prefix code.

Theorem 1. The following functions represent possible transformations from 1 : 1
to UD codes. DC— D41 ,
I) f(&) =4 + aflog &;] + log(?:DL), where a > 1, and D > 2.
) f(4) =4 + D|log(¢; + 1)].

Proof. (I) Defining

o0
s = S D@,

i=1

[ee]
i E D—(£;+a [log £;] +r),
i=1

a —
where a > 1, and F = log(PD—a?—;—l),
©o
- ZD—lgD—aﬂogC;] D-r’
i=1
o0 ;
- D—t'
=D E Dallog ] ”
i=1
But there are D¥,1:1 codewords of length k, therefore
= 1
S =D t; Dallog£]?
- 1 DO Dl D2 Dk-—l
=D (-D_°+E+EE+I)T"+“.+ Dta + -,
- 1 1 1 1
=D7"(1+ De T pra1t Dia—z Tt DFa-k+1 +eihy
1
_ yF De
=D (1 + I———l-—),
- D1
—D*—=D+1
=20 —=);
S diverges if @ < 1, to make S < 1, it is sufficient (and necessary) to have a > 1, and
D*—D+1
> log(——————).
r 2 log(=r——7—)

This completes the proof of (i).
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IT) Defining, in this case also.

o = iD_f(“)

- iD—liD—DUOS(‘i‘H)J,

i=1

Using the fact that there are D¥, 1: 1 codewords of length &

= 1
= Z; DD llog(@ D]

1 1 2 1 3 1 k
=('D—D)D+(DT)D +(W)D +"'+(ﬁ,3)D s 1T

1 1 1 1
=(DD—1)+(D2D-2)+(D31>-3)+”"+(m)+""

= (D(D"'l))+(D2(D—1))+(D3(D_1))+"'+(D—k(5-—1))+-..’

1

HP=T
§ = (-5,

- DD-1

= (3= (E=r=T)

DD-1
= (DT_ll—_-l-) where D > 2.

IfD=2,S=1,D=3,S<1,andsoon.
Hence S <1, for D > 2.
This completes the proof of (ii).

IIT) Lower Bounds for L., (D)

3. Lower Bounds For L}, (D)

The exponentiated mean codeword length (1.2) of size D for 1 : 1 codes is defined
by

1 = t[log(
Lia(D) = ;log[} mD" D

i=1

t+1

]] (3.1)
We will now prove the following theorem, which gives lower bounds on L}, (D) in terms
of Renyi entropy when the code alphabet are of size D. We now make use of theorem 1
to prove some lower bounds on L}.1(D) in terms of the Renyi entropy.
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Theorem 2. The ezponentiated mean codeword length LY., (D) of the best 1 : 1 code

of size D, satisfies the following lower bounds
l—a

; o = D-1, g
I) Lt (D) > Ha(X)—l_alog[Ep;{[log( 5+ 11} a ]_a_,.; where
i=1
a>1, andr = log(DT:?-;—l).
@ = D-1 g
) 24a(D) 2 Ha(X)~ 7= log[ L ni{llos(5=i+11+1)” & |; where D > 2.
i=1

Proof. (1) From the fact that the exponentiated mean codeword length L}, (D) of
uniquely decodable code is > Ho(X )- So we can write,

n A
£;(
1 _O_[a log{gp;D

=) } 2 Hx),
log{iPiD“(

l—-o

'} 2 o),

i=1
t(l—a) 4
-a
B —
log{ E(D" @ '} > 222 gy x),
l-a l-a
—— ‘HaX
ED" " ) >p X)
Now from theorem.I(i), we have
l-a l-a
s 4 -Ho(X
B{p & Crelesdeny I m0n
l—-a l—a l—-«a l-a
14 a- ——(1 + log¥ . — Hy (X
B @ ) E@" @ (TR 5 pg HaX)
l-a l-a l-a
£ a- ——(1+log¥ — (Ha(X) -
BED & HED" a (+08))2D ——  (Ha(X) 1‘)’

Form Jensen’s inequality and convexity of —log¥4, we have

l1—a l-o l -« l—a
a — a- —— log /¢ (Ha(X) —
B« )-B(D" "a )ED" & %Y p o HX)-n)
l1-«
11—« l—-a l—a
V4 <o ! (Hq (X)) -
E(D a ).E(D'"s! @ )(D“ a )>D (Ha(X) "),
l—-a l—-a l—-a
—_ " s {H (X ) = p=
B o ).BE" & ) 3 p o HalX)-r-q
l—a l—-a

Z t S
But E(D a ) = (DLia@)) o |
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So we have
l—ao
l-a D——(Ha(X)-a—-r)
(DLLx(D)) o > - T k
El o )
" DHa(X)—a—r)
L} ,(D
(D 1a( )) 2 o Sy

{(E€ o )}l-a
Taking logarithm of both sides, we have

l-a
Lia(D) 2 Ha(X)-a-r— —log{B((" "o )}.

-a
- l-a
% __« a o e
LI:I(D) ZHG(X) l_alog{gple, } a—r.
Or
- D-1 l—-a 4
t & ) -1, st NP _1l-oa
Lia1(D) 2 Hu(X) __l_a{gp'(rlog( D 1+1)]) o } a — r, where ¢ P

Or
L1.1(D) > Ho(X) - “extra positive term.”.
IT) From the fact that exponentiated mean codeword length L} (D) for a uniquely
decodable codes > Ho(X). So we can write

E(D «a )> D

From the theorem I(ii), we have

l-a -
E{DT(£+D|'log(e+l)J} D o Ha(X)’

v

v

5 (e + Dog(¢ + 1) |
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l—a l—a

E{D @

¢ 1=2 D.loge+1) Ha(X)
Jo{o }20e 5o,

But
l—a l—a

E(D o L’) . (DLi=1(D)) o

So we have
l-a l-a l-ao
. et e D —— m—— o Ho(X
(DF:aD)) o -E{(£+l) @ }2 p o Hel ),

l—-a
l—a —a—Ha(X)

(DFia®)) o > D

l—-a
E{t+1)" "a }
DHa(X)
l-a a

[B(e+ ™y T=a

(DLiu(D)) >

Taking logarithm of both sides, we have

1—
log{ E(¢ + )" _&_a}

a

l—-a
l—-ao

Lia(D) 2 Ha(X) - 72 log{ Y mlllogZ5 i+ 1) +1)° " ).

l—a
t=1

L1.1(D) > Ho(X) — “extra positive term.”

It is obvious from above that minimum bounds for one to one codes of size D
alphabet are less than H,(X). So the extra positive term is significant and cannot be
improved. Due to this, obtained lower bounds in this paper for one to one codes of size
D alphabet are better than that of uniquely decipherable codes. ‘
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