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A NOTE ON SIMPLE EXTENSIONS AND SEMI-COM 

MAXIMILIAN GANSTER 

CT TOPOLOGIES 

Abstract. We study simple extensions of semi-compact topological spaces. Our 
main result says that if X is an infinite set then maximal semi-compact topologies 
on X do not exist. 

1. Introduction and Preliminaries 

Let S be a subset of a topological space (X, r). The closure and the interior of S 
with respect to (X, r) will be denoted by cir Sand intr S respectively. If SC clr(intT S) 
then Sis called semi-open [3] in (X, r), and if intT(c/T S) = ¢, then Sis said to be nwd 
(= nowhere dense) in (X, r). The set of natural numbers will be denoted by w. 

Let A be a subset of a space (X, r). The simple extension of (X, r) by A [4] is the 
space (X,u) where u = {UU(VnA): U, VE r}. It is pointed out in [4] that for any 
subset B of X we have clu B = c/TB n ((X - A) U (An clT(B n A))). Consequently, 
cir B n (X - A) C clu B for any BC X, and c/T B = clu B whenever BC A. From 
these observations one can infer immediately the following result. 

Lemm& 1.1 Let (X, u) be the simple extension of (X, r) by ACX, and let NC X 
be nwd in (X, u). 
i) If A is closed and nwd in (X, r) then N is nwd in (X, r). 
ii) If NC A then N is nwd in (X, r). 

2. Semi-Compact Expansions 

A space (X, r) is called semi-compact [2] if every cover of X by semi-open subsets 
has a finite subcover. Recall that (X, r) is said to be semi-irreducible (5] if every disjoint 
family of nonempty open sets is finite. We will make use of the following characterization 
of semi-compactness which is due to Dorsett [2]. 

Theorem 2.1. A space (X, r) is semi-compact if and only if (X, r) is semi­ 
irreducible and every nwd subset of (X, r) is finite. 
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Our next result about the preservation of semi-irreducibility will also be needed in 
the sequel. 

Lemma 2.2 Let (X, T) be semi-irreducible and let (X, u) be the simple extension of 
(X, T) by ACX. If A is either dense in (X, T) or finite then (X, u) is semi-irreducibile. 

Proof. Suppose that {Wn : n E w} is a disjoint family of nonempty open sets 
in (X, u). Let Wn = Un U (Vn n A) with Un, Vn E T for each n E w. Since (X, T) 
is semi-irreducibile there exists k E w such that Un is empty whenver n > k. Hence 
{Vn nA : n~ k} is a disjoint family of nonempty sets which is impossible in the case that 
A is finite. If A is dense in -(X, T) then Vn n Vm nA = ¢, for n, m ~ k, and so {Vn : n > k} 
is a disjoint family of nonempty open sets in (X, T), a contradiction. 

By using the facts we have carried together so far we are now able to show that 
certain simple extensions are semi-compact. 

Theorem 2.3. Let (X, T) be semi-compact and suppose that {x0} is not open for 
some xo E X. If (X, u) denotes the simple extension of (X, T) by A = X - {x0} then 
(X, u) is semi-compact. 

Proof. Since A is dense in (X, T), (X, u) is semi-irreducibile by Lemma 2.2. Let 
N C X be nwd in (X, u). By Lemma 1.1 ii) N n A is nwd in (X, T) and hence finite. 
Consequently, N is finite and (X, u) is semi-compact by Theorem 2.1. 

Theorem 2.4. Let (X, T) be semi-compact and suppose that { x0} is closed but not 
open for some xo EX. If (x, u) denotes the simple extension of (X, T) by A= {x0} then 
(X, u) is semi-compact. 

Proof. (X, u) is semi-irreducibile by Lemma 2.2. Let N C X be nwd in (X, u). 
Since A is closed and nwd in (X, T), N is nwd in (X, T) by Lemma 1.1 i). Hence N is 
finite and (X, u) is semi-compact by Theorem 2.1. 

3. Maximal Semi-Compact Spaces 

If X is a finite set and if T denotes the discrete topology on X then ( X, T) is obviously 
maximal semi-compact. It turns out that this is the only possibility for a space to be 
maximal semi-compact. 

Theorem 3.1. There are no maximal semi-compact topologies on an infinite set. 

Proof. Suppose that (X, T) is maximal semi-compact and Xis infinite. Then (X, T) 
is clearly not the discrete space and so there exists x0 E X such that { x0} is not open 
in (X, T). Since (X, T) is maximal semi-compact it follows from Theorem 2.3 that {x0} 
is closed in (X, T). But now Theorem 2.4 implies that the simple extension of (X, T) by 
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{zo} is semi-compact. This obviously produces a contradiction since {x
0
} is not open in 

(X,r). 

Remrurk 3.20 In [1] several results about maximal semi-compact spaces a.re pre­ 
sented. These results, based on Lemma 2.1 in [1], seem to be contradictory to our results. 
It should be noted, however, that Lemma 2.1 in [1] is slightly incorrect and a possible 
correct version would be: "If Rand R' are two properties of a space (X, ,) such that R 
implies R', then (X, r) is maximal R if it is Rand maximal R'''. 
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Abstract. In this paper, some classes of analytic functions related with functions 
of hounded boundary rotation are defined and discussed with reference to certain 
integral operators. 

Keywords and Phrases: Subordinate, bounded boundary rotation, starlike, convex, close­ 
to-convex, bounded radius rotation. 

1. Introduction 

Let/ be analytic in E = {z: lzl < 1}, and given by 
00 

f(z) = z+ Lanz". 
n=2 

(1.1) 

A function g, analytic in E, is called subordinate to a function G if there exists 
a Schwarz function w(z) analytic in E with w(O) = 0 and lw(z)I < 1 in E such that 
g(z) = G(w(z)). 

In [l], Janowski introduced the class P[A,B]. For A and B, -Is B <A< I, a 
function p, analytic in E with p(O) = 1 belongs to the class P[A, B] if p(z) is subordinate 
to ~$~~. When A = I, B = -I, P[l, -1] _ P, the class of analytic functions with 
positive real part. We generalize this concept to define the class Pk[A, B], k ~ 2. A 
function p E Pk[A, B] if, and only if, there exist Pl, P2 E P[A, B] such that 

(1.2) 

Definition 1.1. A function f, analytic in E, and given by (I.I) is said to belong 
to the class Rk[A, B], k > 2, if and only if, z}~~?, E Pk[A, B]. 
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For A= 1, B = -1, we obtain Rk[l, -1] = Rk, the class of bounded radius rotation 
discussed in [2], and R2[1, -1] - S"', the class of starlike univalent functions. Also 
R2[A, B] _ S* [A, B] C S"', see [3]. 

Similarly we have: 

Definition 1.2. Let f be analytic in E and given by (1.1). Then / E Vk[A, BJ, 
k ~ 2, if and only if (z{N./) E P.k[A, B]. 

If A= A, B = -1, then Vi[l, -1] = C, the class of convex univalent functions. 

Also Vi[A, B] = C[A, B] C C, see [3). It is clear that 

/ E Vi[A, B] {:::::> zf' E Rk[A, BJ (1.3) 

Definition 1.3. Let f be analytic in E and given by (1.1). Then f is said to belong 
to the class Tk [A, B], k ~ 2, if and only if, there exists a function g E Vi [A, B] such that 
tJ.:l g'(z) E P[A, B]. 

We note that: 
i. T2[l, -1] = K, the class of close-to-convex functions introduced and studied by 

Kaplan [4]. 
ii. Tk [1, -1] = Tk, a class of analytic functions introduced and studied in [5). 
iii. T2[A, B] = K[A, B], which has been studied in a more general way in [3]. 

2. Preliminary Re.sults 

Lemma 2.1. Let p E Pk[A, B]. Then p E P for lzl < r1, where 

r1 = 4/[k(A - B) + ..jk2(B - A)2 + 16AB]. (2.1) 

This result is sharp. 

Proof. Now p E Pk[A, B] implies that 

Since 
1-Ar 1 + Ar . 
-- ~ Repi(z) ~I Pi(z) I~ 1 , n_, i = 1, 2, see [6), 

we have 

Re p(z) > ( ~ + ! ) 1 - Ar _ ( ~ _ ! ) 1 + Ar 
- 4 2 1 - Br 4 2 1 + Br 

1 + !(B -A)r - ABr2 
1- B2r2 
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From the above inequality, it is clear that Rep(z) ~ 0 for lzl < r1; where r1 is given 
by (2.1). 

The sharpness foliows from the function p0, where 

(z) = ![(~ l) 1 - Az _ (~ _ l) 1 + Az] 
Po 2 2 + 1 - Bz 2 1 + Br · 

We shall need the following extension of Libera's Lemma [7]. 

Lemma 2.2. [6]: Let N and D be analytic in E, D map E noto a manysheeted 
starlike region. N(O) == 0 == D(O), N'(O):::: 1 = D'(O), and 

N'(z) JJ' E P[A, B]. 
Then 

N(z) 
D(z) E P[A,B]. 

Lemma. 2.3. [8]: Let Pl and P2 E P[A, B]. Then for 0t, {3 any positive reals 

_!__/3[0tp1(z) + f3p2(z)] E p[A, B]. a+ 

3. Main Results 

Theorem 3.1. Let f E Vi:[A, B] and g E R.k[A, B]. Let H be defined by 

(3.1) 

where a and j3 are positive reals with a + j3 = 1. Then H E Vi: [A, BJ. 

Proof. From (3.1), we have 

H'(z) 

Logarithemic differentiation yields 

(zH'(z))' (zf'(z))' zg'(z) == a +{3~~ 
H'(z) f'(z) g(z) 

= ap1(z) +/3p2(z), P1,P2 E Pk[A,B] 
k 1 k 1 k 1 k 1 

== o[(4 + 2)q1(z) - (4 - 2)q2(z)] + /3[(4 + 2)h1(z) - (4 - 2)h2(z)], 
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where qi, hi E P[A, BJ, i = 1, 2. 
Thus, using Lemma 2.3, we have 

(zH'(z))' = (~ !) ( ) _ (! _ !)h( ) 
H'(z) 4 + 2 q z 4 2 z ' 

q, h E P[A, B] and this gives us the required result that H E Vi [A, B]. 
Following the same technique used in Theorem 3 .1, we have: 

Theorem 3.2. Let Ji E Vrc[A, B], i = 1, 2, ... , n. 
Then 

belongs to Vi[A, BJ. 

Theorem 3.3. Let f E Rk [A.B] and let 

(3.2) 

where a > 0, 71 > 0 and Re(v + 71) 2:: 0. Then F maps lzl < r1 onto a star-shaped 
domain, r1 is given by (2.1). 

In (3.2) all powers are principal ones. 

Proof. Differentiating (3.2) logarithemically, we obtain 

zF'(z) 
F(z) 

fa(z)zv+11 - l/ foz fa(t)tv+11-ldt 
(a+ 11) foz Ja(t)tv+11-ldt 

N(z) 
D(z). 

We note that N(O) = 0 = D(O), and by a Lemma due to Bernardi [9J, D(z) is (v+r,+a-1) 
- valent starlike for lzl < r1, where r1 is given by (2.1). Also 

N'(z) 
D'(z) 

a zf'(z) 11 
-( a-+-11)-'-f-'-( z-) + -a -+-11' 

that is 

N'(z) E P[l - ~ -1] 
D'(z) a+77' 

for all lzl < r. Using lemma 2.2 with A = l - 
0
2.;!,,, B = -l, we see that ~t:~ E 

P[l - 0
2
~,, - 1] for lzl < r1. Hence FE s•[1- 

0

2~,,, -1] CS* for lzl < r, and this gives 
us the required reult. 

From the relationship (1.3) and the fact that/ is convex if and only if zf' is .starlike, 
. we immediately have the following: 
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Theorem 3.4. Let/ E Vi:[A, B]. Then F, defined by (3.2), m~ps lzl < r1 onto a 
convex domain, where r1 is given by (2.1). 

Theorem 3.5. Let f E Tk [A, B] with respect to h E Vi: (A, B]. Let g E R,.[A, B], 
and for a+ /3 = 1, at, {3 ~ 0, let F be defined as 

F(z) = t (f'(t))0(g(t))Pdt. lo t 

Then F is close-to-convex with respe<;t to H defined by 

H(z) = t (h'(t))°1(g(t) )Ii dt lo t 

for all lzl < r, r1 given by (2.1). 
Proof. From Theorem 3.1, we see that ll E Vi:[A,B]. 

Now 
F'(z,) 
H'(z) 

= (f'(z))°(g(z) /1 /(h'(z))°(g(z) )f1 
t z 

- f'(z) (}/ (}/ 
- ( h'(z)) = P1 (z) E P[A, B], 0 < 0t :s; 1. 

Hence the results. 
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