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THE NONLINEAR CAUSTIC 

NG KIN-CHUNG 

Absta-act. In this paper the boundary layer at the nonlinear caustic is discussed 
and a nonlinear Airy equation is,obtained by adapting techniques from linear the­ 
ory. It is shown that the incident beam undergoes a phase shift by an amount of 
1r/2 as it passes through the caustic and becomes the outgoing beam. 

1. Intiroduction 
In the theory of nonlinear optics, one is led to consider a nonlinear reduced wave 

equation 
(1.1) 

where n = n(lul2) is a function of the intensity of the field and n is called index of 
refraction. 

Equation (1.1) is quite complicated. For the problems of optical phenomena, we 
assume that the wave frequency w is high so that k is large. In order to study (1.1) we 
use techniques which are developed from linear theory. 

In the study of the linear version of equation (1.1) which is 

(1.2) 

explicit formulas for the solution of boundary value problem for (1.2) can occass1on­ 
ally be obtained hut such results are generally not useful without further simplification. 
Therefore asymptotic methods have come to play an important role in the solution of 
problems for (1.2) in the ease where k is large. This is precisely the case that occurs 
when dealing with optical phenomena. Write u = aeik~ where <j, is the phase terrri and 
a is the amplitude term. Substituting u into (1.2) we are led :J consider two equations 

1 
[(V4>)2 - n2]a - k2 V2a = 0 

2V4> · Va + a"v2</J = 0. 

(1.3) 

(1.4) 
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In the geometrical optics approximation we let k---+ CX) in (1.3) and obtain 

(1.5) 

(1.6) 

The eiconal equation (1.5) determines the phase and the transport equation (1.6) de­ 
termines the amplitude. Using a perturbation method to solve the transport equation 
we may obtain the geometrical optics result for (1.2). This result breaks down in some 
regions where there are caustic or foci. Since the wave motion should be bounded in 
the whole space the breakdown of the gec::netrical optics result must be recognized as 
asymptotic phenomena associated with boundary layers. A boundary layer is a thin 
region in which the dependent variable of differential equation undergoes sharp changes. 
To study the asymptotic behavior in the regions where geometrical optics result breaks 
down, the boundary layer method is useful and the theory is_ well developed. 

In this papt:r, we consider two dimensional problems for equation (1.1). Our object 
is to obtain an asymptotic solution for (1.1) near a caustic. For convenience we infroduce 
(e' u) coordinates where e measure the arc length along the caustic and O' measure the 
arc length along the rays. We first obtain the equation of nonlinear geometrical optics 
and discuss the boundary layer of the solution of (1.1). Then we introduce stretching 
transformation to obtain nonlinear Airy equation from (1.1). We follow the linear theory 
to discuss the asymptotic behavior of its solution. Finally we determine the asymptotic 
behavior of an incident beam after passing through the eaustic region. We find that the 
incident beam undergoes a phase shift by an amount of ! as it passes through the caustic 
and becomes an outgoing beam. 

2. Boundary layer of the nonlinear caustic 

To study how the field passes through a nonlinear caustic we consider the nonlinear 
reduced wave equation 

(2.1) 

near the caustic region. 
The rays for the geometrical optics solution of (2.1) are assumed to have a smooth 

envelope. This envelope is called a nonlinear caustic. The equation of the caustic is 
assumed to be 

x = R(e) (2.2) 

where e is arc length on the caustic. The rays of the problem are the tangent lines to 
the caustic and are given as 

r({' u) R({) + (u - ~)R'({) (2.3) 
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where <Tis arc length on the rays and .R'(e) = e1 is a unit vector tangent to the caustic. 
To discuss the solution of (2.1) near the caustic it is convenient to write (2.1) in terms 
of{{, o-) coordinates. Differentiating (2.3) gives 

d-+ .... d lT - e .... dC r = e1 u + --e2 , 
p 

where e2 = p ddei and p({) is the radius of curvature of the caustic. Hence we have e 

(2.4) 

(2.5) 

and (2.1) becomes 

1 a [( 8u] p {) p {Ju 2 2 2 --- e- o-)- + ---[---] + k n (I u I )u 
{ - <T 8u 80- { - u 8{ { - u 8{ 

Assuming n2(1 u 12) = 1 + n1 I u 12 +n2 I u 14 + · · · and 

1 "k u = Vkwe' u 
we have 

0. (2.6) 

(2.7) 

. aw w l 8 8w p 8 p ow ik[2- - -] + --[({- q)-] + --[--] 
{Ju { - u { - u {Ju {Ju { - u 8{ e - <Y ae 
+ ·kn1 I w 12 w + n2 I w 14 w + · · · = 0. (2.8) 

Equation (2.8) can be expressed as equations for a and </J by letting 

(2.9) 

where a and </J are real. 
Then 

ow 
8u 

oa i,p . 8</) ii/> -e +i-ae OU {)q 
(2.10) 

and 
ik[2~ - ~] = [ik(2 oa - _a_) - 2ak {}<fJJei,p (2.11) 

O<J" e - (]" O<J" e - (]" O<J' 
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Therefore, we obtain on factoring out ei~ 

Equation real and imaginary parts to zero, we have 

and 
1 {J {}a p {} p 8a 82</> p2 {}2<j, 

e - O' {}q[(e - u) ou1 + e - O' ae [e - O" ae1 - a 00'2 - a (e - u)2 ae2 
{J<f, 3 5 

- 2ak {Ju+ kn1a + n2a + · · · = 0. 
(2.15) and (2.16) can be written as 

oa a ] 2 k[2- - -- + 2Va · V¢ + a"v </> au e - u 0 

and 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

V2a - a(V¢)2 - 2ka !! + kn1a3 + kn2a5 + · · · = 0. (2.18) 

If we neglect the diffraction term V2a and higher order nonlinearities we obtain 

(2.19) 
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and 
8</> a 2 k(2- - --) + 2Va · V</> + aV </> 8u { - u 

0 

357 

(2.20) 

as the "equations of nonliear geometrical optics." 
To see if we can find any beam-like solutions of these equations we stretch variables 

in the {-direction and thus emphasize a particular ray, say { = 0. Then near { = 0 we 
set 

so that ; = k,. :i'. We have 

1 
So we must set r = 2 and (2.19) becomes 

to leading oder. 
Also (2.20) becomes 

28a + ~ + 2p2 
oa 8¢ + ap2 

8
2

</> = o. 
Bu u u2 O')' O')' u2 8')'2 

A simple solution of (2.23)-(2.24) may be found by assuming that 

Then (2.23) becomes 

and (2.24) becomes 

2
8a a -+- 00' O' 

0. 

Thus we have 
A 
vu a 

and 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 
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Even if we retain the diffraction term V2a in the equation, under the above stretching 
we still have the above solution (2.28). We note that this solution does not have the form 
of a beam. In order to get a beam solution of (2.23)-(2.24) we set 

A('y) 
a= VU (2.30) 

in (2.24). Since 
0 (2.31) 

we have 
. p2 A' ('y) 8ef, A( 'Y) p2 82 </J 2----+---- 

q2 vu 8-y vu q2 8-y 2 0. (2.32) 

This gives 

or 

I 0</> 82</> 2A (-y) 
01 

+ A(-y) 012 

.i_[A2( ) 84>] 
8-y 'Y 8-y 

0 (2.33) 

0 (2.34) 

so that o</> A2(-y) 
01 

= B(u) 
where B(u) is arbitrary. From (2.23) we now haye 

(2.35) 

(2.36) 

and we may solve for 4> as 

(2.37) 

we must choose H('Y) to get consistency. Differentiating (2.36) with respect to 'Y, we 
have 

(2.38) 

and this gives 

2B'(u)u - 4~~;;) B
2
~u) = 2n1A3(-y)A'(-y). 

It appears that we must set 

(2.39) 

A'(-y) = O; B'(u) = 0 

so that A( 'Y) is independent of 'Y. 

(2.40) 
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The above result tells us that it seems hard to construct a beam solution for (2.23)~ 
(2.24) by above method. But by using the perturbation method we are able to obtain 
a beam-like solution of (2.1) for that system of rays discussed above. To show this, we 
introduce the caustic coordinate system ({,u) and express (2.1) in the form (2.6). Then 
we set 

(2.41) 

with 
00 00 

a= La;k-i; </> = L¢;k-i 
j=O j:O 

(2.42) 

we have 
1 (2.43) 

and we choose 
4'o = u 

to obtain the required system of rays. The equation for ao is 

2oao _ ~ = 0 au e - O" 

(2.44) 

(2.45) 

and we conclude that 
g(f.) vt. - (7 (2.46) 

where g(e) is a given function. 
If we assume that g(f.) = e-f.lcx2 then (2.46) looks like a beam. 

For </)1, we obtain 

(2.47) 

so that 
(2.48) 

For a1, we have 

(2.49) 

where we have retained only the most singular term near the caustic where u = {. Then 

(2.50) 
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The asymptotic series for a becomes disordered when aki ~ ao and this yields 

n1p2g2(e) 
4k({ - u)3 

~ 1. (2.51) 

So that 

c = constant. (2.52) 

That is, when {-u = O(k-113) the caustic regien begins. Since a0 = ~ we see that . e- u 
a0 = 0( k116) near the caustie. For the linear case, to obtain the standard geometrical 
optics expansien, we set 

(2.53) 

in (2.1) where n1 = n2 = 0 and w is expanded in powers of (ik)-1. Then 
g({) g({)p2 p2 

Wo = J{-0'; W1 = ({-u)7/2 = Wo({-u)3 (2.54) 

near the caustic. Thus ;; ~ w0 yields 

A p2/3 A 

{ - u = ~ c k1/3, c = constant. (2.55) 

This shows that the caustic regions determined from (2.52) and (2.55) differ by 
the factor n~/3 g213({). As n1 and g({) are increased, the self focusing effect becomes 
enhanced and the caustic becomes more sharply defined. This should be compared 
with the expression for the focal length and its relation to the amplitude and nonlinear 
refraction term n1. 

We now study the field in the neighborhood of the caustic. We stretch the dependent 
and independent variables as 

(2.56) 

Then (2.8) becomes 

In order to simplify the above equation, ~e only keep the significant terms in (2.57). 
According to the linear theory, the coefficient of kl+r should be retained. We also have to 
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retain at least one second derivative term in (2.57), this term comes from the coefficient 
of k4r. To retain a nonlinear effect we must set 

1 + r = 4r = 1 + 2s 
so that 

1 
r= 3 1 

s = 6 
The leading order boundary layer equation becomes 

This equation may be simplified by letting 

.!!C v = e3P:i V(z) 
.. 

where 
z 

This yields a nonlinear Airy equation 

2/3 
V"(z) + zV(z) + n~;,3 IV 12 V(z) 

or 
2/3 

V" + [z + nlp IV l2]V = 0 41/3 . 

0 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

The above equation shows that the turning point for the Airy equation is approxi­ 
mately given by 

n p2/3 
z + ~.,.. I V 12 = 0. 

If we set 
I V(z) 12 = 92({) 

({ - u)P/3 
we find that 

r,2 n1p2/3 -. + .. , .. I V(z) 12 

- (e - u)2 2/3 n1p2/3 
- ( 4p4)1/3 k + 41/3 92({)({ - (7 )-lk-1/3 

Thus 
(e - u)3 

0. 

(2.65) 

(2.66) 

(2.67) 

(2.68) 
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which agrees with (2.52) and yields 

e _ <T = -n!/3 p2/3k-1/3g2/3(e). (2.69) 

Roughly speaking this may be thought of as a shift in the location of the caustic curve 
from e = O" in the linear case to 

(2.70) 

in the nonlinear case. The direction of the shift depends on the sign of n1. 
With z replaced by -.z, (2.63) becomes 

,,... ,,... n1p2/3 ,,... ,,... 
V"(z) - zV(z) + ,.1 I::>. I V(z) 12 V(z) 0 (2.71) 

where 
v(z) V(-z). (2.72) 

,,.._ 

If we assume that V is real and set 

(2.73) 

then (2.71) can be simplified as 

W"(z) - zW(z) + 2W3(z) = 0. (2.74) 

This nonlinear differential equation is the second equation of painleve [l]. The solu­ 
tion of (2.74) can not be represented by elementary functions. We need to define a new 
function for its solution which is called second painleve transcendent. It has been shown 
that the solution of (2.74) can be given by the solution of the linear integral equation 

(2.75) 

where F(e) is the solution of 

F"(e) - ~F(e) = C ' c = constant. (2.76) 

If C = 0 the solution of (2.76) that vanish as e - 00 are multiple of the Airy function 

(2.77) 

A detailed discussion of the above can be found in Ablowitz and Segur. [2] 

3. The asymptotic expanssion near a nonlinear caustic 
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To get an approximate solution of (2.74) we use the result of Miles [31. There is a 
solution of (2.74) with the behavior 

W(z) ~ aAi(z) ;a= constant 

,.._, .!.,r-1/2az-1/4 exp(-~z3/2] . 
"'2 3 ' 

(3.1) 

Z - 00 

with the property 
I W(z) I< oo 

In terms of V ( z) we have 

-oo < Z < 00. (3.2) 

V(z) = [n1 p2/34-1/31-112w(-z) 
2 

~ a(~1 p2/34-1/3J-1/2 A.(-z) 

2 ~ a(2n11rp2/34-1/3J-1/2(-z )-1/4 exp(-3(-z )3/2]; 

(3.3) 

Z ---+ 00. 

Further, as z ---+ CX) the asymptotic behavior of V(z) is 

V(z) ~ 0tz-ll4 sin(~z3/2 + ~o2 log z + O] ; Z -+ 00 (3.4) 

where a, () are constants. 
This expression for V(z) must be related to the result (2.41). In view of (2.62) we 

have 

(4p4)1/12k-1/6 1 3 3 2 
V ~ a · [ T/ 21 T/ ({ - u)l/2 sm 3 p2 + 4° og (4p4)1/3 + O] (3.5) 

_ ! o( 4p4)1/12k-I/6 +i( 
3 
'\ + ~o2 log T/2 /( 4p4)1/3 + 8 _ 1r] 

- 2 ({ - u)1/2 e p 2 

1 a( 4p4)1/12k-l/6 -i[ 3 '\ + !a-2 log T/2 /( 4p4)1/3 + 8 _ 1r] + 2 (e - u)-1/2 e p 2 

i.!l..: 
Since W = k116v = k116e3P' V(z), we have W = 0(1) ink. From (3.5) we may say that 
it contains two fields. One is incident field and the other one is outgoing field. Two fields 
coexist in the region near the caustic. Because the equation is nonlinear, anyone of two 
fields may not be a solution of the equation. We can not discuss them separately. From 
the view point of geometrical optics we can obtain the geometrical optics solutions of 
equation (2.63) in two sides of the caustic. From the given initial condition the incident 
geometrical optics result can be easily determined. Our problem is to try to determine 
the geometrical opties result for the outgoing field. The result of (3.5) is not useful to 
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us, because it is not possible to match these fields with our geometrical optices results 
one by one, so that we have to discuss (2.63) directly. 

To solve (2.63) approximately, we set 

1 
z = -x' €6 

where £ = O[k-1 J. Substituting (3.6) into (2.63) we have 
0 

n1p2/3 
where A = 4113 . 

Eqation (3.7) can be simplified as 

-41 + -3s -+ A 2(r-s) 1-12 - V € XV € V V 0. 

Let 
v 

where a, </J are real. (3.8) becomes 

In order to keep both x and 4>'2 in (3.10) we set 3s = 2. Eqation (3.10) becomes 

£-2(z - </J'2)a + ic-1(2</J'a' + a</J") +a"+ Ac2(r-i)a3 = 0. 
Equating real and imaginary parts of (3.11) to zero, we have 

c-2(:r: - 4>'2)a +a"+ Ac2r-f a3 = 0 

and 

We expand </J and a as 

2</>' a' + a</>" = 0. 

00 

<P = I: <P;ci 
j:O 

00 

a = I:a;ci. 
i=O 

and 

Inserting these expressions into (3.12) we obtain 

(x - </>~ 2)ao + c(2</J~</JDao + "A€2r+j a~+ c2a~ + c:2{2</>~</J~ ai) 0. 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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According to (3.5) the field is equal to O[k- l] so we choose r = 1/6 and equating 
the coefficient of each power of c to zero, we have 

,1.1 2 'f'O = X ; (3.17) 

and 
0. (3.18) 

Solving (3.17) we have 

<Pm = 2 a --z2g; 
3 

z 
(! - 0')2 k2/3 
(4p4)1/3 

( O" - {)2 k2/3 
( 4p4)1/3 · 

(3.19) 

<l>oo 

From (3.13) we have 

2 ~ -x2 
3 

2 ~ -z2g. 3 , z (3.20) 

2,1.I I ,1.II 'f'oao + ao'f'o 
Solving (3.21) and (3.18) we obtain 

0. (3.21) 

(3.22) 

where Ci(!) is are arbitrary function of e, and 
AC;({) log z + 01({) 'Pil = 2 (3.23) 

where o1({) is an arbitrary function. 

If we repeat the same calculation for <l>oo = ~xi we have 

aoo - 
Co({) 
xl/4 (3.24) 

and 
ACJ(e) <Po1 = 2 log z + 02({) (3.25) 

where Co(O and 02(e) are arbitrary functions. 
Now we have two different asymptotic expansions for the solution of (2.63). One 

asymptotic result is obtained from (3.6), (3.9), (3.19), (3.22) and (3.23) 

\1i(z) (3.26) 
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According to (2.41), (2.44), (2.46) and (2.48) we have the incident field of the geometrical 
optics 

(3.27) 

using (3.26), (2.7), (2.56) and (2.61) we also obatin the incident field near the caustic 

u, (3.28) 

A second asymptotic result follows from (3.6), (3.9), (3.20), (3.24) a.nd (3.25) 

2 A .AC15({) . ( ) Co({) ,-3zl - i O log z + m2 e 
Vo(z) = zl/4 e (3.29) 

Since the ray structure is similar for both fields, the outgoing field of geometrical optics 
can be written as 

1 g0({) ih-i~
1g~({)log(u-{)+ig1({) 

Uo = ../k 'V (7 _ { e ; 

where go, g1 have to be determined. Using (3.29), (2.7), (2.56) and (3.25), the outgoing 
field near the caustic can be written as 

(3.30) 

!Ao 

. .AC~({) . 1 Co(e) ,1:u-, 2 log z + m2({) 

p/3 zl/4 e (3.31) 

We must specify the terms C,(!), Co({), go(e) and g1({). To determine C,(!), we 
match the most significant term in (3.28) and the most significant term in (3.27) in the 
region k >> (!- o-)3k >> 1 where we also have ku >> log z. The most significant term 
in (3.28) is 

(3.32) 

The most signficant term in (3.27) is 

1 g({) ilcu 
- e AJe-u (3.33) 

comparing (3.32) and (3.33) we obtain 

(3.34) 
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and 
0. (3.35) 

Then (3.28) becomes 

n1 2( g({) -1/4 ih+ti2g e) log z 
kl/321/6pl/3 z e 

Now we must determine C0({), g0({) and g1 ({). Because ui is incident on the caustic 
({ > u) and u0 is outgoing from the ~austic (u > {) it is not possible to match them to 
obatin Co( e) .. In order to solve our problem we consider the linearized version of equation 
(2.63) which is 

(3.36) 

V"(z) + zV(z) = 0. (3.37) 

Equation (3.37) has two linearly independent solutions A.(-z) and B.(-z) where Ai(z) 
and B,(z) are the Airy functions. From the formula [4) 

(3.38) 

and 
(3.39' 

where w = e-21ri/3 we find that 

(3.40) 

is a solution of (3.37) where a1({) is a function to be determined. Using the asymptotic 
formula 

1 =-l. .a s/:i A,(z) ~ 2-ftz 4 e- 3z ; I Arg z I < 1r, I z I>> 1 (3.41) 

we can write (3.40) as 

e > u. (3.42) 

Because z >> l we have z >> log z and (3.26) becomes 

~(z) ~ C,({)z-l e-•izi 
,..., g(e) _ .l -i2zi 
,..., 21/6pl/3 z ~ e 3 

(3.43) 

z >> 1, e > u. 
To specify a1({) we compare (3.42) with (3.43) in the region z >> 1, we have 

(3.44) 
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Because equations (2.63) and (3.37) in the (e, u) variables are unchanged if (e - u) is 
replaced by (u - {). Thus for u > { the solution of (3.37) has the form 

(3.45) 

where a2(e) has to be determined. 
Using formula (3.41) we have 

z >> 1. (3.46) 

By the same reason as for '\'i(z) from (3.29) we have 

z >> 1. (3.47) 

Comparing·(3.46) with (3.47) we have 

a2(e) = 2v,rC0({)e*)'1<0- fiJ. (3.48) 

Two linearly independent solutions of (3.37) become 

(3.49) 

and 
(3.50) 

To determine Co(e) and o2({), we require that the field below the caustic be exponentially 
small. In order to use this fact, an approximate expression for the distance along the 
normal line to the caustic, valid in the boundary layer region, will be found. In the 
system of rays (2.3), the wavefronts are the curves O" =constant. They are orthogonal to 
the rays and the rays are tangent to the caustic. Thus, along the wavefront, distance is 

given as ds = le - ul d{. According to (2.56) the boundary layer region is determined 
p 

bye = O" + O(k-113). Integrating ds along the wavefront u =constant, in the boundary 
layer region, we oba.tin 

1 s ~ -(e- o-)2 2p (3.51) 
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where (2.56) and (2.62) were used. Within the boundary layer the. variable s yields a 
measure of distance along the normal line to the caustic, i.e. in the rays region. Negative 
values of s correspond to points below the caustic. Using (3.51) we express (3.49) and 
(3.50) in terms of e and s, we have 

(3.52) 

and 
(3.53) 

We expect that Co({) must be expressed in terms of g({). To establish this relationship 
we examine the total field V(z) + V(z) in the boundary layer region. Because there is 
no distinction between e > (j and (j > e at a point ({' s ), the total field is gives as 

V(z) + V(z) ~ .Ji2s/6 p-1/3g({)ifiAi(-w( ~ )1/3k2/38] p 

+ 2,JiCo( {)ei[o:.i({)- ~] Ai [-w2 ( ~ )1/3 k2/3 s]. 
p 

(3.54) 

In order to guarantee that the field is exponentially small below the caustic, we have 
to write the right hand side of (3.54) as a multiple of Ai[-(~ )113k213s] which decays as 

p 
s -+ oo. Thus, the right hand side of (3.54) have to be written as 

(3.55) 

which implies 
vi25/6 p-1/3ei fig({) 

-w 

Solving (3.56) we have 

21rCo({)ei[a:.i({}-fj] 
-w2 

(3.56) 

Co({) 
g({) 

21/6pl/3 
1r 

02({) = -2· (3.57) 
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Thus according to (3.57), the outgoing field near the caustic has the form 

(3.58) 

where k >> (u - {)3k >> 1. 
To determine 9o({) and g1({) in (3.30), we express (3.30) in the region k >> (u - 

{)
3k >> 1 where k >> log(u -e) we have 

To match (3.59) with (3.58), we have 

9o(e) g({) 

and 
1r 

91(e) = --. 2 
According to (3.30) the outging geometrical optics field can be written as 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

From th~ above results, we know that the incident and outgoing geometrical optics fields 
have the same amplitude term. If we compare the phase terms in (3.27) and (3.62), we 
find that the difference between two phase terms is an amount of f. It means that, when 
an incident beam is passing through the caustic region, it must undergoes a phase shift 
by an amount of J and then becomes an outgoing beam. Similar result can also be found 
in the linear theory. 
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