A NOTE ON FLAT MODULES OVER *f*-ALGEBRAS

BORIS LAVRIČ

Abstract. Let A be an Archimedean uniformly complete unital f-algebra. It is proved that the following conditions are equivalent: (1) A is a Bezout ring; (2) A is a PF-ring; (3) Every ideal of A is flat; (4) Every submodule of a free A-module is flat. This extends a result by C. Neville on algebras of type C(X).

Introduction

Let X be completely regular Hausdorff topological space, and let C(X) be the ring of all continuous real-valued functions on X. Using the well known topological characterization of spaces X for which C(X) is a Bezout ring [5] C. Neville has proved in [7] that the following conditions are equivalent.

(1) C(X) is a Bezout ring.

(2) C(X) is a PF-ring.

(3) Every ideal of C(X) is flat.

(4) Every submodule of a free C(X)-module is flat.

It is the aim of this note to extend this result to uniformly complete Archimedean unital f-algebras.

For the terminology and general theory of rings and modules we refer the reader to [1], [4], and for elementary *f*-algebra theory we refer to [6] and [8].

All rings considered in the paper are assumed to be commutative and with unit element. A ring R is called a *Bezout ring* whenever every finitely generated ideal of R is principal. A ring R is called a *PF-ring* if every principal ideal of R is a flat R-module. A ring R is said to be *reduced* (or *semiprime*) if it has no nonzero nilpotent elements.

A lattice ordered real algebra A is called an *f*-algebra whenever

 $a \wedge b = 0, a, b \in A$ implies $ac \wedge b = ca \wedge b = 0$

Receive March 25, 1991.

Key words and phrases: Archimedean f-algebra, Bezout ring, PF-ring, flat module.

This work was supported by the Research Council of Slovenia.

¹⁹⁸⁵ Mathematics Subject Classification. 13C11, 06F25

for all $c \in A^+$. It is well known that an Archimedean *f*-algebra *A* with unit is commutative, reduced, and that $a, b \in A$ satisfy ab = 0 if and only if $|a| \wedge |b| = 0$. An *f*-algebra *A* is said to be *normal* if

$$a, b \in A^+, a \wedge b = 0$$
 implies $\{a\}^d + \{b\}^d = A$,

where $G^d = \{h \in A : |g| \land |h| = 0 \text{ for all } g \in G\}$ for $G \subset A$. It follows that an Archimedean unital *f*-algebra *A* is normal if and only if

$$ab = 0, a, b \in A$$
 implies $ann(a) + ann(b) = A$.

Results

First we state a criterion characterizing those principal ideals of a ring R which are flat R-modules. Since the criterion is an easy consequence of [2, Prop. 2.3] or [1, I.2.11. Cor.1], we omit its proof.

Lemma 1. A principal ideal (a) of a ring R is a flat R-module if and only if for each $b \in R$ satisfying ab = 0 there exist elements $a_1, a_2, \ldots, a_n \in (a)$ and $b_1, b_2, \ldots, b_n \in R$ such that

$$a = \sum_{i=1}^{n} a_i b_i$$
 and $b_i b = 0, i = 1, 2, \dots, n$.

Proposition 1. For a ring R the following conditions are equivalent.

- (i) R is a PF-ring.
- (ii) $a, b \in \mathbb{R}$, ab = 0 implies that $ann(a) + ann(b) = \mathbb{R}$.

Proof. (i) \Longrightarrow (ii). Let $a, b \in R$ satisfy ab = 0. If R is a PF-ring, then (a) is flat, hence by Lemma 1 we have

$$a = \sum_{i=1}^{n} a_i b_i$$
 and $b_i b = 0, i = 1, 2, \dots, n$

for some $a_1, \ldots, a_n \in (a), b_1, \ldots, b_n \in R$. Write

$$a_i = c_i a, c_i \in \mathbb{R}, i = 1, 2 \cdots, n.$$

It follows that $a = (\sum_{i=1}^{n} b_i c_i)a$, and therefore

$$1-\sum_{i=1}^n b_i c_i \in ann(a), \ \sum_{i=1}^n b_i c_i \in ann(b),$$

so (ii) follows.

(ii) \Longrightarrow (i). We shall prove that (a) is flat for each $a \in \mathbb{R}$. Suppose that $b \in \mathbb{R}$ satisfies ab = 0. By (ii) there exist $c \in ann(a)$ and $d \in ann(b)$ with c + d = 1. So

$$a = a1 = ac + ad = ad$$
 and $db = 0$,

thus by Lemma 1 (a) is flat.

Corollary. Let A be an Archimedean unital f-algebra. Then A is a PF-ring if and only if A is normal.

Since by [6] C(X) is normal if and only if X is an F-space, the above corollary generalizes [7, Cor.1.7].

Lemma 2. Let R be a reduced Bezout ring. Then every ideal of R is flat.

Proof. Since a module is flat if and only if every finitely generated submodule is flat, and since R is Bezout, it suffices to show that R is a PF-ring.

Now for any $a, b \in R$ with ab = 0, we shall check that ann(a) + ann(b) = R. Since (a, b) = (c) for some $c \in R$, we have

$$a = a_1c, \ b = b_1c, \ c = a_2a + b_2b$$

for some $a_1, b_1, a_2, b_2 \in R$. Since R is reduced,

$$(a_1b_1c)^2 = a_1b_1(ab) = 0$$

implies $a_1b_1c = 0$. It follows that $d = a_1a_2$ satisfies

$$bd = b_1 c a_1 a_2 = 0$$

and

$$a(1-d) = a - aa_1a_2 = a_1c - aa_1a_2$$

= $a_1(a_2a + b_2b) - aa_1a_2 = a_1b_1cb_2 = 0.$

Hence

$$1 = (1-d) + d \in ann(a) + ann(b).$$

and therefore ann(a) + ann(b) = R.

We are now in a position to extend a part of theorem 3.1 from [7] on modules over reduced Bezout rings. A short proof suggested by the referee is based on [3]. For the sake of completeness we shall repeat briefly the arguments used in the proof of [3, V.Lemma 6.8].

Proposition 2. Let R be a reduced Bezout ring. Then every submodule of a free R-module is flat.

BORIS LAVRIČ

Proof. Let F be a free module with base X, and let M be its submodule. Assuming the axiom of choice we may suppose the elements of X are well ordered: $x_1, x_2, \ldots, x_{\alpha}, \ldots$. For each ordinal α , let M_{α} be the submodule of those elements of M which are linear combinations of the x_{β} with $\beta \leq \alpha$, and let N_{α} be the submodule of all linear combinations of the x_{β} with $\beta < \alpha$.

Each $m \in M_{\alpha}$ is decomposed uniquely into

$$m = n + r(m)x_{\alpha}, n \in N_{\alpha}, r(m) \in R,$$

so M_{α} is a direct sum of N_{α} and $K_{\alpha} = r(M_{\alpha})x_{\alpha}$. Observe that $I_{\alpha} = r(M_{\alpha})$ is an ideal of R, and that M is a direct sum of all K_{α} [3]. Since by Lemma 2 each K_{α} is flat, it follows by [1, I.2. Prop.2] that M is flat.

We are prepared to prove the main result of the present note.

Theorem. Let A be an Archimedean uniformly complete unital f-algebra. Then the following conditions are equivalent.

- (i) A is a Bezout ring.
- (ii) A is a PF-ring.
- (iii) Every ideal of A is flat.
- (iv) Every submodule of a free A-module is flat.

Proof. The implication (i) \Longrightarrow (iv) follows by Proposition 2, while (iv) \Longrightarrow (iii) and (iii) \Longrightarrow (ii) are obvious. To prove (ii) \Longrightarrow (i) suppose that A is a PF-ring. Then by Corollary A is normal, hence Bezout by [6, Theorem 6.6].

Some other characterizations of an f-algebra satisfying the conditions of the above theorem are contained in [6], where also the following example is given. It shows that the uniform completeness cannot be dropped from the Theorem.

Example. Let A be the f-algebra of all real functions f on the aquare $E = [0,1] \times [0,1]$ for which there exist disjoint sets $E_1, \ldots, E_{n(f)}$ such that $E = E_1 \cup \ldots E_{n(f)}$, and polynomials $p_k \in \mathbb{R}[X, Y]$ satisfing

$$f|_{E_k} = p_k, k+1, \ldots, n(f).$$

Clearly A is an Archimedean unital f-algebra. By [6] A is normal, hence a PF-ring, although A is not a Bezout ring [6]. We claim that A does not satisfy the condition (iii) of the Theorem.

Let I be the ideal generated by elements

$$f,g \in A, f(x,y) = x, g(x,y) = y.$$

We will show that I is not flat. Consider the exact sequence

$$0 \longrightarrow K \longrightarrow A \oplus A \stackrel{\varphi}{\longrightarrow} I \longrightarrow 0,$$

374

where φ is defined by $\varphi(a, b) = af + bg$, and suppose that I is flat. Then by [2, Proposition 2.2] or by [4, 11.27] there exists a homomorphism $\psi : A \oplus A \longrightarrow K$ such that $\psi(g, -f) = (g, -f)$. If

$$\psi(1,0) = (a_1b_1), \ \psi(0,1) = (a_2,b_2),$$

then

$$a_1f + b_1g = a_2f + b_2g = 0,$$

$$g = a_1g - a_2f, -f = b_1g - b_2f.$$

Using the fact that these equalities cannot hold in $\mathbb{R}[X, Y]$ it is not difficult to see that they are contradictive also in A, so I is not flat.

References

- [1] N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, 1972.
- [2] S. U. Chase, "Direct products of modules," Trns. Amer. Math. Soc. 97 (1960), 457-473.
- [3] S. Eilenberg, N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, New Yersey, 1952.
- [4] C. Faith, Algebra: rings, modules and categories I, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
- [5] L. Gillman, M. Henriksen, "Rings of continuous functions in which every finitely generated ideal is principal," Trans. Amer. Math. Soc. 82 (1956), 366-391.
- [6] C. B. Huijsmans, B. de Pagter, "Ideal theory in f-algebras," Trans. Amer. Math. Soc. 269 (1982), 225-245.
- [7] C. W. Neville, "Flat C(X)-modules and F-spaces," Math. Proc. Camb. Phil. Soc. 106 (1989), 237-244.
- [8] A. C. Zaanen, Riesz spaces II, North-Holland, Amsterdam, 1983.

Institute of Mathematics, Physics and Mechanics, Jadranska 19, 61000 Ljubljana, Yugoslavia.