TAMKANG JOURNAL OF MATHEMATICS Volume 21, Number 1, Spring 1990

LOCAL DISCRETE EXTENSIONS OF SUPRATOPOLOGIES

M.E. ABD El-MONSEF AND E.F. LASHIEN

Abstract. In this paper, we introduce the concept of local discrete extensions of supratopologies on a set. The basic problem is to investigate the supratopological properties that are preserved under local discrete extensions.

1. Introduction

Let (X, τ) be a topological space on which no separation axioms are stated and whenever such axioms are needed they will be explicitly assumed. A class $\tau^* \subset P(X)$ is called a supratopology [2] on X if $X \in \tau^*$ and τ^* is closed under arbitrary union. (X, τ^*) is called supratopological space (briefly a supraspace). A supratopology τ^* is called associated with τ if $\tau \subset \tau^*$ and each member of τ^* is called a supraopen set and the complement of a suparopen set is called supraclosed [2]. Various notions like interior, closure, exterior and the derived set operators can be defined in supratopological spaces in analogy with topological spaces [2]. The supraderived set (resp. supraclosure, suprainterior) of a subset A of a space X will be denoted by $d_{\tau^*}A$ (resp. $cl_{\tau^*}A$, $int_{\tau^*}A$). Also, Mashhour, et. al [2] have introduced the concept of $S - T_i(i = 0, 1, 2)$ and $S - T'_2$ separation axioms in supraspaces, by replacing open sets by supraopen sets in T_i and T'_2 separation axioms. By the same manner they introduced the concept of S^* -regularity and S^* -normality [3]. In [2] the concept of S^* -continuity was defined as follows : A function $f: (X, \tau_1^*) \to (Y, \tau_2^*)$ is $S^* - continuous$ if the inverse image of each τ_2^* -supraopen set is τ_1^* supraopen.

In 1971, Young, S. P. [4] introduced the concept of local discrete extensions of topologies. Let (X, τ) be a topological space and A be a subset of X. Then the topology $\tau[A] = \{U - B : U \in \tau, B \subset A\}$ is called *local discrete extension* of τ by A. He attampted to investigate, if (X, τ) has some topological property Q, under what conditions will $(X, \tau[A])$ also have property Q.

The purpose of the present paper is to introduce the concept of local discrete extensions of supratopologies on a set and to study the preservation of some supratopological properties under local discrete extensions, in a way analogous to results obtained by Young [4]. Also, we introduce and study the concept of the base for supratopologies, the local base at a point in a supraspaces, the first countable and the second contable

Received September 21, 1987; revised Appil 11, 1989.

supraspaces and study the preservation of such supraspaces under local discrete extensions.

2. Local discrete extensions of supratopologies

Definition 2.1. Let (X, τ^*) be supraspace and $A \subset X$, then $\tau^*[A]$ is called *local* discrete extension of τ^* by A iff $\tau^*[A] = \{U - B : U \in \tau^*, B \subset A\}$.

It is clear that $\tau^*[A]$ is a supratopology on X and $\tau^* \subset \tau^*[A]$.

Remark 2.1. (i) If τ is topology on X and τ^* is an associated supratopology with τ , then $\tau[A] \subset \tau^*[A]$, where $\tau[A]$ is the local discrete extension of τ by A in the sense of Young [4]. The inclusion relation cannot be replaced by equality sign, in general, as shown by Example 2.1.

(ii) The concept of local discrete extensions and simple extensions of supratopologies [1] are independent concepts (Example 2.2).

Example 2.1. Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}\}$ and supratopology $\tau^* = \{X, \phi, \{a\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$, For $A = \{b, d\}, \tau[A] = \{X, \phi, \{a\}, \{a, c\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$ and $\tau^*(A) = \{X, \phi, \{a\}, \{a, c\}, \{a, c\}, \{a, c, d\}, \{c\}, \{b, c\}\}$. Therefore, $\tau[A] \neq \tau^*[A]$.

Example 2.2. Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{a, c\}\}$ and supratopology $\tau^* = \{X, \phi, \{a\}, \{a, c\}, \{b, c\}\}$. For $A = \{a, b\}, \tau^*[A] = \{X, \phi, \{a\}, \{a, c\}, \{b, c\}, \{c\}\}$ and $\tau^*(A) = \{X, \phi, \{a\}, \{a, c\}, \{b, c\}, \{a, b\}, \{b\}\}$.

Proposition 2.1. If (X, τ^*) is a supraspace and $A \subset X$, then $(A, \tau^*[A] \cap A)$ is discrete.

Proof. To prove that $(A, \tau^*[A] \cap A)$ is discrete for any $A \subset X$, we need to show that every singletion $\{p\} \subset A$ is both open and closed in $(A, \tau^*[A] \cap A)$. Let $\{p\} \subset A$. Then $X - \{p\} \in \tau^*[A]$ and $(X - \{p\}) \cap A = A - \{p\} \in \tau^*[A] \cap A$ and hence $\{p\}$ is supraclosed in A. On the other hand, $A - \{p\} \subset A$ implies $X - (A - \{p\}) \in \tau^*[A]$ and $X - (A - \{p\}) \cap A = A - (A - \{p\}) = \{p\} \in \tau^*[A] \cap A$.

Proposition 2.2. For a supraspace (X, τ^*) , $\tau^*[A] \supset \tau^*[B]$ for any $B \subset A$.

Proof. $\tau^*[B] = \{U - C : U \in \tau^*, C \subset B \subset A\} \subset \tau^*[A]$. The inclusion relation in Proposition 2.2 cannot be replaced by equality sign as shown by the following example.

Example 2.3. Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{a, d\}\}$ and supratopology $\tau^* = \{X, \phi, \{a\}, \{a, d\}, \{a, c\}, \{a, c, d\}\}$. For $A = \{a, b, d\}$ and $B = \{b\} \subset A, \tau^*[A] = \{X, \phi, \{a\}, \{a, d\}, \{a, c\}, \{a, c, d\}, \{c\}, \{d\}, \{c, d\}\}$ and $\tau^*[B] = \{X, \phi, \{a\}, \{a, d\}, \{a, c\}, \{a, c, d\}\}$.

Theorem 2.1. If (X, τ^*) is a supraspace, $\tau^*[A]$ is a local discrete extension of τ^* and B is any subset of X, then

- (i) $cl_{\tau^*[A]}B = (A \cap B) \cup cl_{\tau^*}((X A) \cap B).$
- (ii) $int_{\tau^*[A]}B = ((X A) \cap B) \cap int_{\tau^*}(A \cup B).$
- (iii) $d_{\tau^*[A]}B \subset d_{\tau^*}B$ ($d_{\tau^*[A]}$, d_{τ^*} denote the derived operator relative to $\tau^*[A]$ and τ^* , respectively).

Proof. Proofs of (i) and (ii) follows in a similar manner to the topological case considered by Young [4]. (iii) follows from $\tau^* \subset \tau^*[A]$.

The inclusion relation in ((iii) Theorem 2.1) cannot be replaced by equality sign as illustrated by the following example.

Example 2.4. In Example 2.3, consider $B = \{a, c\}$, then $d_{\tau^*[A]}B = \{b\}$ and $d_{\tau^*}B = \{b, c, d\}$. Hence $d_{\tau^*[A]}B \not\supseteq d_{\tau^*}B$.

3. Preservation of some supratopological properties under local discrete extensions of supratopologies

In what follows we discuss the preservation of some supratopological properties, $S - T_i (i = 0, 1, 2), S - T'_2$ axioms, S^{*}-regularity and S^{*}-normality, under local discrete extensions of supratopologies.

Theorem 3.1. If (X, τ^*) is $S-T_2$ (resp. $S-T_1$, $S-T_0$) supraspace, then $(X, \tau^*[A])$ is $S-T_2$ (resp. $S-T_1, S-T_0$).

Proof. Obvious, since $\tau^* \subset \tau^*[A]$.

The converse of Theorem 3.1 is false, in general, as shown by the following example.

Example 3.1. Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ and supratopology $\tau^* = \{X, \phi, \{a\}, \{b, c\}, \{a, c\}\}$. For $A = \{c\}, \tau^*[A] = \{X, \phi, \{a\}, \{b, c\}, \{a, c\}, \{a, b\}, \{b\}\}$. $(X, \tau^*[A])$ is an $S - T_2$ supraspace while (X, τ^*) is not.

Theorem 3.2. If (X, τ^*) is $S - T'_2$, then $(X, \tau^*[A])$ is $S - T'_2$.

Proof. Let (X, τ^*) be an $S - T'_2$ supraspace and x, y be two distinct points of X. Then there exist two supraopen sets $U, V \in \tau^* \subset \tau^*[A]$ containing x and y, respectively, such that $cl_{\tau^*}U \cap cl_{\tau^*}V = \emptyset$. Hence, $cl_{\tau^*[A]}U \cap cl_{\tau^*[A]}V \subset cl_{\tau^*}U \cap cl V_{\tau^*} = \emptyset$ and $(X, \tau^*[A])$ is an $S - T'_2$ supraspace.

Theorem 3.3. If (X, τ^*) is S^* -regular (S^* -normal) and A is a supraopen subset of X, then $(X, \tau^*[A])$ is S^* -regular (S^* -normal).

Proof. Let A be a supraopen subset of (X, τ^*) then every subset A is $\tau^*[A]$ supraopen set. Let F be a supraclosed subset of $(X, \tau^*[A])$ and $x \notin F$. Then there exists a $\tau^*[A]$ supraopen set U - B, $U \in \tau^*$, $B \subset A$, such that $F = X - (U - B) = (X - U) \cup (X \cap B) = (X - U) \cup B$, $x \notin F$. Hence $x \notin X - U$ and $x \notin B$. There

are two cases (i) $x \notin A$. Since (X, τ^*) is S^* -regular, for each $x \notin X - U$, there exist disjoint supraopen sets U and V such that $x \in U$ and $X - U \subset V$. Hence there are disjoint $\tau^*[A]$ supraopen sets U - A and $V \cap U$ such that $x \in U - A$ and $F \subset V \cap B$. (ii) $x \in A$. Since (X, τ^*) is S^* -regular, there exist disjoint τ^* -supraopen sets, consequently $\tau^*[A]$ supraopen, A and V such that $x \in A$ and $X - A \subset V$. Therefore, $(X, \tau^*[A])$ is S^* -regular.

In case that A is not supraopen subset of (X, τ^*) , the above theorem does not hold in general.

Example 3.2. Let $X = \{a, b, c\}$ with indiscrete supratopology $\tau^* = \{X, \phi\}$. Then for $A = \{a, b\}, \tau^*[A] = \{X, \phi, \{c\}, \{a, c\}, \{b, c\}\}$ and hence (X, τ^*) is S^{*}-regular and S^{*}-normal while $(X, \tau^*[A])$ is neither.

4. Bases for supratopologies

Definition 4.1. Let (X, τ^*) be a supraspace. A class β^* of supraopen sets of X, i.e. $\beta^* \subset \tau^*$ is a base for the supratopology iff every supraopen set $G \in \tau^*$ is the union of numbers of β^* , equivalently, for any point $p \in G$, $G \in \tau^*$, there exists a member $B_p \in \beta^*$ such that $p \in B_p \subset G$. Clearly in any supraspace (X, τ^*) , τ^* is a base for itself.

Theorem 4.1. Let β^* be a class of subsets of a nonempty set X. Then β^* is a base for some supratopology τ^* on X iff $X = \bigcup \{B : B \in \beta^*\}$.

Proof. Suppose β^* is a base for a supratopology τ^* on X. Since X is supraopen, X is the union of members of β^* , i.e. $X = \bigcup \{B : B \in \beta^*\}$. Conversely, let β^* be a class of subsets of X satisfy $X = \bigcup \{B : B \in \beta^*\}$. Let τ^* be the class of all subsets of X which are unions of members of β^* . We have prove that τ^* is a supratopology an X. Since $X = \bigcup \{B : B \in \beta^*\}$, $X \in \tau^*$. Also, ϕ is the union of an empty subclass of β^* , i.e. $\phi = \bigcup \{B : B \in \phi \subset \beta^*\}$, hence $\phi \in \tau^*$. Moreover let $\{G_i\}$ be a class of members of τ^* . By definition of τ^* , each $\bigcup_i G_i$ is the union of members of β^* , hence the union $\bigcup_i G_i$ is also a union of members of β^* . So, $\bigcup_i G_i \in \tau^*$. Therefore, τ^* is a supratopology on X.

Theorem 4.2. If β is a base for a supratopology τ^* on X and β^* is a class of supraopen sets containing β , i.e. $\beta \subset \beta^*$. Then β^* is a base for τ^* .

Proof. Let G be a supraopen subset of X. Since β is a base for τ^* , G is the union of members of β , i.e. $G = \bigcup_i B_i$ where $B_i \in \beta$. But $\beta \subset \beta^*$, hence each $B_i \in \beta$, is also belongs to β^* . So G is the union of members of β^* and therefore, β^* is also a base for τ^* .

Definition 4.2. A class β_p^* of supraopen subsets of a supraspace (X, τ^*) containing $p \in X$ is called a *local base at* p iff for each supraopen set G containing p, there exists $G_p \in \beta_p^*$ such that $p \in G_p \subset G$.

Theorem 4.3. A point $p \in X$ belongs to the supraderived set of $A \subset X(p \in d_{\tau} \cdot A)$ iff each member of some local base β_p^* at p contains some points of X different from p. **Proof.** Let $p \in d_{\tau} \cdot A$, then $(G - \{p\}) \cap A \neq \emptyset$ for all $G \in \tau^*$, $p \in G$. But $\beta_p^* \subset \tau^*$, so inparticular $(B - \{p\}) \cap A \neq \emptyset$ for all $B \in \beta_p^*$. Conversely, suppose $(B - \{p\}) \cap A \neq \emptyset$ for all $B \in \beta_p^*$ and let G be any supraopen subset of X containing p. Then there exists $B_0 \in \beta_p^*$ for which $p \in B_0 \subset G$. Then $(G - \{p\}) \cap A \supset (B_0 - \{p\}) \cap A \neq \emptyset$. So, $(G - \{p\}) \cap A \neq \emptyset$ and hence $p \in d_{\tau} \cdot A$.

Definition 4.3. Let (X, τ^*) be a supraspace. A sequence $\langle a_n \rangle$, $n \in N S^* - converges$ to a point $b \in X$ iff for each supraopen set G containing b, there exists $n_0 \in N$ such that for all $n \geq n_0$ implies $a_n \in G$, i.e. if $G \in \tau^*$ contains almost all, i.e. all except finite member of the terms of the sequence.

Theorem 4.4. A sequence $\langle a_n \rangle$ of points in a supraspace (X, τ^*) S^{*}-converges to $p \in X$ iff each members of some local base β_p^* at p contains almost all the terms of the sequence.

Proof. $\langle a_n \rangle S^*$ -converges to $p \in X$ iff every supraopen set G containing P contains almost all the terms of the sequence. But $\beta_p^* \subset \tau^*$, so inparticular each $B \in \beta_p^*$ contains almost all the terms of the sequence. Conversely, suppose every $B \in \beta_p^*$ contains almost all the terms of the sequence and let G be any supraopen set containing p. Then there exists $B_0 \in \beta_p^*$ for which $p \in B_0 \subset G$. Hence G is also contains almost all the terms of the sequence.

5. Preservation of first countable and second countable supraspaces under local discrete extensions of supratopologies

Definition 5.1. A supraspace (X, τ^*) is a first countable supraspace iff there exists a countable local base at every $x \in X$.

Definition 5.2. A supraspace (X, τ^*) is a second countable supraspace iff there exists a countable base β^* for the supratopology.

Theorem 5.1. If $f: (X, \tau^*) \xrightarrow{onto} (Y, U^*)$ is an S^* -continuous mapping and (X, τ^*) is a second (first) countable supraspace, then (Y, U^*) is a second (first) countable supraspace.

Proof. We prove the theorem only for the second countable supraspace.

Let (X, τ^*) be a second countable supraspace and let G be a supraopen subset in (Y, U^*) . Then $f^{-1}(G) \in \tau^*$, because f is S^* -continuous, and hence $f^{-1}(G) = \bigcup \{H_{\lambda} : \lambda \in \Lambda \subset N\}$ where N is a countable index set and the family $\{H_m, m \in M\}$ is a countable base for τ^* . Since f is onto, $ff^{-1}(G) = G$ and $G = \bigcup \{f(H_{\lambda})\}$, it follows that the countable family of supraopen sets $\{f(H_m), m \in M\}$ is a base for U^* .

Theorem 5.2. If A is a subset of a second countable supraspace (X, τ^*) , then every supraopen cover of A is reducible to a countable cover.

M.E. ABD El-MONSEF AND E.F. LASHIEN

Proof. Let $\mathcal{U} = \{U_{\lambda}, \lambda \in \Lambda\}$ be a supraopen cover of A, i.e. $A \subset \bigcup \{U : U \in \mathcal{U}\}$ and let β be a countable base for X. Hence for $x \in A$, there exists $U_x \in \mathcal{U}$ such that $x \in U_x$. Since β is a base for τ^* , for every $x \in A$, there exists $B_x \in \beta$ such that $x \in B_x \subset U_x$. Hence $A \subset \bigcup \{B_x : x \in A\}$. But $\{B_x : x \in A\} \subset \beta$, so it is countable, hence $\{B_x : x \in A\} = \{B_n, n \in N\}$ where N is a countable index set. For each $n \in N$ choose one set $U_n \in \mathcal{U}$ such that $B_n \subset U_n$. Then $A \subset \{B_n : n \in N\} \subset \bigcup \{U_n : n \in N\}$. Therefore, $\{U_n, n \in N\}$ is a countable cover of \mathcal{U} .

The following theorems discuss the preservation of the first countable and the second countable supraspace under local discrete extensions of supratopologies.

Theorem 5.3. If A is any subset of a supraspace (X, τ^*) , then (X, τ^*) is a first countable iff $(X, \tau^*[A])$ is a first countable surprespace.

Proof. Let $\{U_i, i = 1, 2, ...\}$ be a countable local base at any point x of (X, τ^*) . There are two cases. (i) $x \notin A$. Then $\{U_i - A, i = 1, 2, ...\}$ is a countable local base of a point x of $(X, \tau^*[A])$. (ii) $x \in A$. Then $\{U_i - (A - \{x\}) : i = 1, 2, ...\}$ is a countable local base of a point x of $(X, \tau^*[A])$. Hence $(X, \tau^*[A])$ is a first countable supraspace.

Theorem 5.4. If (X, τ^*) is a second countable supraspace, then $(X, \tau^*[A])$ is a second countable if A is a countable subset of (X, τ^*) .

Proof. Let \mathcal{U} be a countable base for (X, τ^*) and $\mathcal{U}_A = \{B - A_\alpha : B \in \mathcal{U}, A_\alpha \text{ is a cofinite subset of A}\}$. Then \mathcal{U}_A is countable and a base for $\tau^*[A]$. For, let $x \in B - A_1$, and $A_1 \subset A$. If A_1 is a cofinite subset in A, the proof follows directly. If A_1 is not cofinite subset in A, then $A - A_1$ is not finite and we have two cases (i) $x \notin A$. Then $x \notin B - A \subset B - A_1$. (ii) $x \in A$. Then $x \in B - (A - \{x\}) \subset B - A_1$. Therefore, $(X, \tau^*[A])$ is a second countable supraspace.

Reference

- Abd El-Monsef, M. E.; Lashien, E. F., "Simple extensions of supratopologies", Bull. Fac. Sci. Alex. Uni., 27 A(1), 1987, 35-47.
- [2] Mashhour, A.S., Allam, A. A., Mahmoud, F. S., Kheder, F. H., "On supratopological spaces", Indian, Pure. Apple. Math., 14(4) April 1983, 502-510.
- [3] Mashhour, A. S., Allam, A. A., Hasanein, I. A., "Some supratopological results", Johanness Kebeler Univ. Linz. Austria. Math. J. 265, 1983, 1-16.
- [4] Young, S. P., "local discrete extensions of topologies, Kyungpook Math. J. II", 1971, 21-24.

Department of Mathematics, Faculty of Sicence, Tanta University, Tanta, Egypt.