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LOCAL DISCRETE EXTENSIONS OF SUPRATOPOLOGIES 

M.E. ABD El-MONSEF AND E.F. LASHIEN 

Abstract. In this paper, we introduce the concept of local discrete extensions of 
supratopologies on a set. The basic problem is to investigate the supratopological 
properties that are preserved under local discrete extensions. 

1. Introduction 

Let (X, r) be a topological space on which no separation axioms are stated and 
whenever such axioms are needed they will be explicitly assumed. A class r* C P(X) 
is called a supratopology [2) on X if X E r* and r* is closed under arbitrary union. 
(X, r*) is called supratopological space (briefly a supraspace). A supratopology r* is 
called associated with r if r C r* and each member of r* is called a supraopen set 
and the complement of a suparopen set is called supraclosed [2). Various notions like 
interior, closure, exterior and the derived set operators can be defined in supratopological 
spaces in analogy with topological spaces [2]. The supraderived set (resp. supraclosure, 
suprainterior) of a subset A ofa space X will be denoted by dr.A (resp. cir.A, intr•A). 
Also, Mashhour, et. al [2] have introduced the concept of S - ~(i = 0, 1, 2) and S - T~ 
separation axioms in supra.spaces, by replacing open sets by supraopen sets in ~ and T~ 
separation axioms. By the same manner they introduced the concept of S* -regularity and 
S* -normality (3). In [2) the concept of S* -continuity was defined as follows : A function 
f: (X, rt)--+ (Y, r;) is S* - continuous if the inverse image of each r2-supraopen set is r; supraopen. 

In 1971, Young, S. P. [4) introduced the concept of local discrete extensions of 
topologies. Let (X, r) be a topological space and A be a subset of X. Then the topology 
r[A.] = {U -B: U Er, BC A} is called local discrete extension of r by A. He attampted 
to investigate, if (X, r) has some topological property Q, under what conditions will 
(X, r[A]) also have property Q. 

The purpose of the present paper is to introduce the concept of local discrete exten 
sions of supratopologies on a set and to study the preservation of some supratopological 
properties under local discrete extensions, in a way analogous to results obtained by 
Young (4]. Also, we introduce and study the concept of the base for supratopologies, 
the local base at a point in a supraspaces, the first countable and the second contable 
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supraspaces and study the preservation of such supraspaces under local discrete exten 
s10ns. 

2. Local discrete extensions of supratopologies 

Definition 2.1. Let (X, r"') be supraspace and A C X, then r* [A] is called local 
discrete extension of r* by A iff r*[A] = {U - B: U Er*, BC A}. 

It is clear that r* [A] is a supratopology on X and r• C r* [A]. 
Remark 2.1. (i) If r is topology on X and r* is an associated supratopology with 

r, then r[A] C r* [A], where r[A] is the local discrete extension of r by A in the sense 
of Young [4]. The inclusion relation cannot be replaced by equality sign, in general, as 
shown by Example 2.1. 

(ii) The concept of local discrete extensions and simple extensions of supratopologies 
{1] are independent concepts {Example 2.2). 

Example 2.1. Let X = {a,b,c,d} with topology r = {X,cp,{a}} and supratopol 
ogy r* = {X,</>,{a},{a,c},{b,c},{a,b,c}}, For A= {b,d}, r[A] = {X,</>,{a},{a,c}, 
{a,b,c},{a,c,d}} and r"'(A) = {X,</>,{a},{a,c},{a,b,c},{a,c,d},{c},{b,c}}. There 
fore, r[A] -::j:. r* [A]. 

Example 2.2. Let X = {a,b,c} with topology r = {X,</>,{a},{a,c}} and 
supratopology r• = {X,</>,{a},{a,c},{b,c}}. For A= {a,b}, r"'[A] = {X,</>,{a},{a,c}, 
{b,c},{c}} and r*(A) = {JY,</>,{a},{a,c},{b,c},{a,b},{b}}. 

Proposition 2.1. If (X, r*) is a supraspace and A C X, then (A, r*[A] n A) is 
discrete. 

Proof. To prove that (A, r* [A] n A) is discrete for any A C X, we need to show 
that every singlet.ion {p} C A is both open and closed in (A, r• [A] n A). Let {p} C A. 
Then X - {p} E r*[A] and (X - {p}) n A = A - {p} E r*[A] n A and hence {p} is 
supraclosed in A. On the other hand, A - {p} C A implies X - (A - {p}) E r* [A] and 
X - ( A - {p}) n A = A - ( A - {p}) = {p} E r* [A] n A. 

Proposition 2.2. For a supraspace (X, r*), r*[A] :::> r*[B] for any BC A. 

Proof. r*[B] = {U - C: U Er*, CC BC A} C r*[A]. The inclusion relation in 
Proposition 2.2 cannot be replaced by equality sign as shown by the following example. 

Example 2.3. Let X = {a,b,c,d} with topology r = {X,¢,{a},{a,d}} and 
supratopology r* = {X,cp,{a.},{a,d},{a,c},{a,c,d}}. For A= {a,b,d} and B = {b} C 
A, -r*[A] = {X,cp,{a},{a.,d},{a,c},{a,c,d},{c},{d},{c,d}} and r*(B] = {X,¢,{a}, 
{a,d},{a, c},{a,c,d}}. 

Theorem 2.1. If (X, r*) is a supraspace, r"'[A] is a local discrete extension of r* 
and B is any subset of X, then 
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(i) clr•[A]B = (An B) u c/T. ((X - A) n B). 
(ii) intr•[A]B = ((X - A) n B) n intT. (Au B). 
(iii) dr•(A]B C dr•B (dr•[AJ, dr• denote the derived operator relative to r*[A] and r*, 

respectively). 

Proof. Proofs of (i) and (ii) follows in a similar manner to the topological case 
considered by Young [4]. (iii) follows from r* C r*[A]. 

The inclusion relation in ((iii) Theorem 2.1) cannot be replaced by equality sign as 
illustrated by the following example. 

Example 2.4. In Example 2.3, consider B = {a,c}, then dr•[A]B = {b} and 
dr•B = {b,c,d}. Hence dr•[A]B 1> dr•B. 

3. Preservation of some supratopological properties under local discrete 
extensions of supratopologies 

In what follows we discuss the preservation of some supratopological properties, 
S - Ti(i = 0, 1, 2), S-T; axioms, S*-regularity and S*-normality, under local discrete 
extensions of supratopologies. 

Theorem 3.1. If(X, r'") is S-T2 (resp. S-T1, S-To) supraspace, then (X, r*[A]) 
is S - T2 (resp. S - T1, S - To). 

Proof. Obvious, since r* C r*[A]. 

The converse of Theorem 3.1 is false, in general, as shown by the following example. 

Example 3.1. Let X = {a,b,c} with topology T = {X,¢>, {a},{b,c}} and 
supratopology r* = {X,¢,{a},{b,c},{a,c}}. For A= {c}, r*[A] = {X,¢>,{a},{b,c}, 
{a, c }, {a, b }, {b} }. (X, r*[A]) is an S - T2 supra.space while (X, r*) is not. 

Theorem 3.2. If (X, r*) is S - r;, then (X, r* [A]) is S - r;. 
Proof. Let (X, r*) be an S -T2 supra.space and x,y be two distinct points of X. 

Then there exist two supraopen sets U, VE r* C r*[A] containing x and y, respectively, 
such that clr• Un clr• V = 0. Hence, clr•[A]U n clr•(A] v c c/T. Un cl vT. = 0 and 
(X, r*[A]) is an S -T2 supra.space. 

Theorem 3.3. If (X, r'") is S* -regular (S*-normal) and A is a supraopen subset of 
X, then (X, r* [A]) is S* -regular (S* -normal). 

Proof. Let A be a supraopen subset of (X, r*) then every subset A is r* [A] 
supraopen set. Let F be a supraclosed subset of (X, r* [A]) and x r/. F. Then there 
exists a r*[A] supraopen set U - B, U Er*, BC A, such that F = X - (U - B) = 
(X - U) U (X n B) = (X - U) U B, x </. F. Hence x (/. X - U and x </. B. There 
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are two cases (i) x f/:. A. Since (X,r*) is S*-regular, for each x (/. X-U, there exist 
disjoint supraopen sets U and V such that x E U and X - U C V. Hence there are 
disjoint r* [A] supraopen sets U -A and V n U such that x EU - A and F C V n B. (ii) 
x EA. Since (X, r*) is S*-regular, there exist disjoint r*-supraopen sets, consequently 
r*[A] supraopen, A and V such that x EA and X-A CV. Therefore, (X,r*[A]) is 
S* -regular. 

In case that A is_ not supraopen subset of (X, r*), the above theorem does not hold 
in general.. 

Example 3.2. Let X = {a,b,c} with indiscrete supratopology r* = {X,<,b}. Then 
for A= {a,b}, r*[A] = {X,<,b,{c},{a,c},{b,c}} and hence (X,r*) is S*-regular and 
S*-normal while (X, r*[A]) is neither. 

4. Bases for supratopologies 

Definition 4.1. Let (X, r*) be a supraspace. A class /3* of supraopen sets of X, 
i.e. /3* C r* is a base for the supratopology iff every supraopen set G E r* is the union of 
numbers of /3*, equivalently, for any point p E G, GE r*, there exists a member Bp E /3* 
such that p E Bp C G. Clearly in any supraspace (X, r*), r* is a base for itself. 

Theorem 4.1. Let /3* be a class of subsets of a nonempty set X. Then /3* is a base 
for some supratopology r* on X iff X = U{B: BE /3*}. 

Proof. Suppose /3* is a base for a supratopology r* on X. Since X is supraopen, 
X is the union of members of /3*, i.e. X = U{ B : B E /3*}. Conversely, let /3* be a 
class of subsets of X satisfy X = U{B : B E /3*}. Let r* be the class of all subsets of 
X which are unions of members of /3*. We have prove that r* is a supratopology an X. 
Since X = U{ B : B E /3*}, X E r*. Also, <,b is the union of an empty subclass of /3*, i.e. 
<,b = U{ B : B E <,b C /3*}, hence </> E r*. Moreover let { Gi} be a class of members of r*. 
By definition of r*, each UiGi is the union of members of /3*, hence the union UiGi is 
also a union of members of /3*. So, UiGi Er*. Therefore, r* is a supratopology on X. 

Theorem 4.2. If f3 is a base for a supratopology r* on X and /3* is a class of 
supraopen sets containing /3, i.e. f3 C /3*. Then /3* is a base for r*. 

Proof. Let G be a supraopen subset of X. Since /3 is a base for r*, G is the union 
of members of /3, i.e. G = UiBi where Bi E /3. But /3 C /3*, hence each Bi E /3, is also 
belongs to /3*. So G is the union of members of /3* and therefore, /3* is also a base for 
r*. 

Definition 4.2. A class /3; of supraopen subsets of a supra.space (X, r*) containing 
p E X is called a local base at p iff for each supraopen set G containing p, there exists 
Gp E /3; such that p E Gp C G. 

Theorem 4.3. A point p EX belongs to the supraderived set of A C X(p E dr• A) 
iff each member of some local base /3; at p contains some points of X deif]erent from p. 
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Proof. Let pE dr-A, then (G- {p})nA # 0 for all GE r", p E G. But /3; Cr*, 
so inparticular (B- {p}) nA-/- 0 for all BE /3;. Conversely, suppose (B- {p})n A# 0 
for all B E /3; and let G be any supraopen subset of X containing p. Then there exists 
Bo E /3; for which p E B0 C G. Then (G - {p}) n A :::> (Bo - {p}) n A # 0. So, 
(G - {p}) n A -::j:. 0 and hence p E dr0A. 

Definition 4.3. Let (X, r*) be a supraspace. A sequence < an >, n E N S* - 
converges to a point b E X iff for each supraopen set G containing b, there exists no E N 
such that for all n?:: n0 implies an E G, i.e. if G E r* contains almost all, i.e. all except 
finite member of the terms of the sequence. 

Theorem 4.4. A sequence < an > of points in a supraspace (X, r*) S* -converges 
to p E X if! each members of some local base /3; at p contains almost all the terms of 
the sequence. 

Proof. < an > S* -converges to p E X iff every supraopen set G containing P 
contains almost all the terms of the sequence. But /3; C r*, so inparticular each B E /3; 
contains almost all the terms of the sequence. Conversely, suppose every B E /3; contains 
almost all the terms of the sequence and let G be any supraopen set containing p. Then 
there exists B0 E /3;, for which p E Bo C G. Hence G is also contains almost all the 
terms of the sequence. Therefore, < an > 5*-converges top. 

5. Preservation of first countable and second countable supraspaces 
under local discrete extensions of supratopologies 

Definition 5.1. A supraspace (X, r*) is a first countable supraspace iff there exists 
a countable local base at every x E X. 

Definition 5.2. A supraspace (X, r"') is a second countable supraspace iff there 
exists a countable base /3* for the supratopology. 

Theorem 5.1. If f: (X, r*)0.'.::.0(Y, U*) is an S*-continuous mapping and (X, r*) is 
a second (first) countable supraspace, then (Y, U*) is a second (first) countable supraspace. 

Proof. We prove the theorem only for the second countable supraspace. 

Let (X, r*) be a second countable supraspace and let G be a supraopen subset in 
(Y, U*). Then 1-1(G) Er*, because f is S*-continuous, and hence 1-1(G) = U{HA: A E 
AC N} where N is a countable index set and the family {Hm, m EM} is a countable 
base for r*. Since f is onto, f J-1(G) = G and G = U{/(HA)}, it follows that the 
countable fami1y ofsupraopen sets {f(Hm),m EM} is a base for U*. 

Theorem 5.2. If A is a subset of a second countable supraspace (X, r*), then every 
supraopen cover of A is reducible to a countable cover. 
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Proof. Let U = {U>., A EA} be a supraopen cover of A, i.e. AC U{U : U EU} 
and let /3 be a countable base for X. Hence for x E A, there exists Ux E U such that 
x E Ux. Since /3 is a base for r*, for every x E A, there exists Bx E /3 such that 
x E Bx C Ux. Hence AC U{Bx : x EA}. But {Bx : x EA} C /3, so it is countable, 
hence {Bx: x EA}= {Bn,n EN} where N is a countable index set. For each n EN 
choose one set Un EU such that Bn C Un. Then AC {Bn : n EN} C U{Un : n EN}. 
Therefore, {Un, n EN} is a countable cover ·of U. 

The following theorems discuss the preservation of the first countable and the second 
countable supra.space under local discrete extensions of supratopologies. 

Theorem 5.3. If A is any subset of a supraspace (X, r*), then (X, r*) is a first 
countable iff (X, r* [A]) is a first countable surpraspace. 

Proof. Let {Ui,i = 1,2, ... } be a countable local base at any point x of (X,r*). 
There are two cases. (i) x (/. A. Then {Ui - A, i = l, 2, ... } is a countable local base of 
a point x of (X, r* [A]). (ii) x E A. Then {Ui - (A - {x}) : i = 1, 2, ... } is a countable 
local base of a point x of (X, r*[A]). Hence (X, r*[A]) is a first countable supra.space. 

Theorem 5.4. If (X, r*) is a second countable supraspace, then (X, r*[A]) zs a 
second countable if A is a countable subset of (X, r*). 

Proof. Let U be a countable base for (X, r*) and UA = {B - A0 : BEU, A0 is a 
cofinite subset of A}. Then UA is countable and a base for r*[A]. For, let x E B - A1, 

and A1 C A. If A1 is a cofinite subset in A, the proof follows directly. If A1 is not 
cofinite subset in A, then A - A1 is not finite and we have two cases (i) x (/. A .. Then 
x (/. B-A C B-A1. (ii) x EA. Then x E B-(A-{x}) C B-A1. Therefore, 
(X, r* [A]) is a second countable supra.space. 
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