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PARTIAL ORDERINGS OF LIFE DISTRIBUTIONS 
BASED ON AGEING PROPERTIES 

A. M. ABOUAMMOH, A. N. AHMED AND A. KHALIQUE 

Abstract. Some new generalized forms of partial orderings of life distributions are 
introduced. Some of these orderings are based on the virtual age such as decreasing 
virtual ordering, new better than used virtual ordering, decreaing average virtual 
ordering and new better than average virtual ordering. Similar types of orderings 
are defmed in terms of the hazard rate. The interrelationships between these 
orderings are investigated and their relations with other known orderings such as 
the mean remaining life ordering and the global memory ordering are discussed. 
Some useful classes of life distributions are shown to arise when such orderings are 
considered with respect to the negative exponential distribution. Other related 
results are also discussed. 

1. Introduction. 
Selection of probability models for different phenomena such as the time to failure for 

a system or its units, repair time, waiting time in a queue and ageing ect., is performed 
by observing the underlying physical characteristics. Use of exponential distribution 
for modelling these phenomena is simple and widely used to represent the memoryless 
property. This ideal property has very limited real life applications. Model building 
researchers are interested in a more extended case that is nonnegative or simply involves 
positive ageing, see Bryson and Siddiqui (1969) and Barlow and Proschan (1981). 

The main theme of this paper is to introduce some notions of positive ageing for 
evaluating the reliability of a device and to carryout some comparisons between the 
reliability of systems or their. components in terms of these notions of ageing. One useful 
notion of ageing is the virtual age, that is, the difference between the mean remaining 
life at two distinct limits of time interval is nonnegative. Another practical notion is the 
global memory which is the rate of change of decreasing mean remaining age over the 
interval (0, oo ). For some properties of virtual age and global memory, we refer to Muth 
(1980). The notion of virtual hazard rate is introduced since hazard rate is more likely to 
be observed in survival data, when the density functin of the underlying life distribution 
exists. 
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Various criteria of ordering life distributions are useful in different aspects such as 
comparing the tail of distributions in goodness of fit tests, see Bryson (1974), comparing 
the peakedness of life distrbutions, giving unified implications between life distrebutions 
when the ordering is made with repect to exponentiality and attributing physical meaning 
to various underlying models in stochastic processes. 

The sequel of the paper is as follows: Some definitions and preliminary results 
are given in Section 2. Section 3 includes the partial orderings that are based on the 
concept of virtual age. In Section 4, some results concering the global memory ordering 
and the variability ordering are discussed. The virtual hazard rate based orderings are 
investigated in Section 5 and the last Section 6 includes some applications-oriented and 
miscelJaneous results. 

2. Preliminaries. 
Let T be a nonnegative random variable with distribution function F(t) = P(T :=::; t) 

and survival function F(t) = 1 - F(t). Let F(t) be differentiable and f(t) = -( ft )F(t) 
be the density function of T. The hazard rate rp(t) is defined by 

rp(t) = lim ; P(T::; t + 8t1T > t) 
6t-+0 ut 

- f(t) 
- F(t) (2.1) 

The mean remaining life of the random variable T is given by 

µp(t) = E(T - tlT 2: t) 
= 1= F( u)du 

t F(t) (2.2) 

The following two definitions are due to Muth (1980). 

Definition 2.1. The virtual age of a life distrbution of age t, denoted by vp(t) is 
given by 

(2.3) 

Defnition 2.2. The global memory of a life distribution F denoted by m9(F) is 
given by 21= m9(F) = 2 - 2 µp(u)F(u)du, 

µF 0 
(2.4) 

where µp = µp(O) and µp(.) is as given in relation (2.2). 
Note that a life distrbution F is said to be of positive global memory (PGM) if 

m9(F) 2: 0. 
Next we present the mean remaining life ordering, see Kochar and Weins (1987). 
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Definition 2.3. A life distribution F is said to be uniformly smaller mean remaining 
life than the life distrbution G, written F <mrl G if 

for all t 2:: 0. (2.5) 

The following definition is due to Gupta and Keating (1986). 

Definition 2.4. Let T be a nonnegative random variable with finite mean µ and 
desity function f. The length biased density of T is given by 

/b(t) = t f(t) 
µ ' 

t > 0. (2.6) 

The length biased radom variable of T is denoted Tb and we have 

_ F(t) (t + µ(t)), Fb(t) = µ 

tf(t) and 

rb(t) = F(t)(t + µ(t))' 

(2.7) 

(2.8) 

where µ(t) is given by relation (2.2). 
In the material that follows the terms increasing and decreasing stand for non­ 

decreasing and non-increasing respectively. 
Note that if VF(t) is increasing then F is to have decreasing mean remaining life 

(DMRL} property. Whereas if VF(t) 2:: 0, then F is said to have new better than used 
mean remaining life (NBUMRL) property, see Abouammoh (1988). If in Definition 2.3 
G(t) = exp(--t ), then Fis NBUMRL as well. 

µF 
Another interesting ordering which has many applications in stochastic processes, 

see Ross and Schechner (1984), is the following. 

Definition 2.5. Let F and G be two life distributions. Then F is said to be less 
variability ordered than G, denoted F <v G if 

for all t 2:: 0. (2.9) 

Note that if G(t) = exp(;:), t 2:: 0, in (2.9) then F is said to have harmonic new 
better than used in expectation (HNBUE} property, see Rolski (1975). 

Next we present the following definition. 

Definition 2.6. Let F and G be two absolutely continuous life distributions with 
respective failure rates rF(t) and rG(t), then F is said to have uniformly smaller hazard 
rate than G, denoted by F <h G if 

rp(t) :S rG(t), for all t 2:: 0. (2.10) 
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This ordering is also know as the TP2 ordering, see Bagai and Kochar (1986) and is 
denoted by F <rp2 G. 

Definition 2. 7. The life distribution F is said to be normalized mean residual life 
oedercd with respect to G, denoted by F <nmrl G, if 

for all t ~ 0. (2.11) 

3. Virtual life orderings. 
Let F and G be two distribution functions of nonnegative random variables such 

that F(O) = G(O) = 0. Now we introduce the following definition. 
Definition 3.1. Let VF(t) and Va(t) be the virtual ages of distibution F and G, 

respectively. Then we have the following: 
(i) F is less virtual decreasing {vd) ordered than G, denoted by F <vd G if the 

difference VF(t) - Va(t) is decreasing int that is 

[VF(t) - Va(t)] \.. in t, (3.1) 

(ii) Fis less new better than used virtual {nbuv) ordered than G, denoted by F <nbuv G 
if 

VF(t) ::; Va(t), for all t ~ 0, (3.2) 

(iii) F is less averaged decreasing virtual (adv) ordered than G, denoted by F <adv G if, 

c1 fot [VF( u) - VG( u)]du \.. in t, 
(iv) F is less new better than averaged used virtual (nbav) ordered than G, denoted by 
F <nbav G, if 

for all t > 0. (3.3) 

it VF(u)du ::; lt Va(u)du, 

It can be easily shown that the orderings in Definition 3.1 are partial orderings since they 
are reflexive, antisymmetric and transitive. Now we give the following characterization 
of some classes of life distrbutions in terms of virtual orderings. 

for all t 2:'._ 0. (3.4) 

Theorem 3.2. Let G(t) = l - exp(-At) be an exponential distribution and F be 
any distrbution function with F(O) = 0. Then 
{i) F >vd G if and only if {iff) F has the decreasing mean remaining life (DMRL} 
property. 
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(ii) F >nbuv G iff F has the new better than used mean remaining life (NBUMRL) 
property. 

(iii) F >adv Giff F has the decreasing mean remaining life average (DMRLA) property. 
(iv) F >nbav Giff F has the new better than averaged mean remaining life (N.BAMRL) 

property. 

Proof. Parts (i), (ii) and (iv) are obvious whereas the proof of part(iii) is as follows. 
(iii) Since t-1 J;vG(u)du = constant, we get 

r1 fot VG(u)du /int 

<=> r1fotµp(u)du ~int 

i.e., F is DM RLA. 

Nex we give the forrowing two results whose proof are straightforward. 

Theorem 3.3. Let µp = µG then F >mrl G iff F <nbuv G. 

Theorem 3.4. Let F and G have the same meanµ, F >nbuv G and G is NBUE, 
then F is NBUE. 

The second result shows that the NBUE property is preserved under the nbuv or­ 
dering. 

Using the fact that the derivative of a decreasing function is nonpositive one can 
prove the following theorem. 

Theorem 3.5. 

(i) F is DMRL iff µp(t) rp(t) ::::; 1. 
(ii) F <vd G iff µp(t) rp(t) 2: µG(t) rG(t). 
(iii) F <adv G iffw(t) :=::; r1J;w(u)du, where w(t) Vp(t) - VG(t). 

4. Global memory orderings. 
First, we define the global memory orderings. 

Denfi.nition 4.1. The life distribution F is said to be less global memory ordered 
then G, denoted by F <9 G if 

( 4.1) 
New, we prove the following. 

Theorem 4.2. Let F and G be two life distributions with equal means and F <v G 
then F <9 G. 
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Proof. It is given that µp = µG and J/>0 F(u)du :S ft00 G(u)du. 
2 100100 m9(F) = 2 - 2 F(~)du dt, 

· µF o t 

2 100100 :S 2 - -2 G( u)du dt, 
µG O t 

2 100 
= 2 - -2 µG(t) G(t)dt, 

µG 0 

= m9(G). 

(4.2) 

Integrating ( 4.2) by parts with respect to t gives that 

(4.3) 

Using Theorem 4.2 and relation ( 4.3), we obtain the following . 

• 
Corollary 1. Under the assumptions of Theorem 4-2, 

VarF > VarG ( 4.4) 

Corollary 2. Let CF be the coefficient of variation of the distribution F, then 

C'j, = 1 - m9(F) (4.5) 

Theorem 4.3. Let the life distrbution F be NBUMRL then mg(F) 2:: m9(G) where 
G(t) =exp(-;/),µ> 0, t 2:: 0, i.e., Fis PCM or m9(F) 2:: 0. 

Proof. Let F be NBUMRL distribution that is µ(t) :S µ, which is equivalent to 

µF(t)F(t) ~ µF(t), for all t > 0. (4.6) 

The relation ( 4.6) implies 

This means that m9 ( F) 2:: 0. 

In the following theorem we show that the PG M class is wider than the HNBUE 
class. 

Theorem 4.4. Let F be a HNB UE life distribution then F is PGM. 
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Proof. Fis HNBUE, from Rolski (1975) means that 

for all t ~ 0. 

This implies that 

Which is equivalent to 1= µ(t)F(t)dt ::; µ2. 

Hence m9(F) ~ 0, i.e., F has the PGM property. 

The next result shows that any NBUMRL distribution has the PGM property. 

Theorem 4.5. Let F be NBUMRL distribution, then the coefficien·t of variation 
satisfies C}, < 1. 

Proof. From Theorem 3.2 (ii), Fis NBUMRL iff 

1= F(u)du ::; µF(t). Also µ(t)F(t) = 1= F(u)du. 
Therefore 

ET2 = 2100 (100 

F(u)du) dt 

::; 2 fo00 

µF( t )dt ::; 2µ2
. 

This proves the theorem. 

Next, we show' that the HNBUE property is inherited through the variability order­ 
mg. 

Theorem 4.6. Let F and G be two life distributions with equal means. If F <v G 
and G is HNBUE, then so is F. 

Proof. Let the common mean beµ. Note that 
------ 

sinceF <v G, 

since G is HNBUE. 

Therefore F is HNBUE. 
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5. Virtual rate orderings. 
Let F and G be two absolutely continuous life distributions with respective hazard 

rates rp(t) and rG(t). we shall assume that for any life distrbution F, rp(t) < oo for 
all t 2: 0. Next we give the following: 

Definition 5.1 The virtual rate R(t) for any life distribution F is given by 

for all t 2: 0 (5.1) 

Now, we can give the following orderings. 

Definition 5.2. Let F and G be two distributions as defined above. Then 
(i) F is said to be less virtual rate increasing (ri) ordered than G, denoted by 

F <ri G, if 
for ali t > 0. (5.2) 

(ii) F is less new better than used virtual rate (nbur) ordered than G, denoted by 
F <nbur G, if 

for all t 2: 0. (5.3) 

(iii) F is less averaged virtual rate increasing (ari) than G, denoted F <ari G, if 

r1 1t [Rp(u) - RG(u)du / int for all t > 0 (5.4) 

(iv) F is less new better than averaged used virtual rate (nbar) than G1 denoted by 
F <nbar G, if 

1t Rp(u)du 2: 1t RG(u)du. for all t 2: 0. (5.5) 

Now we give without proof the following characterizations. 

Theorem 5.3. Let G(t) = 1 - exp(-.Xt) be an exponential distribution and let 
F be any absolutely continuous distribution. Then 

(i) F <ri G iff F has the increasing failure rate (IFR) property. 
(ii) F <nbur Giff F has the new better than used in failure rate (NBUFR) property. 
(iii) F <ari G iff F has the incerasing failure rate in average (IFRA) property. 
(iv) F <nbar Giff F has new better than averaged failure rate (NBAFR) property. 

The IFR and IFRA classes of life distributions and their properties are found in 
Bryson and Siddiqui (1969). The NBUFR class is studied in Abouammoh and Ahmed 
(1988) and the NBAFR class is introduced in Loh (1984a,b ). 

The following implications between virtual hazard rate orderings can be verified in 
parallel to that of Theorem 3.3 of virtual age. 
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Theorem 5.4. Let F and G be absolutely continuous life distybutions. Then 
(i) F <ri G ==> F <11bur G, 
{ii} F <ri G ==> F <ari G ==> F <nbar G. 
{iii} F <nbur G ==> F <nbar G . 

Using the definitions of virtual hazard ordering we obtain the following: 

Theorem 5.5. Let f and g denote the densities of the life distributions F and G, 
respectively. Then 
{i} F <nbur G and f(O) 2:: g(O) or g(O) = 0 implies that F <h G. 
(ii) F <ri G and G = 1 - exp(-,\t), ,\ > 0, t 2:: 0 implies that F is !FR. 
(iii} F <ari G and G as in par {ii} implies that F is IFRA. 

Note that the survival function F(t) can be expressed as 

F(t) = exp(- lat r(u)du), for t 2:: o. 

Then we can derive the condition for the equivalence of F ~.,t G and F ~nbar G, where 
F ~.,t G is known in the literature by F is less stochastically ordered than G. 

Theorem 5.6. If rF(O) = rc(O) < oo, then F :Snbar G iff F ~.,t G. 

Proof. The proof is straightforward and therefore omitted. 

Let F and G be two absolutely continuous life distributions with respective failure 
rate functio~s rF(t) and rG(t). Gupta and Kirmani (1987) have shown that rF :S re if 
and only if f is nondecreasing. In the following theorem we characterize the virtual rate 
increasing ordering via the log concavity of the ratio of the underlying survivals. 

Theorem 5. 7. F <ri G if and only if~ is log concave. 

Proof. F / G is log concave 

,¢:::::::> w(t) = -log ~i:~ is convex 
<==} d~lt) = rF(t) - rG(t) is nondecre~ing int, 'v t 2:: 0 
,¢:::::::> RF(t) - RG(t) is nondecreasing in t for all t 2:: 0 
<==} F <ri G. 

6. Some miscellaneous results. 
The following theorem interrelates the length biased random variable n, see Defi­ 

nition 2.4, to the parent variable. 
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Theorem 6.1. Let T be a nonnegative random variable and Tb be the corresponding 
length biased variable. Then 

(i) n <h T, 
(ii) n <mr1 T, 
(iii) if r(O) < oo, then n is NB UFR. 
(iv) if T is NBUMRL, then n is NBUMRL. 
(v) if T is !FR, then n is !FR. 

Proof. (i) Using relation (2.8), one can see that 

rb(t) = a(t)r(t), 
where o(t) = lt+i(t)] ::; 1, Vt ~ 0. Hence rb(t) ::; r(t). 

(ii) Since '' <h " implies " <mrl " the required result follows. 
(iii) Since r(O) < oo, then relation (2.8) implies that 

which means that rb(t) ::; rb(O). 
The proofs of parts (iv) and (v) are straightforward and hence omitted. 
Next we see how the normalized mean residual life ordering inherits the NBUMRL 

property. 

Theorem 6.2. Let F <nmr1 G and G is NBUMRL, then F is NBUMRL. 

Proof. Since F <nmrl G, this means that 

(6.1) 

The NBUMRL property for the distribution G means that µo(t) < l and with µa 
(6.1) implies that µF(t) ::; µF. 

Gupta and Kirmani (1987) proved, in similar context, that if F <mrl G and (6.1) 
holds, then F ::; G. 

Kitchen and Proschan (1981) have shown that the fstatement "if the convolution 
of n IFRA units is exponential then n - 1 units must have degenerate distributions at 
zero and the remaining unit is exponential" can be proved by showing that the class 
of nonnegative random variables with CF ::; 1 is closed under sums where CF is the 
coefficient of variation for the underlying distribution. This statement was considered by 
Block and Savits (1979) for the IFRA distributions and by Shaked (1983) for the NBU 
distributions. ; 

Following Kitchen and Proschan (1981) we can prove the following result. 
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Theorem 6.3. If the convolution of n NB UMRL units is exponential, then n - l 
of the components must have degenerate distributions at zero and the remaining unit is 
exponential. 

Proof. Let X and Y be nonnegative random variables (possibly dependent) with 
EX :=:; EY < oo, CF(x) :=::; 1, CF(y) :=::; 1 and CF(x+y) = 1. Then, see Kitchen and 
Proschan (1981, Lemma 1), x = ay a.s., where 

if EY > 0 
if EY = 0. 

The class of nonnegative random variables Gp :=:; 1 is closed under sums. Let X1, ... ,Xn 
are independent NBUMRL random variables. From Theorem 4.5, CF(x;) :=::; 1, for 
all i = 1, , n. Without loss of generality one can take EX1 :=::; ... 5 EXn. Let 
Sn = X1 + + Xn be exponentially distributed. Note that Sn -Xn and Xn are linearly 
dependent and stochastically independent radom variables. Thus at least one of these 
two variables is degenerate at 0. This yields that Xi = 0, i = 1, ... , n - 1. Hence the 
remaining random variable Xn must be exponential. 

The following result characterizes the exponential distribution throuhg the nbur­ 
ordering. 

Theorem 6.4. Let F*{x) = µ-1 fx= F(u)du and let F 2:nbuv Exp(µ), where 
µ = ft F( x )dx. Then F and F* have the same mean if! F is exponential. 

Proof. If r* (.) is the hazard rate of F* ( ·) and r* ( ·) < oo, then since 

it follows that F*(x) has density function J* given by 

* F(x) f (x) = --, x2:o. 
µ 

Therefore the hazard rate r* (.) is expressed as 

r*(x) F(x) 

It follows that 

r*(O) F(x) 
ft F(u)du = µ-l and 
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r*(O) 100 

~~~~~u = µ-1 fo00 F(u)[100 

F(t)dt][F(u)]-
1
du 

Suppose now that µp = µF, then 

/

00 

r*(O) F(u)du 
Jo r* ( u) 

This is equivalent to 

loo r*(u).~ :*(O) F(u) du = 0. 
Since Fis NBUMRL, then F* is NBUFR implying that r*(u) - r*(O) > 0. Thus 

r*(u) - r*(O) F(u) = 0 
r* ( u) 

a.s. 

But the latter is equivalent to r*(u) = ·r*(O). This means that F* is exeponential, 
or equivalently F is exeponential. 

On the other hand, if Fis exeponential, then Fst=F*, and hence µF = µF. 

Remark. The above theorem generalizes a result of Bhattacharjee (1982), since we 
use the weaker NBUE assumption. 

Acknowledgement: The authors are grateful to the referee for some of his useful 
corrections and suggestions. 
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