ON A CLASS OF CERTAIN ANALYTIC FUNCTIONS OF COMPLEX ORDER

VINOD KUMAR, S. L. SHUKLA AND A. M. CHAUDHARY

Abstract

We introduce a class, namely, $F_{n}(b, M)$ of certain analytic functions. For this class we determine coefficient estimate, sufficient condition in terms of coefficients, maximization theorme concerning the coefficients, radius problem and a necessary and sufficient condition in terms of convolution. Our results generalize and correct some results of Nasr and Aouf ([2],[3]).

1. Introduction.

Let A denote the class of functions $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ which are analytic in the unit $\operatorname{disc} U=\{z:|z|<1\}$. We use B to denote the class of analytic functions $\omega(z)$ in U satisfying the conditions $\omega(0)=0$ and $|\omega(z)|<1$ for $z \in U$. Let $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ and $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$ belong to A, then the convolution or Hadamard product of $f(z)$ and $g(z)$, denoted by $f(z) * g(z)$, is defined by

$$
\begin{equation*}
f(z) * g(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}, \quad z \in U \tag{1.1}
\end{equation*}
$$

Let $n \in N_{0}=\{0,1,2,3, \ldots\}$. The $n^{\text {th }}$ order Ruscheweyh derivative (see, [1]) of $f(z)$, denoted by $D^{n} f(z)$, is defined by

$$
\begin{equation*}
D^{n} f(z)=\frac{z\left(z^{n-1} f(z)\right)^{(n)}}{n!}, n \in N_{0} \tag{1.2}
\end{equation*}
$$

Ruscheweyh [9] determined that

$$
\begin{equation*}
D^{n} f(z)=\frac{z}{(1-z)^{n+1}} * f(z) \tag{1.3}
\end{equation*}
$$

We now introduce a class, namely, $F_{n}(b, M)$ of analytic functions.

Received July 27, 1987.
1980 Mathematics subject classification 30C45.
This work is supported by the University Grants Commission under grant number F.8-6/85 (SR III).

A function $f(z)$ of A belongs to the class $F_{n}(b, M)$ if and only if $\frac{D^{n} f(z)}{z} \neq 0$ in U and

$$
\begin{equation*}
\left|\frac{(b-1)+z \frac{\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}}{b}-M\right|<M, z \in U \tag{1.4}
\end{equation*}
$$

where $M>\frac{1}{2}$ and b is any non-zero complex number.
It follows by [6] that $g(z) \in F_{0, M}$ if and only if for $z \in U$

$$
\begin{equation*}
z \frac{g^{\prime}(z)}{g(z)}=\frac{1+\omega(z)}{1-m \omega(z)} \tag{1.5}
\end{equation*}
$$

where $m=1-\frac{1}{N A}$ and $\omega(z) \in B$.
One can easily show that $f(z) \in F_{n}(b, M)$ if and only if there is a function $g(z) \in$ $F_{0, M}$ such that

$$
\begin{equation*}
D^{n} f(z)=z\left[\frac{g(z)}{z}\right]^{b} \tag{1.6}
\end{equation*}
$$

Thus from (1.5) and (1.6) it follows that $f(z) \in F_{n}(b, M)$ if and only if for $z \in U$

$$
\begin{equation*}
z \frac{\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}=\frac{1+\{b(1+m)-m\} \omega(z)}{1-m \omega(z)} \tag{1.7}
\end{equation*}
$$

where $\omega(z) \in B$ and $m=1-\frac{1}{M}\left(M>\frac{1}{2}\right)$.
By giving specific values to n, b and M, we obtain the following important subclasses studied by various researchers in earlier works:
(i) Taking $n=0$, the class $F_{n}(b, M)$ coincides with the class $F(b, M)$ studied by Nasr and Aouf [2].
(ii) Taking $n=1$, the class $F_{n}(b, M)$ coincides with the class $G(b, M)$ investigated by Nasr and Aouf [3].
(iii) Taking $n=0, b=\cos \lambda e^{-i \lambda}\left(|\lambda|<\frac{\pi}{2}\right)$ and $M=\infty$, the class $F_{n}(b, M)$ coincides with the class $S^{\lambda},|\lambda|<\frac{\pi}{2}$ introduced by Špacek [14].
(iv) Taking $n=0$ and $M=\infty$, the class $F_{n}(b, M)$ coincides with the class $S(1-b)$ investigated by Nasr and Aouf [4].
(v) Taking $n=0$ and $b=\cos \lambda e^{-i \lambda}$, the class $F_{n}(b, M)$ coincides with the class $F_{\lambda, M^{\prime}}|\lambda|<\frac{\pi}{2}$ studied by Kulshrestha [6].
(vi) Taking $n=1$ and $b=\cos \lambda e^{-i \lambda}$, the class $F_{n}(b, M)$ coincides with the class $G_{\lambda, M^{\prime}}|\lambda|<\frac{\pi}{2}$ investigated by Kulshrestha [7].
(vii) Taking $n=1, b=\cos \lambda e^{-i \lambda}\left(|\lambda|<\frac{\pi}{2}\right)$ and $M=\infty$, the class $F_{n}(b, M)$ coincides with the class $C^{\lambda},|\lambda|<\frac{\pi}{2}$ introduced by Robertson [11].
(vii) Taking $n=1$ and $M=\infty$, the class $F_{n}(b, M)$ coincides with the class $C(b)$ introduced by Wiatrowski [15] and studied by Nasr and Aouf [5].
(ix) Taking $b=1$ and $M=\infty$, the class $F_{n}(b, M)$ coincides with the class R_{n} introduced and studied by Singh and Singh [12].
(x) Taking $b=1-\beta(0 \leq \beta<1), n=1-2 \alpha(0 \leq \alpha<1)$ and $M=\infty$, the class $F_{n}(b, M)$ coincides with the class $R(\alpha, \beta)$ introduced and studied by -Sheil-Small, Silverman and Silvia [13].
(xi) Taking $b=1-\alpha, n=1-2 \alpha(0 \leq \alpha<1)$ and $M=\infty$, the class $F_{n}(b, M)$ coincides with the class R_{α} introduced and studied by Ruscheweyh [10].

From the definitions of the classes $F(b, M)$ and $F_{n}(b, M)$, we observe that

$$
\begin{equation*}
f(z) \in F_{n}(b, M) \Longleftrightarrow D^{n} f(z) \in F(b, M) \tag{1.8}
\end{equation*}
$$

The purpose of the present paper is to determine coefficient estimate, sufficient condition in terms of coefficients for a function to belong to $F_{n}(b, M)$ and maximization of $\left|a_{3}-\mu a_{2}^{2}\right|$ over the class $F_{n}(b, M)$ for complex value of μ. Further we obtain the radius of disc in which $\operatorname{Re}\left\{z \frac{\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}\right\}>0$, whenever $f(z)$ belongs to $F_{n}(b, M)$ and a necessary and sufficient condition in terms of convolution for a function to be in $F_{n}(b, M)$. We also obtain the correct form of Maximization theorems concerning the coefficients for the classes $F(b, M)$ and $G(b, M)$, by taking $n=0$ and $n=1$, in our maximization theorem for the class $F_{n}(b, M)$ respectively.

Our results generalize the some results of Nasr and Aouf ([2], [3], [4], [5]), Kulshrestha ([6], [7]), Ruscheweyh [10], Robertson [11], Singh and Singh [12], Sheil-Small, Silverman and Silvia [13], Špacek [14] and Wiatrowski [15].

2. Prelimainary lemma

In our investigation we require the following Lemma due to Keogh and Merkes [8]:
Lemma 2.1. Let $\omega(z)=\sum_{k=1}^{\infty} c_{k} z^{k}$ belongs to B. If μ is any complex number then

$$
\begin{equation*}
\left|c_{2}-\mu c_{1}^{2}\right| \leq \max \{1,|\mu|\} \tag{2.1}
\end{equation*}
$$

Equality may be attained with the functions $\omega(z)=z^{2}$ and $\omega(z)=z$.

3. Coefficient estimate

Theorem 3.1. If $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ belongs to $F(b, M)$ and

$$
L=|b|^{2}(1+m)+2 m(j-1) \operatorname{Re}(b)+(m-1)(j-1)^{2}
$$

then

$$
\begin{equation*}
\left|a_{k}\right| \leq \frac{1}{\underline{\mid k-1} \delta(n-1, k)} \prod_{\ell=0}^{k-2}|b(1+m)+m \ell|, \text { when } L>0 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{k}\right| \leq \frac{1}{(k-1) \delta(n-1, k)}|b(1+m)|, \text { when } L \leq 0 \tag{3.2}
\end{equation*}
$$

where $m=1-\frac{1}{M}\left(M>\frac{1}{2}\right)$ and $\delta(n, k)=\binom{n+k}{n+1}$.

The inequalities (3.1) and (3.2) are sharp.
Proof. Since $f(z) \in F_{n}(b, M)$, so from (1.7) we have that

$$
z \frac{\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}=\frac{1+\{b(1+m)-m\} \omega(z)}{1-m \omega(z)}
$$

or

$$
\sum_{j=2}^{\infty}(j-1) \delta(n-1, j) a_{j} z^{j}=\left[b(1+m) z+\sum_{j=2}^{\infty}\{b(1+m)+m(j-1)\} \delta(n-1, j) a_{j} z^{j}\right] \omega(z)
$$

or

$$
\begin{aligned}
\sum_{j=2}^{k}(j-1) \delta(n-1, j) a_{j} z^{j}+\sum_{j=k+1}^{\infty} d_{j} z^{j}= & {\left[b(1+m) z+\sum_{j=2}^{k-1}\{b(1+m)\right.} \\
+ & \left.m(j-1)\} \delta(n-1, j) a_{j} z^{j}\right] \omega(z)
\end{aligned}
$$

where d_{j} 's are some complex numbers. Then since $|\omega(z)|<1$, we have

$$
\begin{align*}
\mid b(1+m) z & +\sum_{j=2}^{k-1}\{b(1+m)+m(j-1)\} \delta(n-1, j) a_{j} z^{j} \mid \tag{3.3}\\
& \geq\left|\sum_{j=2}^{k}(j-1) \delta(n-1, j) a_{j} z^{j}+\sum_{j=k+1}^{\infty} d_{j} z^{j}\right|
\end{align*}
$$

Squaring both sides of (3.3) and integrating round $|z|=r<1$, we get, after taking the limit when $r \rightarrow 1$

$$
\begin{gather*}
(k-1)^{2}\{\delta(n-1, k)\}^{2}\left|a_{k}\right|^{2} \leq|b(1+m)|^{2}+\sum_{j=2}^{k-1}\left[|b(1+m)+m(j-1)|^{2}\right. \tag{3.4}\\
\left.-(j-1)^{2}\right]\{\delta(n-1, j)\}^{2}\left|a_{j}\right|^{2}
\end{gather*}
$$

On solving, we get

$$
\begin{aligned}
& (k-1)^{2}\{\delta(n-1, k)\}^{2}\left|a_{k}\right|^{2} \\
& \leq|b(1+m)|^{2}+\sum_{j=2}^{k-1}\left[(1 + m) \left\{|b|^{2}(1+m)\right.\right. \\
& \left.\left.\quad+2 m(j-1) \operatorname{Re}(b)+(m-1)(j-1)^{2}\right\}\right]\{\delta(n-1, j)\}^{2}\left|a_{j}\right|^{2}
\end{aligned}
$$

or

$$
\begin{aligned}
&(k-1)^{2}\{\delta(n-1, k)\}^{2}\left|a_{k}\right|^{2} \leq|b(1+m)|^{2} \\
&+\sum_{j=2}^{k-1}(1+m) L\{\delta(n-1, j)\}^{2}\left|a_{j}\right|^{2}
\end{aligned}
$$

where

$$
L=\left\{|b|^{2}(1+m)+2 m(j-1) \operatorname{Re}(b)+(m-1)(j-1)^{2}\right\}
$$

Now we consider the following two cases:
Cases I: When $L>0$. In this case (3.4) gives successively for $k=2,3,4, \ldots$

$$
\left|a_{2}\right| \leq \frac{|b(1+m)|}{\delta(n-1,2)},\left|a_{3}\right| \leq \frac{|b(1+m)||b(1+m)+m|}{2 \delta(n-1,3)}
$$

and hence by induction

$$
\left|a_{k}\right| \leq \frac{1}{\mid \underline{k-1} \delta(n-1, k)} \prod_{l=0}^{k-2}|b(1+m)+m l|
$$

The above inequality is sharp for the function $f(z)$ defined by

$$
D^{n} f(z)= \begin{cases}\frac{z}{(1-m z)^{b(1+m) / m},}, & \text { for } m \neq 0 \\ z \exp (b z), & \text { for } m=0\end{cases}
$$

Case II: When $L \leq 0$. In this case (3.4) gives

$$
\left|a_{k}\right| \leq \frac{1}{(k-1) \delta(n-1, k)}|b(1+m)|
$$

This inequality is sharp.
Theorem 3.2. Let $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$. If for some $n \geq 0$ and A, B with $-1 \leq$ $B<A \leq 1$,

$$
\begin{equation*}
\sum_{k=2}^{\infty}[(k-1)+|b(1+m)+m(k-1)|] \delta(n-1, k)\left|a_{k}\right| \leq|b(1+m)| \tag{3.5}
\end{equation*}
$$

holds, then $f(z)$ belongs to $F_{n}(b, m)$, where $\delta(n, k)=\binom{n+k}{n+1}$ and $m=1-\frac{1}{M}\left(M>\frac{1}{2}\right)$.
Proof. Suppose that the inequality (3.5) holds. Since $f(z)=z+\sum_{k=2}^{\infty} \delta(n-$ $1, k) a_{k} z^{k}$, we have for $z \in U$

$$
\begin{aligned}
& \quad\left|z\left(D^{n} f(z)\right)^{\prime}-D^{n} f(z)\right|-\left|b(1+m) D^{n} f(z)+m\left\{z\left(D^{n} f(z)\right)^{\prime}-D^{n} f(z)\right\}\right| \\
& =\left|\sum_{k=2}^{\infty}(k-1) \delta(n-1, k) a_{k} z^{k}\right|-\mid b(1+m)\left\{z+\sum_{k=2}^{\infty} \delta(n-1, k) a_{k} z^{k}\right\} \\
& \quad \quad+m \sum_{k=2}^{\infty}(k-1) \delta(n-1, k) a_{k} z^{k} \mid \\
& \\
& \quad \leq \sum_{k=2}^{\infty}(k-1) \delta(n-1, k)\left|a_{k}\right| r^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \quad-\left\{|b(1+m)| r-\sum_{k=2}^{\infty}|b(1+m)+m(k-1)| \delta(n-1, k)\left|a_{k}\right| r^{k}\right\} \\
& =\sum_{k=2}^{\infty}[(k-1)+|b(1+m)+m(k-1)|] \delta(n-1, k)\left|a_{k}\right| r^{k}-|b(1+m)| r \\
& \leq
\end{aligned}
$$

Hence it follows that

$$
\left|\frac{\left\{z \frac{\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}-1\right\}}{b(1+m)+m\left\{z \frac{\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}-1\right\}}\right|<1, z \in U .
$$

Letting

$$
\omega(z)=\frac{\left\{z \frac{\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}-1\right\}}{b(1+m)+m\left\{\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}-1\right\}}
$$

then $\omega(0)=0, \omega(z)$ is analytic in $|z|<1$ and $|\omega(z)|<1$. Hence we have

$$
\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}=\frac{1+\{b(1+m)-m\} \omega(z)}{1-m \omega(z)}
$$

which shows that $f(z)$ belongs to $F_{n}(b, M)$.

4. Maximization of $\left|a_{3}-\mu a_{2}^{2}\right|$

Theorem 4.1. If $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ belongs to $F_{n}(b, M)$ and μ is any complex number then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|b(1+m)|}{2 \delta(n-1,3)} \max \{1,|d|\} \tag{4.1}
\end{equation*}
$$

where

$$
d=\frac{2 \mu b(1+m) \delta(n-1,3)-\{b(1+m)+m\}\{\delta(n-1,2)\}^{2}}{\{\delta(n-1,2)\}^{2}}
$$

This inequality is sharp for each μ.
Proof. Since $f(z)$ belongs to $F_{n}(b, M)$, so that from (1.7) we have

$$
z \frac{\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}=\frac{1+\{b(1+m)-m\} \omega(z)}{1-m \omega(z)}
$$

or

$$
\begin{aligned}
\omega(z)= & \frac{\left\{z\left(D^{n} f(z)\right)^{\prime}-D^{n} f(z)\right\}}{\left[\{b(1+m)-m\} D^{n} f(z)+m z\left(D^{n} f(z)\right)^{\prime}\right]} \\
= & \frac{\sum_{k=2}^{\infty}(k-1) \delta(n-1, k) a_{k} z^{k-1}}{\left[b(1+m)+\sum_{k=2}^{\infty}\{b(1+m)+m(k-1)\} \delta(n-1, k) a_{k} z^{k-1}\right]} \\
= & \frac{\sum_{k=2}^{\infty}(k-1) \delta(n-1, k) a_{k} z^{k-1}}{b(1+m)} \\
& {\left[1+\frac{\sum_{k=2}^{\infty}\{b(1+m)+m(k-1)\} \delta(n-1, k) a_{k} z^{k-1}}{b(1+m)}\right]^{-1} . }
\end{aligned}
$$

Equating the coefficients of z and z^{2} on both sides, we get

$$
\begin{equation*}
a_{2}=\frac{b(1+m) c_{1}}{\delta(n-1,2)} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}=\frac{b(1+m)}{2 \delta(n-1,3)}\left[c_{2}+\{b(1+m)+m\} c_{1}^{2}\right] . \tag{4.3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{b(1+m)}{2 \delta(n-1,3)}\left[c_{2}-d c_{1}^{2}\right] \tag{4.4}
\end{equation*}
$$

where

$$
d=\frac{2 \mu b(1+m) \delta(n-1,3)-\{b(1+m)+m\}\{\delta(n-1,2)\}^{2}}{\{\delta(n-1,2)\}^{2}} .
$$

Taking modulus both sides in (4.4), we have

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right|=\frac{|b(1+m)|}{2 \delta(n-1,3)}\left|c_{2}-d c_{1}^{2}\right| \tag{4.5}
\end{equation*}
$$

Using Lemma 2.1 in (4.5), we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|b(1+m)|}{2 \delta(n-1,3)} \max \{1,|d|\}
$$

Since the inequality (2.1) is sharp, so that the inequality (4.1) must also be sharp.
Corollary. If $f(z)$ belongs to $F_{n}(b, M)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|b|(1+m)}{\delta(n-1,2)} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|b|(1+m)}{2 \delta(n-1,3)} \max \{1,|b(1+m)+m|\} \tag{4,7}
\end{equation*}
$$

The inequalities (4.6) and (4.7) follow directly from (4.2) and (4.3) respectively.

Remarks.
(i) We obtain the maximization of $\left|a_{3}-\mu a_{2}^{2}\right|$ over the class $F(b, M)$ which is studied by Nasr and Aouf [2], in correct form, by taking $n=0$ in our maximization of $\left|a_{3}-\mu a_{2}^{2}\right|$ over the class $F_{n}(b, M)$.
(ii) We also obtain the maximization of $\left|a_{3}-\mu a_{2}^{2}\right|$ over the class $G(b, M)$ which is studied by Nasr and Aouf [3], in correct form, by taking $n=1$ in our maximization of $\left|a_{3}-\mu a_{2}^{2}\right|$ over the class $F_{n}(b, M)$.

5. Radius theorem

The following theorem may by obtained with the help of (1.8) and Lemma. 3 of Nasr and Aouf [2].

Theorem 5.1. Let $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ belongs to $F_{n}(b, M)$. Then

$$
\operatorname{Re}\left\{\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}\right\}>0 \text { for }|z|<r_{n}
$$

where

$$
r_{n}=2\left\{|b|(1+m)+\left[|b|^{2}(1+m)^{2}-4\left\{\operatorname{Re}(b)\left(\frac{1+m}{m}\right)-1\right\}\right]^{\frac{1}{2}}\right\}^{-1}
$$

Remarks. In the above mentioned result
(i) Putting $n=0$, we get the sharp radius of starlikeness of the class $F(b, M)$ which is studied by Nasr and Aouf [2].
(ii) Putting $n=1$, we get the sharp radius of convexity of the class $G(b, M)$ which is investigated by Nasr and Aouf [3].

6. Necessary and sufficient condition

Theorem 6.1. A function $f(z)$ belongs to the class $F_{n}(b, M)$ if and only if

$$
\begin{equation*}
f(z) *\left[\frac{z+\left[\frac{(n+1)+x\{b(1+m)-m(n+1)\}}{-b(1+m) x}\right] z^{2}}{(1-z)^{n+2}}\right] \neq 0 \tag{6.1}
\end{equation*}
$$

in $0<|z|<1$, where $x=1$ and $x \neq 1$.
Proof. Let $f(z)$ belongs to the class $F_{n}(b, M)$, then

$$
z \frac{\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)} \neq \frac{1+\{b(1+m)-m\} x}{1-m x},
$$

$|x|=1$ and $x \neq 1$ in $0<|z|<1$. Equivalently

$$
\begin{equation*}
(1-m x) z\left(D^{n} f(z)\right)^{\prime}-[1+\{b(1+m)-m\} x] D^{n} f(z) \neq 0 \text { in } 0<|z|<1 \tag{6.2}
\end{equation*}
$$

We know that, by the definition of $D^{n} f(z)$

$$
\begin{equation*}
z\left(D^{n} f(z)\right)^{\prime}=(n+1) D^{n+1} f(z)-n D^{n} f(z) \tag{6.3}
\end{equation*}
$$

Using (6.3) in (6.2), we have

$$
(1-m x)\left[(n+1) D^{n+1} f(z)-n D^{n} f(z)\right]-[1+\{b(1+m)-m\} x] D^{n} f(z) \neq 0 \text { in } 0<|z|<1
$$

or

$$
f(z) *\left[\frac{-b(1+m) x z+[(n+1)+x\{b(1+m)-m(n+1)\}] z^{2}}{(1-z)^{n+2}}\right] \neq 0
$$

Since $x \neq 1$ and b is any non-zero complex number, we have

$$
f(z) *\left[\frac{z+\left[\frac{(n+1)+x\{b(1+m)-m(n+1)\}}{-b(1+m) x}\right] z^{2}}{(1-z)^{n+2}}\right] \neq 0
$$

which is the required condition.
The converse part follows easily since all the steps can be retraced back.

References

[1] H. S. Al-Amiri, "On Ruscheweyh derivatives," Ann. Polon. Math., 38(1980), 87-94.
[2] M. A. Nasr and M. K. Aouf, "Bounded starlike functions of complex order," Proc. Indian Acad. Sci. (Math. Sci.) 92(1983).
[3] M. A. Nasr and M. K. Aouf, "Bounded convex functions of complex order," Bull. Fac. Sci. 10(1983).
[4] M. A. Nasr and M. K. Aouf, "Starlike functions of complex order," J. Naturai Sci. Math. 25(1985).
[5] M. A. Nasr and M. K. Aouf, "On convex functions of complex oṛder," mansoura Sci. Bull. (1982), 565-582.
[6] P. K. Kulshrestha, "Distortion of spiral-like mappings," Proc. Royal Irish Acad., 73A(1973), 1-5.
[7] P. K. Kulshrestha, "Bounded Robertson function," Rend. Math., (6)9(1976), 137-150.
[8] F. R. Keogh and E. P. Merkes, "A coefficient inequality for certain classes of analytic functions," Proc. Amer. Math. Soc. 20(1969).
[9] S. Ruscheweyh, "New criteria for univalent functions," Proc. Amer. Math. Soc. 49(1975), 109-115.
[10] S. Ruscheweyh, "Linear operators between classes of prestarlike functions, comment," Math. Helve., 52(1977), 497-509.
[11] M. S. Robertson, "Univalent functions for which $z f^{\prime}(z)$ is spiral-like," Michigan Math. J., 16(1969), 97-101.
[12] Ram Singh and Sunder Singh, "Integrals of certain univalent functions," Proc. Amer. Math. Soc., 77(1979), 336-340.
[13] T. Sheil-Small, H. Silverman and E. M. Silvia, "Convolution multipliers and star-like functions," J. Analyse Math. 41(1982), 181-192.
[14] L. Špaceǩ, "Prispeekk teorii funki, Prostych," casopis Pest Math. Fys., 62(1933), 12-19.
[15] P. Wiatrowski, "The coefficients of a certain family of holomorphic functions," Zeszyty Nauh. Univ. todzk, Nauki. Math. Przyrod. ser II, zeszyt (39) Math. (1971), 75-85.

Department of Mathematics, Christ Church College, Kanpur-208001 (U.P.), India.

Department of Mathematics, Janta College, Bakewar-206124, Etawah (U.P.), India.

