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ON MULTIDIMENSIONAL DISCRETE INEQUALITIES 
AND THEIR APPLICATIONS 

B. G. PACHPATTE 

Abstract. The aim of the present paper is to establish some new multi-dimensional 
discrete inequalities which can be used as handy tools in the analysis of a new class 
of finite difference equations involving functions of several independent variables. 

1. Introduction 

In the developments of the theory of finite difference equations and numerical analysis, 
various types of discrete inequalities are of fundamental importance, since the bounds 
provided by these inequalities are adequate in many applications. Several papers have 
recently concerned themselves with a number of new discrete inequalities and their ap­ 
plications to the various types of finite difference equations, see [1-12) and the references 
given therein. However, in the study of certain new models of multidimensional finite 
difference equations the bounds provided by the existing results on discrete inequalities 
are inadequate in applications. It is natural to seek some new discrete inequalities which 
are readily applicable in order to achieve a diversity of desired goals. Our main objective 
here is to establish some new multidimensional discrete inequalities which can· be used 
as ready and powerful tools in the qualitative analysis of a new class of finite difference 
equations involving functions of several independent variables. To illustrate the utility of 
some of our results we discuss the boundedness, uniqueness and continuous dependence 
of the solutions of a new class of multidimensional finite difference equations. 

2. Statement of Results 

Before stating the theorems to be proved in this paper, we summarise some basic nota­ 
tions and definitions which will be used throughout our discussion. Let No= {O, 1, 2, ... } 
and the product No x No x · · · x No (n times) be denoted by N[;. For all m > n, m, n E N0 

and any function u(s) defined on N0, we use the usual convention, I::;=m u(s) = 0 and 
n;=m u(s) = 1. A point (x1, ... , Xn) in N[; is denoted by x. For any function u(x) defined 
on N0, we define the operators 
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61u(x) = u(x1 + 1, x2, ... , Xn) - u(x), 
62u(x) = u(x1,x2 + l,x3, ... , Xn) - u(x), 

b.nu(x) = u(xi, ... , Xn-1, Xn + 1) - u(x). 
The operators L; are recursively defined by 

Lou(x)=u(x), L;u(x)=p;(x)6;L;-1u(x), j=l, ... ,n, 

Pn ( x) = 1, where u( x) and Pi ( x) are functions defined on No. For x, y E No and some 
functions P;(x) > O,j = 1, ... , n - l and b(x), we set 

Xn-1-l . . . I:: 1 Xn-1 

Yn-1=0 Pn-1(Y1, · · · ,Yn-1,Xn) L b(y), y,.=O 

and 

For convenience we list the following hypotheses. 
(Al) u(x) and h(x) are real-valued nonnegative functions defined for XE No. 
(A2) P;(x), j = 1, ... , n - l, are real-valued positive functions defined for x E N0. 
(A3) a(x) is real-valued, positive and nondecreasing function in all the components 

X1, ... , Xn of XE N0. 
(A4) u(x) 2::: uo > 0, uo is a constant, h(x) 2::: 0 are real-valued functions defined for 

xE N0. 
(A5) g(u) is continuous, nondecreasing real-valued function defined on an interval I = 

[uo,oo),uo > 0 is a constant and g(u) > 0 on (uo,oo), g(uo) = 0. 
(A6) q; (x ), j = 1, ... , n - l, are real-valued positive functions defined for x E N{j. 
(A7) W( u) is continuous, nondecreasing and submultiplicative real-valued function de­ 

fined on an interval I, and W(u) > 0 on (u0,oo), W(u0) = 0. 
Our main result is established in the following 
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Theorem 1. Suppose (Al) and (A2) are true. If 

u(x) ::; c + M[x1, ... , Xn, Pl, ... ,Pn-1, hu], (1) 

for X E No' where C is a nonnegative constant, then 

(2) 
X1-l 

u(x)::;c IT [1+H[y1,x2,···,xn,P1,···,Pn-1,b]], 
Y1=D 

for x E Nff. 

A useful and slightly different version of Theorem 1 is embodied in the· following 
theorem. 

Theorem 2. Suppose (Al), (A2) and (A3) are true. If 

(3) u(x) ::; a(x) + M[x1, ... , Xn, Pl, ... ,Pn-1, hu], 

for x E N0, then 

(4) 
X1-l 

u(x) ::;a(x) IT [1+H[y1,X2, ... ,Xn,Pl,···,Pn-l,h]], 
Y1=D 

for x E N[j. 

Another interesting and useful discrete inequality is established in the following 
theorem. 

Theorem 3. Suppose (A2), (A4) and (A5) are true. If 

(5) u(x) ::; c + M[x1, ... , Xn, Pi, ... ,Pn-1, hg( u)], 

for x E N[j, where c is a nonnegative constant, then for xi, xj and O ::; xi ::; xj, J = 
1, ... , n, 

(6) u(x) < a-1 [a(c) + M[x1, ... ,xn,P1,. · · ,Pn-1ih]], 

where 

(7) G(r) = 1r d(s), r ~ uo with ro > uo, 
ro 9 S 

c-1 is the inverse of G and xJ E N0 ,j = 1, , n, are chosen so that 

G(c) + M[x1, ... , Xn,Pl, ,Pn-1, h] E Dom(c-1) 

for all Xj with O::; Xj < xj ,j = l, ... , n for Xj,xj E No. 
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We next establish the following more general inequality which may be convenient in 
some applications. 

Theorem 4. Suppose (Al),(A2), (A6) and (A7) are true. If 

(8) u(x) ~ c + M[x1, , Xn, Pl, ,Pn-1, hu] 
+ M[x1, , Xn, q1, , qn-1, kW( u)], 

for x E N0, where c is a nonnegative constant and k(x) is a realvalued nonnegative 
function defined for x E N0, then for Xj, xj* E N0 and O < Xj < xj*, j = 1, ... , n, 

(9) u(x) < Q(x)n-1 [n(c) + M[x1, ... , Xn, ql, ... , qn-1, kW(Q)]], 
where 

X1-l 

(10) Q(x) = IJ [1 + H[y1, X2, ... , Xn, Pl, .. , ,Pn-1, h]], 
Y1=0 

and 

(11) O(r) = 1: :;s), r > uo with ro > uo, 
n-1 is the inverse of O and xj* E N0,j = 1, ... , n are chosen so that 

O(c) + M[x1, ... , Xn, q1, ... , qn-1, kW(Q)] E Dom(n-1 ), 

for all Xj with O ~ Xj ~ xJ* ,j = 1, ... , n for Xj, xj* E No. 

3. Proofs of Theorems 1-4 

In order to establish the inequality (1) in Theorem 1, we first assume that c > 0 and 
define a function z( x) by 

(12) z(x) = c + M[x1, ... , Xn ,Pl, ... ,Pn-1, hu], 

From (12) it is easy to observe that 

(13) 

Xn-1-l 
1 I: _0 Pn-1(X1, Y2, · · ·, Yn-1, Xn) Yn-1- 

xn-l · L h(x1,Y2,···,Yn)u(x1,Y2, ... ,yn), 
Yn=O 
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(14) 

x,.-1 

· L h(x1, X2, Y3, ... , Yn)u(xi, x2, Y3, ... , Yn), 
y,.=O 

and continuing in this way we obtain 
Xn-1-l 1 

Ln-2z(x) = L 
_0 Pn-1( X1, · · ·, Xn-2, Yn-1, Xn 

Yn-1- 

(15) 

x,.-1 

· L h(x1, · · ·, Xn-2, Yn-1, Yn)u(x1, · · ·, Xn-2, Yn-1, Yn), 
y,.=0 

x,.-1 

(16) Ln-1z(x) = L h(x1, ... , Xn-1, Yn)u(x1, ... , Xn-1, Yn), 
y,.=O 

(17) Lnz(x) = h(x )u(x ). 
Using.the fact that u(x) ~ z(x) in (17) we have 
(18) Lnz(x) ~ h(x)z(x). 

From the definition of z(x) we observe that z(x) ~ z(x1, ... , Xn-1, Xn + l) for all x; E 
N0, l ~ j ~ n. Using this fact in (18) we see that 

(lg) Ln-1z(x1, ... , Xn-1, Xn + l) _ Ln-1z(x) < h(x). 
z(x1, ... , Xn-l, Xn + l) z(x1, ... , Xn-1, Xn + l) - 

From (19) and the fact that Ln_ 1z(x) 2::: 0 from (16), we observe that 

(20) Ln-1z(x1, ... ,Xn-1,Xn + 1) _ Ln-1z(x) < h(x). 
z(x1, ... , Xn-1, Xn + l) z(x) - 

Now keeping the components x1, ... , Xn-l of x fixed in (20), set Xn = Yn and sum over 
Yn = 0, l, 2, ... , Xn - l, and use the fact that Ln-1z(x1, ... , Xn-I, 0) = 0 from (16), to 
obtain the estimate 

L ( ) x,.-1 
n-IZ X '"""' ) -. -.- ~ L...J h(x1, ... , Xn-1, Yn · 

y,.=O 

From (21) and in view of the facts that z(x) ~ z(x1, ... ,Xn-2,Xn-1 + l,xn) for all 
x; E No, 1 ~ j ~ n and Ln-2z(x) 2::: 0, we observe that 

(21) 

(22) Ln-2z(x1, ... , Xn-2, Xn-1 + 1, Xn) 
z(X1, ... , Xn-2, Xn-1 + 1, Xn) 

l x,.-1 ~ ( ) L h ( X 1, ... , X n-1, Yn) · 
Pn-1 X y,.=O 
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Keeping the components x1, ... , Xn-2, Xn of x fixed in (22), set Xn-1 = Yn-1 and sum 
over Yn-1 = O,l,2, ... ,xn-l -1, and use the fact that Ln-2z(x1,···,Xn-2,0,xn) = 0 
from (15), to obtain the estimate 

(23) 
L ( ) x .. -1-l l 
n-2Z X L 
z(x) < _ Pn-1(x1, ... ,Xn-2,Yn-1,Xn) 

Yn-1-D 

x,.-1 
· ~ h(xi, ... , Xn-2, Yn-1, Yn). 
y,.=O 

Proceeding in this way we obtain the estimate 

(24) 

Xn-1-l 1 

· · · L Pn-1(X1, Y2, · · ·, Yn-1, Xn) 
Yn-1=0 

Xn-1 . E h(x1, Y2, · · ·, Yn). 
y,.=O 

From (24) we see that 

(25) 
X2-l 1 

z(x1 + 1, x2, ... 'Xn) ::; z(x) [1 + Pl ~x) ~ P2lX1, Y2, X3, ... 'Xn 
Y2-D . 

Xn-1-l 1 

. . . L Pn-1(.x1, Y2, ... , Yn-1, Xn) 
Yn-1=0 

x,.-1 ] L h(x1,Y2,···,Yn) · 
y,.=O 

Now keeping the components x2, ... , Xn of x fixed in (25), set x1 = y1 and substitute 
Y1 = 0, 1, 2, ... , x1 - 1 successively and use t~e fact that z(O, x2, ... , Xn) = 0 from (12), 
to obtain the estimate 

(26) 
X1-l 

Z ( X) ::; C II [ 1 + H [Yi , X 2 , ... , X n, Pl, ... , Pn - 1, h]] · 
Y1=0 

Substituting this bound on z(x) on the right side of (1) we obtain the inequality (2). 
Now suppose c = 0. Then from (1) we see that the inequality 

u(x) :::; € + M[x1, ... , Xn, Pl, ... ,Pn-1, hu], 
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holds for every arbitrary positive number € and x E N0, which by the above argument 
yields the· estimate 

(27) 
X1-l 

u(x)~E IT [1+H[y1,x2, ... ,xn,Pl,···,Pn-l,h]]. 
Y1=0 

Since u(x) 2: 0 and t > 0 is arbitrary number independent of x, then from (27) it follows 
that u(x) = 0. This completes the proof of Theorem 1. 

Since a(x) is positive and nondecreasing in each component x1, ... , Xn of x, we 
observe from (3) that 

u(x) u 
-( ) ~ 1 + M[x1,.,,, Xn, Pl,.·, ,Pn-1, h-]. a x a 

Now an application of Theorem 1 yields the required bound in ( 4) and the proof of 
Theorem 2 is complete .. 

In order to establish the inequality (6) in Theorem 3, let€> 0 and ut:(x) = u(x )+t 2: 
uo for all x E N{f. Then from (5) we see that 

uf(x) < c + € + M[x1, , Xn,Pl, •.• _,Pn-1, hg(uf - c)] 
~ c + € + M[x1, , Xn, Pl,.,. ,Pn-1, hg( uf)]. 

Define a function z(x) by 

(28) 

(29) 

From (29) it is easy to observe that 

(30) 
X2-l 1 

L1z(x) = L ( 1 
) P2 X1,Y2,x3, ... ,xn 

Y2=0 

Xn-1-l 1 
... ')" ) 
~ Pn-1(x1,Y2, · · · ,Yn-1,Xn Yn-1=0 

x,.-1 

· L h(x1, Y2, ... , Yn)9( u,(xi, Y2, · · ·, Yn)), 
y,.:O 

X3-l 1 
L2z(x) = L ) 

p3(x1, X2, Y3, X4, · • ·, Xn y3:0 

Xn-1-l 1 
... ~ ) 

Pn-1(X1, X2, Y3, ·, ·, Yn-1, Xn Yn-1=0 

x,.-1 

· L h(x1, X2, Y3, .. ·, Yn)g(u.(x1, X2, Y3, ... , Yn)), 
y,.=O 

(31) 
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and continuing in this way we obtain 

(32) 
Xn-1-l 

Ln-2z(x) = I: l . 
• _0 Pn-1(x1, · · ·, Xn-2, Yn-1, Xn 
Yn-1- 

x,.-l 

· L h(x1, ... , Xn-2, Yn-1, Yn)g( uf(x1, .. ·, Xn-2, Yn-1, Yn)), 
x,.-I 

(33) Ln-1z(x) = L h(xi, ... , Xn-1, Yn)g( Ut(x1, ... , Xn-1, Yn)), 

Using the fact that ut(x) ~ z(x) in (34) we have 

(35) Lnz(x) ~ h(x)g(z(x)). 

From the definition of z(x) in (29), we observe that z(x) ~ z(xi, ... ,Xn-1,Xn + 1) for 
x EN[;. Using this and the fact Ln_1z(x) 2::: 0 from (33), we observe from (35) that 

Ln-1z(x1, , Xn-1, Xn + l) _ Ln-1z(x) < h(x). 
g(z(x1, , Xn-1, Xn + 1)) g(z(x)) - 

(36) 

Now by following exactly the same steps as in the proof of Theorem 1 below the inequality 
(20) upto the inequality (24) with suitable changes, we obtain 

(37) L1z(x) < xtl 1 
g(z(x))- y

2
=0p2(x1,Y.2,x3, ... ,xn) 

Xn-1-l 
1 ... I: ) Pn-1(X1, Y2, · · ·, Yn-1, Xn Yn-1=0 

Xn-1 

· L h( X 1 , Y2, · · · , Yn) · 
y,.=O 

From (7) and (37) we have 

(38) G(z( X1 + 1, x2, ... , Xn)) - G(z(x )) 
= L:· +, . ., .. ,.) g~:) 
< b.1z(x) 
- g(z(x)) 

1 Xrl 1 <-I:---· -- - P1(x) _0P2(x1,Y2,X3, ... ,xn) 
Y2- 
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Xn-1-l 1 ... E 
Pn-1 ( X 1 , Y2, · · · , Yn -1 , X n) 

Yn-1=0 

x,.-1 · L h(x1,Y2, ... ,Yn). 
y,.=O 

Now keeping the components x2, ••• , Xn of x fixed in (38), set x1 = Y1 and sum over 
Y1 = 0, 1, 2, ... , X1 - 1 and use the fact that z(O, x2, •.. , Xn) = c + c, to obtain the 
estimate 

(39) G(z(x )) :::; G(c + c) + M[x1, ... , Xn, Pi, ... ,Pn-1, h]. 

The bound in (6) now follows by substituting the bound for z(x) from (39) in (28) and 
letting c - 0 and the proof of Theorem 3 is complete. 

In order to prove the inequality (9) in Theorem 4, let c > 0 and uc(x) = u(x)+t ~ u0 
for x E N[f. Then from (8) we see that 

(40) U ( ( X) :=:; C + t + M [ X 1, ... , X n, Pl, ... , Pn -1, h ( U,: - ()] 

+ M[x1, ... , Xn, q1, ... , qn-1, kW( Uc - t)] 
::; ·c + c + M[x1, .. ·, Xn, Pl, ... , Pn-1, hue] 

+ M[x1, ... , Xn, qi, ... , qn-1, kW( U,:)]. 
Define 
(41) a(x) = c + c + M[x1, ... , Xn, qi, ... , qn-1, kW(uc)], 

then ( 40) can be stated as 

u,(x) < a(x) + M[xi, ... , Xn,Pl, ... ,Pn-1, hue]. 

Since a(x) is positive and nondecreasing function in all the components x1, ... , Xn of x, 
we have from Theorem 2 

(42) 

where Q(x) is as defined in (10). Since Wis submultiplicative, we have 

(43) W(uc(x)):::; W(Q(x))W(a(x)). 

From (41) and {43) we have 

a(x) :=:; c + c + M(x1, ... , Xn, qi, ... , qn-1, kW(Q)W(a)]. 

Now by following the proof of Theorem 3 with suitable modifications we obtain 

(44) a(x) < n-1 [n(c + c) + M[x1, ... 'Xn, qi, ... ' qn-l, kW(Q)l]. 

The desired bound in (9) now follows by substituting (44) in (42) and letting c - O. This 
completes the proof of Theorem 4. 
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4. Some applications 

In this section, we present some applications to a new class of finite difference equations 
involving several independent variables, to convey the importance of our results to the 
literature. These applications are not stated as theorems so as to obscure the main ideas 
with tehnical details. 

Example 1. As a first application, we obtain a bound on the solution of a nonlinear 
finite difference equation of the form 

( 45) Lnu(x) = f(x, u(x)), 
with the given boundary conditions at x1 = 0, ... , Xn = 0, where Ln u(x) is the operator 
as defined earlier, Pj(x),j = l, ... ,n are real-valued positive functions defined on Nt 
with Pn(x) = 1, f: N0 x R--+ R, where R denotes the set of real numbers. We assume 
that 

( 46) I f(x, u) I~ h(x) I u I, 
where h(x) is a real-valued nonnegative function defined for x E N0. By using the given 
boundary conditions, equation ( 45) can be represented by the equivalent equation 

(47) u(x) = b(x) + M[x1, ... , Xn, Pl, ,Pn-1, f(u)J, 
where b(x) depends on the functions Pj(x), j = 1, , n - 1 and on the given boundary 
conditions, and in (47) we have set f(x, u(x)) = f(u). Suppose that 
(48) I b(x) I~ k, 
where k is a nonnegative constant. Using ( 46) and ( 48) in ( 47) we have 

I u(x) l:S; k + M[x1, ... , Xn,Pl, ... ,Pn-1, h I u I). 
Now an application of Theorem 1 yields the bound on the solution u(x) of ( 45) in terms 
of the known functions. 

Example 2. As a second application, we shall discuss the uniqueness of the solu­ 
tions of ( 45) with the given boundary conditions. We assume that the function f in ( 45) 
satisfies 

(49) I f(x, u) - f(x, ii) I< h(x) I u - ii I, 
where h(x) is as in Example 1. The equation (45) with the given boundary conditions is 
equivalent to the equation (47). Then for any two solutions u and ii of (47) we have 

(50) I u(x)- u(x) I~ c + M[x1, ... ,xn,P1, ... ,Pn-1, h I u -ii I], 
where <:: > 0 is arbitrary constant. The assumption ( 49) is used to get the inequality in 
(50). Now an application of Theorem 1 yields 

X1-l 

lu(x)-u(x) l:s;c IT [1+H[y1,x2, ... ,xn,P1, ... ,pn-1,h]]. 
Yi=O 

Since c > 0 is arbitrary we have u = ii i.e. there is at most one solution of the equation 
( 45) with the given boundary conditions. 
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Example 3. Our third application is an example of continuous dependence of the 
solution on the equation and boundary data. Consider the equation ( 45) with the given 
boundary conditions in Example 1 and the equation 

(51) Lnz(x) = F(x, z(x)), 
with the given boundary conditions at x1 = 0, ... ,xn = 0, where Lnz(x) is as defined 
earlier in Example 1, F : No x R - R. The equation (45) with the given boundary 
conditions and the equation (51) with the given boundary conditions are equivalent to 
equations ( 47) and 

(52) z(x) = b(x) + M[x1, ... , Xn, Pl, ... , Pn-1, F(z )], 

where b(x) depends on the functions P;(x), j = 1, ... , n-1 and the given boundary data 
and in (52) we have set F(x, z(x)) = F(z). From (47) and (52) we have 

(53) u(x) - z(x) = b(x)- b(x) + M[x1, ... , Xn,Pl, ... ,Pn-I, {f(u) - F(u)}]. 

Suppose that the function f in ( 45) satisfies the condition ( 49) and further we assume 
that 

(54) I b(x) - b(x) I~ t:, 

(55) M[xi, ... , Xn, PI, ... ,Pn-I, I f(z) - F(z) I]~€, 
where € > 0 is arbitrary constant. By subtracting and adding /(z) in the braces on the 
right side of equation (53) and using ( 49), (54), (55) we obtain 

I u(x) - z(x) I ~I b(x)- b(x) I +M[x1, ,xn,Pt, ... ,Pn-1, I /(u)- f(z) I] 
+ M[x1, , Xn,Pl, ,Pn-1, I f(z) - F(z) I] 

~ 2€ + M[x1, , Xn,Pl, ,Pn-1, h I U - z I]. 
Now an application of Theorem 1 yields 

(56) I u(x) - z(x) l:S 2<{'fi' [ 1 + H[Y1, x,, ... , Xn, Pl, ... ,Pn--1, h]]}. 
Y1=0 

If h(x) is bounded on some compact set O ~ x; ~ Xj, j = 1, ... , n - l and x;, i; E N0, 

then the quantity in braces on the right in (56) is bounded by some constant B on the 
set O ~ x; ~ i;. Therefore I u(x) - z(x) I~ 2Bt: on the set O ~ x; ~ xi; so that the 
solution u(x) of ( 45) with the given boundary conditions depends continuously on f and 
the boundary data. If€ - 0, then I u(x) - z(x) I- 0 on this set. 
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