ON A THEOREM OF HERSTEIN

DEDICATED TO PROFESSOR SHIH-TONG TU ON HIS 60TH BIRTHDAY

CHEN-TE YEN

Abstract

Let R be an associative ring with identity such that for some fixed integer $m>1,(x+y)^{m}=x^{m}+y^{m}$ for all x, y in R. If $m \equiv 2(\bmod 4)$, or $p-1 \mid m-1$ for each prime factor p of m, then R is commutative. The restriction on m is essential. Moreover, in case of $m \equiv 2(\bmod 4)$ and $m>2$, then R is isomorphic to a subdirect sum of subdirectly irreducible rings R_{i} each of which, as homomorphic images of R, satisfies the same polynomial identity $(x+y)^{m}=x^{m}+y^{m}$; and for each x in R_{i}, either $x^{2}=0$ or $x^{2 q}=1$, where $(q, m)=1$.

1. Introduction.

In [3], Johnsen, Outcalt, and Yaqub proved that $m=2$ is the unique integer such that the following is true: \quad if R is an associative ring with identity in which for some fixed integer $m>1,(x y)^{m}=x^{m} y^{m}$ for all x, y in R, then R is commutative. When the multiplicative equality is replaced by additive one, then we ask that for what integers m that can force R to be commutative? In this paper, we find all such integers m that can imply the commutativity of R.

From now on, R will be an associative ring. In [1], Herstein proved.
Theorem \mathbb{A}. Let R be a ring in which for some fixed integer $m>1,(x+y)^{m}=$ $x^{m}+y^{m}$ for all x, y in R. Then every commutator in R is nilpotent, and the nilpotent elements of R form an ideal.

In general, R is not necessarily commutative in Theorem A; if R has no identity or the mapping $x \rightarrow x^{m}$ in R is not onto, then for each such integer $m>1$, we can easily find an example which shows that R is not commutative. Let R be a ring with identity 1. We shall denote the commutator $x y-y x$ in R by $[x, y]$, the center of R by z, the Jacobson radical of R by J, the group of units of R by R^{\star}, and the set of all positive integers by N. For all n, m in N, we denote the greatest common divisor of n and m by (n, m).

To obtain our results, we need the following lemma which can be found for example in [5].

Received December 20, 1988; revised June 26, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 16A70.
Key words and phrases. Subdirect sums, subdirectly irreducible rings.

Lemma. A. Let R be a ring with identity 1 , and let $f: R \rightarrow R$ be a function such that $f(x+1)=f(x)$ holds for all $x \in R$. If for all $x \in R$, there exists a positive integer n such that $x^{n} f(x)=0$, then necessarily $f(x)=0$ for all $x \in R$.

2. Main Results

We have our first main.
Theorem 1. Let R be a ring with identity 1 such that for some fixed integer $m>$ $1,(x+y)^{m}=x^{m}+y^{m}$ for all x, y in R. If $m \equiv 2(\bmod 4)$; or $m=p^{i} n$, where p is any odd prime divisor of m, and i and n are in N, and $n>1$ is odd, and the multiplicative order of j does not divide $n-1$ for some $j \neq 0,1$, and $j \in G F(p)$, the Galois field with p elements, then R is commutative.

To prove Theorem 1 , we need the following lemmas.
Lemma 1. If $m \equiv 2(\bmod 4)$, then R is commutative.
Proof. Note that $2=1^{m}+(-1)^{m}=(1-1)^{m}=0$, Hence, char $R=2$. If $m=2$, then $(x+y)^{2}=x^{2}+y^{2}$ for all x, y in R, and so $x y=-y x=y x$. Thus, let $m=2 k$, where $k \in N$ is odd and $k>1$.

By hypotheses, we get $1+x^{m}=(1+m)^{m}=\left\{(1+x)^{2}\right\}^{k}=\left\{\left(1+x^{2}\right)\right\}^{k}$ for all x in R. This implies that

$$
\begin{align*}
x^{2}+\sum_{i=2}^{k-1}\binom{k}{i}\left(x^{2}\right)^{i} & =x^{2} f(x)=0 \text { for all } x \text { in } R \tag{1}\\
\text { where } f(x) & =1+\sum_{i=1}^{k-2}\binom{k}{i+1}\left(x^{2}\right)^{i}
\end{align*}
$$

Note that for $x \in R, f(x)=0$ implies that x is invertible. By Theorem A, every commutator $[x, y]$ in R is nilpotent. Let $[x, y]^{j}=0$. If $j>2$, then replacing x by $[x, y]$ in (1) and left-multiplying by $[x, y]^{j-3}$, we have that $[x, y]^{j-1}=0$. Hence, continuing in this manner, we finally obtain that

$$
\begin{equation*}
[x, y]^{2}=0 \text { for all } x, y \text { in } R \tag{2}
\end{equation*}
$$

Thus, by (2) we get

$$
\begin{equation*}
(x y)^{m}-(y x)^{m}=[x, y]^{m}=0 \text { for all } x, y \text { in } R \tag{3}
\end{equation*}
$$

Let $u=[x, y]$. Then by (2) and (3) we get $\{(1+u) z(1+u)\}^{m}=\left\{(1+u)^{2} z\right\}^{m}=z^{n n}$, and so $u z^{m}=z^{m} u$ for all z in R. Hence, we get

$$
\begin{equation*}
[x, y] z^{m}=z^{m}[x, y] \text { for all } x, y, z \text { in } R \tag{4}
\end{equation*}
$$

Claỉm 1. For $x, y \in R, x y=0$ implies $y x=0$.

Assume that $x y=0$. Then replacing z by x in (4), we have $-y x^{m+1}=0$. Thus, using (1) repeatedly, we finally obtain that $y x^{2}=0$. Similarly, we get $y^{2} x=0$. By induction and using $x y=y x^{2}=y^{2} x=0$, we can easily show that $(x+y)^{2 i}=x^{2 i}+y^{2 i}$ for all integers $i \geq 2$. Hence, using this equality and (1) we have

$$
\begin{aligned}
0 & =(x+y)^{2}+\sum_{i=2}^{k-1}\binom{k}{i}(x+y)^{2 i} \\
& =y x+\sum_{i=1}^{k-1}\binom{k}{i} x^{2 i}+\sum_{i=1}^{k-1}\binom{k}{i} y^{2 i} \\
& =y x
\end{aligned}
$$

By Birkhoff's Theorem [4, p. 55], every ring is isomorphic to a subdirect sum of subdirectly irreducible rings. Thus, we may assume that R is a subdirectly irreducible ring. Henceforth, R is a subdirectly irreducible ring. Let H be the heart of R, i.e., the smallest nonzero ideal of R. Let A denote the set of all zero divisors of R (together with $0)$. Then A is a proper subset of R.

Claim 2. A is an ideal of R, and $A=A n n(H)=\{x \mid x \in R, x H=0\}$.
By Claim 1 there is no distinction between left and right zero divisors in R, and for any nonempty subset S of R, the left and right annihilator of S coincide and form a two sided ideal of R, which we denote by $A n n(S)$. Clearly, $A n n(H) \subseteq A$. Conversely, let a be any element in A. Since $\operatorname{Ann}(a)$ is a nonzero dieal of R, it contains H. This means that $a \in \operatorname{Ann}(H)$. Thus, $A=A n n(H)$ and so A is an ideal of R.

Claim 3. For each $x \in R$, either $x^{2}=0$ or $f(x)=0$, where $f(x)$ is as in (1); in the latter case $x \in R^{\star}$.

If $f(x) \in A$, then by (1) and Claim 2 we see that $x^{2} \notin A$. Thus by the definition of A and by (1) again, we get $f(x)=0$ and so $x \in R^{\star}$.

If $f(x) \notin A$, then we have $x^{2}=0$ by (1) and so $x \in A$.
Since char $R=2$, we get $x=(x+1)+1$ for all x in R. If $x^{2}=0$, then $x+1$ is invertible. Hence, by (2), Claim 2 and Claim 3 we have

Claim 4. R is generated by invertible elements, and $A=J=\left\{x \mid x \in R, x^{2}=0\right\}$, and R / J is a field.

Claim 5. For all $x \in R, x^{m} \in Z$.
Let $x, y \in R$. By Claim 3 , either $y^{2}=0$ or y is invertible. If y is invertible, then by (3) we get $\left(y x y^{-1}\right)^{m}=\left(y^{-1} y x\right)^{m}=x^{m}$ and so $y x^{m}=x^{m} y$. If $y^{2}=0$, then $(1+y)^{2}=1$ and by the result above we have $(1+y) x^{m}=x^{m}(1+y)$. Hence, $y x^{m}=x^{m} y$ and so $x^{m} \in Z$.

Claim 6. For all $x \in R, x^{2} \in Z$.

By Claim 3, either $x^{2}=0$ or x is invertible for all x in R. If $x^{2}=0$, then $x^{2} \in Z$ and we are done. Let x be invertible in R. By Claim 3 again, $f(x)=0$. Then $G F(2)[x]$ is a finite ring. Thus, $x^{i}=x^{j}$ for some positive integers $i<j$, and so $x^{n}=1$, where $n=j-1$. Let $(m, n)=t, n / t=r$ and $m / t=s$. Then we get $\left(1+x^{r}\right)^{m}=1+x^{m r}=1+x^{n s}=0$ and so $\left(1+x^{r}\right)^{2}=0$ by Claim 3 . Hence, $x^{2 r}=1$. Continuing in this manner, we finally obtain $x^{2 q}=1$ for some $g \in N$ and $(g, m)=1$. Since $(2 q, m)=2$, and by Claim 5 , $x^{m} \in Z$, we conclude that $x^{2} \in Z$.

Using Claim 6 and (2), and recalling char $R=2$, we can easily show that $(x y)^{2}=$ $(y x)^{2},(x y)^{3}=y^{3} x^{3}$ and $(x y)^{4}=x^{4} y^{4}$ for all x, y in R. Thus, using these equalities we can prove that $(x+y)^{4}=x^{4}+y^{4}$ for all x, y in R.

Using the above results, we have that

$$
\begin{aligned}
(x y+x)^{m} & =(x y)^{m}+x^{m} \\
& =x^{m-2} y^{m-2}(x y)^{2}+x^{m} \\
& =x^{m-1}\left(y^{m-1} x y+x\right)
\end{aligned}
$$

and

$$
\begin{aligned}
(x y+x)^{m} & =\{x(y+1)\}^{m-2}\{x(y+1)\}^{2} \\
& =x^{m-2}(y+1)^{m-2}\{x(y+1)\}^{2} \\
& =x^{m-1}\left\{(y+1)^{m-1} x y+(y+1)^{m-1} x\right\}, \text { for all } x, y \text { in } R .
\end{aligned}
$$

These two equalities are equal, and thus we get

$$
\begin{equation*}
x^{m-1}\left\{y^{m-1} x y+x+(y+1)^{m-1} x y+(y+1)^{m-1} x\right\}=0 \text { for all } x, y \text { in } R . \tag{7}
\end{equation*}
$$

Since $y^{m-1} y+1+(y+1)^{m-1} y+(y+1)^{m-1}=y^{m}+1+(y+1)^{m}=0$, by Lemma A, (7) implies that

$$
\begin{equation*}
y^{n_{n-1}} x y+x+(y+1)^{m-1} x y+(y+1)^{m-1} x=0 \text { for all } x, y \text { in } R \tag{8}
\end{equation*}
$$

Replacing x by $(y+1) x$ in (8), we have that

$$
\begin{aligned}
0 & =y^{m-1}(y+1) x y+(y+1) x+(y+1)^{m} x y+(y+1)^{m} x \\
& =y^{m} x y+y^{m-1} x y+y x+x+\left(y^{m}+1\right) x y+\left(y^{m}+1\right) x \\
& =y^{m-1} x y+y x+x y+y^{m} x
\end{aligned}
$$

Hence, we get

$$
\begin{equation*}
\left(1+y^{m-1}\right)[x, y]=0 \text { for all } x, y \text { in }=R \tag{9}
\end{equation*}
$$

Claim 7. $A \subseteq Z$.

For all $y \in A$, we get $y^{m-1} \in A$ by Claim 2. Since A is a proper ideal of R, we have $1+y^{m-1} \notin A$. Thus, (9) implies that $[x, y]=0$ for all x in R and so $y \in Z$.

Finally, for all y in R, we consider the following two cases:
Case 1. $1+y^{m-1} \notin A$.
Then using (9), we have $[\mathrm{x}, \mathrm{y}]=0$ for all x in R.
Case 2. $1+y^{m-1} \in A$.
Then $1+y^{m-1} \in Z$ by Claim 7 . Hence for all x in R, we get $x\left(1+y^{m-1}\right)=\left(1+y^{m-1}\right) x$ and so $x y^{m-1}=y^{m-1} x$. Thus, $y^{m-2}[x, y]=0$ by Clsim 6 . Since $1+y^{m-1} \in A$, and $A=J$, we must have that $y \notin A$. Therefore, by Claim $3, y^{m-2}[x, y]=0$ implies that $[x, y]=0$ for all x in R. This completes the proof Lemma 1 .

Since $(1+[x, y])^{m}=1+[x, y]^{m}$ for all x, y in R, by using Theorem A repeatedly we have for some positive integer $j=j(x, y)$, depending on x and y,

$$
\begin{equation*}
m^{j}[x, y]=0 \text { for all } x, y \text { in } R . \tag{10}
\end{equation*}
$$

In order to prove the Theorem 1, it is sufficient to do it for subdirectly irreducible rings. We henceforth assume that R is a subdirectly irreducible ring. Let $S \neq(0)$ be the intersection of the nonzero ideals of R. Of course, S is the unique minimal ideal of R. The argument of [2, p. 84] shows the following

Lemma 2. There exists a prime p such that the characteristic of R is p.
Proof. By hypothesis, we have $2=1^{m}+1^{m}=(1+1)^{m}=2^{m}$. Thus, every element of R is of finite additive order. Let p be a prime and $p a=0$, for some $a \in R$ and $a \neq 0$. Let $R_{p}=\{x \in R \mid p x=0\}$. Then $R_{p} \neq(0)$ is clearly an ideal of R, and hence $R_{p} \supset S$. If $R_{q} \neq(0)$ for some prime $q \neq p$, then $R_{q} \supset S$. Since $S \subset R_{q} \cap R_{p}=(0)$, we would have a contradiction.

Now by hypothesis again, $p^{m}=p$ and so $p\left(p^{m-1}-1\right)=0$. Since $\left(p, p^{m-1}-1\right)=1$, by the result above we conclude that $R_{p}=R$.

Lemma 3. If R is not commutative, then p divides m.
Proof. Suppose the contrary. Then by (10) and Lemma 2, we have $[x, y]=0$ for all x, y in R, a contradiction. Hence, p divides m.

We are now ready to prove Theorem 1.
Proof of Theorem 1. Suppose that R is not commutative. Using Lemma 1, we see that m is the latter case stated in Theorem 1. Then by Lemmas 2 and $3, \operatorname{char} R=p$ and p divides m for some odd prime p. Let $k \neq 0,1$, and $k \in G F(p)$. By hypothesis, we have $k^{m}=k$. Since $(k, p)=1$, appıying Fermat's Little Theorem repeatedly, we get $k=k^{m}=\left(k^{p^{i}}\right)^{n}=k^{n}$ and so $k^{n-1}=1$. Thus, the multiplicative order of k divides $n-1$, a. contradiction. Hence, R is commutative. This completes the proof of Theorem 1.

In Theorem A , if we add the assumption that the mapping $x \rightarrow x^{m}$ in R is onto then R is commutative. This result shows that in Herstein's another theorem [1, Theorem 3], the multiplicative homomorphism can be eliminated. We have our second main

Theorem 2. If R is a ring, not necessarily with identity, in which the mapping $x \rightarrow$ x^{m} for a fixed integer $m>1$ is an additive homomorphism onto, then R is commutative.

To prove Theorem 2, we need the following lemmas. Assume that all the hypotheses as in Theorem 2 are satisfied.

Lemma 4. If $a \in R$ is nilpotent, and all $a^{2}, a^{3}, \ldots \in Z$, then
(11) $a x^{m}-x^{m} a-a x^{m n} a+a^{2} x^{m}=(a x)^{m}-(x a)^{m}-(a x a)^{m}+\left(a^{2} x\right)^{m}$ for all x in R.

Proof. See [1, pp. 31-32].
Lemma 5. If $a \in R$ and $a^{2}=0$, then $a \in Z$.
Proof. Let $a \in R$ and $a^{2}=0$.
Replacing x by $a x$ in (11), and using $a^{2}=0$, we have $-(a x)^{m} a=-(a x a)^{m}=0$ for all x in R. Thus, left-multiplying by a in (11) we get $-a x^{m} a=-a(x a)^{m}=-(a x)^{m} a=0$ for all x in R. Since the mapping $x \rightarrow x^{m}$ in R is onto, we have

$$
\begin{equation*}
a x a=0 \text { for all } x \text { in } R . \tag{12}
\end{equation*}
$$

Hence by (12), $x^{m}+a^{m}=(x+a)^{m}$ implies that

$$
x^{m-1} a+x^{m-2} a x+\cdots+x a x^{m-2}+a x^{m-1}=0
$$

and so

$$
\begin{aligned}
& x\left\{x^{m-1} a+x^{m-2} a x+\cdots+x a x^{m-2}+a x^{m-1}\right\}= \\
& \quad\left\{x^{m-1} a+x^{m-2} a x+\cdots+x a x^{m-2}+a x^{m-1}\right\} \dot{x} \text { for all } x \text { in } R .
\end{aligned}
$$

Thus, we get $x^{m} a=a x^{m}$ for all x in R. Since the mapping $x \rightarrow x^{m}$ in R is onto, $a \in R$ results.

By Theorem A, every commutator [x, y] in R is nilpotent. Applying Lemma 5 , it is easy to show that the nilpotency index of $[x, y]$ is at most 3 .

If $m=2$, then $(x+y)^{2}=x^{2}+y^{2}$ implies that $x y=-y x$ and so $x y^{2}=(-y x) y=$ $(-y) x y=y^{2} x$ for all x, y in R. Since the mapping $x \rightarrow x^{2}$ in R is onto, the commutativity of R results.

Henceforth, we assume that $m>2$. By the result above, we have $[x, y]^{m}=0$ for all x, y in R.

Iemma 6. If $b \in R$ and $b^{3}=0$, then $b \in Z$.
Proof. Let $b \in R$ and $b^{3}=0$.

Since $\left(b^{2}\right)^{2}=0, b^{2} \in Z$ by Lemma 5. Replacing a by b in (11), and using the result above, we have that

$$
\begin{aligned}
b x^{m}-x^{m} b-b x^{m} b+b^{2} x^{m} & =(b x)^{m}-(x b)^{m}-(b x b)^{m}+\left(b^{2} x\right)^{m} \\
& =(b x-x b)^{m}-b x b^{2} x b(b x b)^{m-2}+b^{4} x^{2}\left(b^{2} x\right)^{m-2} \\
& =0 \quad \text { for all } x \text { in } R .
\end{aligned}
$$

Thus, we get

$$
\begin{aligned}
0 & =b\left(b x^{m}-x^{m} b-b x^{m} b+b^{2} x^{m}\right) \\
& =b^{2} x^{m}-b x^{m} b
\end{aligned}
$$

and so

$$
b x^{m}=x^{m} b \quad \text { for all } x \text { in } R
$$

Since the mapping $x \rightarrow x^{m}$ in R is onto, $b \in Z$ results.
We are now ready to prove Theorem 2 .
Proof of Theorem 2. Since $[x, y]^{3}=0$, by Lemma $6[x, y] \in Z$ for all x, y in R.
The equality $[x, y]^{m}=0$ implies that

$$
0=(x y)^{m}-(y x)^{m}=m x^{m-1} y^{m-1}[x, y] \quad \text { for all } x, y \text { in } R
$$

Hence, we have

$$
x^{m} y^{m}-y^{m} x^{m}=m^{2} x^{m-1} y^{m-1}[x, y]=0 \quad \text { for all } x, y \text { in } R
$$

Since the mapping $x \rightarrow x^{m}$ in R is onto, so R is commutative. This completes the proof of Theorem 2.

3. Remark and example.

We end this paper with
Remark. In Herstein's Theorem 3 of [1], we do not know whether the additive endomorphism can be eliminated. It is easy to prove that in Theorem 1, all the stated values of m are essential as Examples 1 and 2 of [6] show. From those examples, we see that in Theorem 1 the equality can not be replaced by the weaker condition " $(x+y)^{m}-$ $x^{m}-y^{m} \in Z$ for all x, y in $R^{\prime \prime}$. Finally, because of the proof of Lemma 1 , we ask in Lemma 1 , when $m>2$, whether R is a subdirect sum of R_{0} 's, where R_{0} is described in the following.

Example, Let R_{0} be a ring with identity 1 and of characteristic 2 such that for all $x \in R_{0}$, either $x^{2}=0$ or $x^{2}=1$. Then R_{0} is generated by invertible elements, and thus R_{0} is commutative. It is easy to verify that $(x+y)^{2 n}=x^{2 n}+y^{2 n}$ for all $x, y \in R_{0}$ and all $n \in N$.

Acknowledgement. The author thanks the referee for pointing out the error of the original proof of Claim 6 of Lemma 1.

Added in Proof. Theorem 2 is included in H. Tominaga's paper "Some commutativity conditions" Math. J. Okayama Univ. 29(1987), 191-192. The proof of Theorem 2 is different. The author thanks Professor Hisao Tominaga for pointing out an error $(2 r, m)=2$, which is in the proof of Lemma 1, Claim 6.

References

[1] I. N. Herstein, "Power maps in rings," Michigan Math. J.,8(1961), 29-32.
[2] I. N. Herstein, Noncommutative rings, Carus Math. Monographs, No. 15, Math. Assoc. of Amer., 1968.
[3] E. C. Johnsen, D. L. Outcalt and Adil Yaqub, "An elementary commutativity theorem for rings," Amer. Math. Monthly, 75(1968), 288-289.
[4] N. H. McCoy, The theory of rings, The Macmillan Company, New York, 1964.
[5] W. K. Nicholson and A. Yaqub, "A commutativity theorem for rings and groups," Canad. Math. Bull., 22(1979), 419-423.
[6] C. T. Yen, "On the commutativity of primary rings," Math. Japonica, 25(1980), 449-452.

Department of Mathematics, Chung Yuan Christian University, Chung Li, Taiwan, 32023, Republic of China.

