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Abstract. Let R be an associative ring with identity such that for some fixed 
integerm > 1, (x+y)m = xm+Ym forallx,yinR. Ifm = 2 (mod4),orp-llm-1 
for each prime factor p of m, then R is commutative. The restriction on m is 
essential. Moreover, in case of m = 2 (mod 4) and m > 2, then R is isomorphic to 
a subdirect sum of subdirectly irreducible rings R; each of which, as homomorphic 
images of R, satisfies the same polynomial identity (x + y)m = xm + ym; and for 
each x in R;, either x2 = 0 or x2q = 1, where (q,m) = 1. 

1. Introduction. 
In [3], Johnsen, Outcalt, and Yaqub proved that m = 2 is the unique integer such that 
the following is true: if R is an associative ring with identity in which for some 
fixed integer m > 1, (xy)m = xmym for all x,y in R, then R is commutative. vVhen the 
multiplicative equality is replaced by additive one, then we ask that for ,vhat integers m 
that can force R to be commutative? In this paper, we find all such integers m that can 
imply the commutativity of R. 

From now on, R will be an associative ring. In [1], Herstein proved. 

Theorem A. Let R be a ring in which for some fixed integer m > 1, (x + y)m = 
xm + ym for all x, y in R. Then every commutator in R is nilpotent, and the nilpotent 
elements of R form an ideal. 

In general, R is not necessarily commutative in Theorem A; if R has no identity or 
the mapping x -+ xm in R is not onto, then for each such integer m > 1, we can easily 
find an example which shows that R is not commutative. Let R be a ring with identity 
1. We shall denote the commutator xy -yx in R by [x,y], the center of R by z, the 
Jacobson radical of R by J, the group of units of R by R1<, and the set of all positive 
integers by N. For all n, min N, we denote the greatest common divisor of n and m by 
(n,m). 

To obtain our results, we need the following lemma which can be found for example 
in [5]. 
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Lemma A. Let R be a ring with identity 1, and let f : R --+ R be a function such 
that f(x + 1) = f(x) holds for all x ER. If for all x ER, there exists a positive integer 
n such that xnf(x) = 0, then necessarily f(x) = 0 for all x ER. 

2. Main Results 
We have our first main. 

Theorem 1. Let R be a ring with identity 1 such that for some fixed integer m > 
1, (x + y)m = xm + 1i for all x, y in R. If m = 2 (mod 4}; or m = pin, where p is any 
odd prime divisor of m, and i and n are in N, and n > 1 is odd, and the multiplicative 
order of j does not divide n - 1 for some j '# 0, 1, and j E GF(p), the Galois field with 
p elements, then R is commutative. 

To prove Theorem 1, we need the following lemmas. 

Lem1na 1. If m = 2 {mod 4), then R is commutative. 
Proof. Note that 2 = 1m + (-l)m = (1- l)m = 0, Hence, char R = 2. If m = 2, 

then (x+y)2 = x2+y2 for all x,y in R, and so xy = -yx = yx. Thus, let m = 2k, where 
k E N is odd and k > 1. 

By hypotheses, we get 1 + xm = (1 + m)m = {(1 + x)2}k = {(1 + x2)}k for all x in 
R. This implies that 

(1) k-1 (k) . 
x2 + L . (x2)* = x2f(x) = 0 for all x in R, 

i=2 Z 

k-2 ( k ) 
where f(x) = 1 + L . 

1 
(x2)i. 

i=l z + 
Note that for x E R, f(x) = 0 implies that x is invertible. By Theorem A, every 
commutator [x,y] in Ris nilpotent. Let [x,y]; = 0. If j > 2, then replacing x by [x,y] 
in (1) and left-multiplying by [x,yJ;-3, we have that [x,y]i-1 = 0. Hence, continuing in 
this manner, we finally obtain that 

(2) 

Thus, by (2) we get 

(3) 

[x,y]2 = 0 for all x,y in R. 

(xy)m -(yx)m = [x,y]m = 0 for all x,y in R. 

Let u = [x, y]. Then by (2) and (3) we get {(1 + u)z(l + u)}m = {(1 + u)2 z }m = zm, and 
so uzm = zmu for all z in R. Hence, we get 

(4) [x, y]zm = zm[x, y] for all x, y, z in R. 

Claim 1. For x, y E R, xy = 0 implies yx = 0. 
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Assume that xy = 0. Then replacing z by x in ( 4), we have -yxm+l = 0. Thus, using 
(1) repeatedly, we finally obtain that yx2 = 0. Similarly, we get y2x = 0. By induction 
and using xy = yx2 = y2x = 0, we can easily show that (x + y)2i = x2i + y2i for all 
integers i ~ 2. Hence, using this equality and (1) we have 

k-1 (k) 
0 = (x + y)2 + ~ i (x + y)2i 

k-1 (k) k-1 (k) = yx + ~ i x2i + ~ i y2i 
1=1 1=1 = yx. 

By Birkhoff's Theorem [4, p. 55], every ring is isomorphic to a subdirect sum of 
subdirectly irreducible rings. Thus, we may assume that R is a subdirectly irreducible 
ring. Henceforth, R is a sub directly irreducible ring. Let H be the heart of R, i.e., the 
smallest nonzero ideal of R. Let A denote the set of all zero divisors of R (together with 
0). Then A is a proper subset of R. 

Claim 2. A is an ideal of R, and A= Ann(H) = {x Ix E R,xH = O}. 

By Claim 1 there is no distinction between left and right zero divisors in R, and for 
any nonempty subset S of R, the left and right annihilator of S coincide and form a two 
sided ideal of R, which we denote by Ann(S). Clearly, Ann(H) ~ A. Conversely, let a 
be any element in A. Since Ann(a) is a nonzero dieal of R, it contains H. This means 
that a E Ann(H). Thus, A= Ann(H) and so A is an ideal of R. 

Claim 3. For each x ER, either x2 · 0 or f(x) = 0, where /(x) is as in (l); in the 
latter case x E R!. 

If /(x) EA, then by (1) and Claim 2 we see that x2 ¢ A. Thus by the definition of 
A and by (1) again, we get /(x) = 0 and so x ER!. 

If f(x) ¢ A, then we have x2 = 0 by (1) and so x EA. 
Since char R = 2, we get x = (x + 1) + 1 for all x in R. If x2 = 0, then x + 1 is 

invertible. Hence, by (2), Claim 2 and Claim 3 we have 

Claim 4. R is generated by invertible elements, and A = J = { x I x E R, x2 = O}, 
and Rf J is a field. 

Claim 5. For all x E R, xm E Z. 

Let x, y E R. By Claim 3, either y2 = 0 or y is invertible. If y is invertible, then by 
(3) we get (yxy-1)m = (y-1yx)m = xm and so yxm = xmy. If y2 = 0, then (1 + y)2 = 1 
and by the result above we have (1 + y)xm = xm(l + y). Hence, yxm = xmy and so 
Xm E Z. 

Claim 6. For all x E R, x2 E Z. 
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By Claim 3, either x2 = 0 or xis invertible for all x in R. If x2 = 0, then x2 E Z and 
we are done. Let x be invertible in R. By Claim 3 again, f(x) = 0. Then GF(2)[x] is a 
finite ring. Thus, xi = xi for some positive integers i < j, and so xn = 1, where n = j-1. 
Let (m,n) = t,n/t =rand m/t = s. Then we get (1 + xr)m = 1 + xmr = 1 + xn.s = 0 
and so (1 + xr)2 = 0 by Claim 3. Hence, x2r = 1. Continuing in this manner, we finally 
obtain x2q = 1 for some g E N and (g, m) = 1. Since (2q, m) = 2, and by Claim 5, 
xm E Z, we conclude that x2 E Z. 

Using Claim 6 and (2), and recalling char R = 2, we can easily show that (xy)2 = 
(yx )2, (xy)3 = y3x3 and (xy)4 = x4y4 for all x, y in R. Thus, using these equalities we 
can prove that (x + y)4 = x4 + y4 for all x,y in R. 

Using the above results, we have that 

(xy + x)m = (xy)m + xm 
= xm-2ym-2( xy)2 + xm 
= xm-l(ym-lxy+ x) 

and 
(xy+x)m = {x(y+ 1nm-2{x(y+ 1)}2 

= Xm-2(y + l)m-2{x(y + l)}2 
= xm-1{(y+ l)m-1xy+(y+ l)m-1x}, for all x,y in R. 

These two equalities are equal, and thus we get 

Since if'1'-1y + 1 + (y + l)m-ly + (y + l)m-l = ym + 1 + (y + l)m = 0, by Lemma A, (7) 
implies that 

(8) y1n-1xy + x + (y + l)m-1xy + (y + l)m-lx = 0 for all x, yin R. 

Replacing x by (y + l)x in (8), we have that 

0 = ym-l(y + l)xy + (y + l)x + (y + l)mxy + (y + l)mx 
= ymxy + ym-1xy + yx + x + (ym + l)xy + (ym + l)x 
= ym-1xy + yx + xy + ymx. 

Hence, we get 

(9) (1 + ym-1)[x,y] = 0 for all x, yin= R. 

Claim 7. A~ Z. 
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For ally EA, we get ym-l EA by Claim 2. Since A is a proper ideal of R, we have 
1 + ym-l ¢ A. Thus, (9) implies that [x, y] = 0 for all x in Rand soy E Z. 

Finally, for all y in R, we consider the following two cases: 
Case 1. 1 + y71-1 ¢ A. 
Then using (9), we have [x,y]=O for all x in R. 
Case 2. 1 + y11-1 EA. 
Then l+ym-l E Z by Claim 7. Hence for all x in R, we get x(l+if"-1) = (l+ym-l )x 

and so xym-l = ym-1x. Thus, ym-2[x,y] = 0 by Clsim 6. Since 1 + ym-l EA, and 
A = J, we must have that y ¢ A. Therefore, by Claim 3, y71-2[x, y] = 0 implies that 
[x, y] = 0 for all x in R. This completes the proof Lemma 1. 

Since (1 + [x, yl)m = 1 + [x, y]m for all x, yin R, by using Theorem A repeatedly we 
have for some positive integer j = j(x, y), depending on x and y, 
(10) m;[x,y] = 0 for all x,y in R. 

In order to prove the Theorem 1, it is sufficient to do it for subdirectly irreducible 
rings. We henceforth assume that R is a subdirectly irreducible ring. Let S '# (0) be the 
intersection of the nonzero ideals of R. Of course, S is the unique minimal ideal of R. 
The argument of [2, p. 84] shows the following 

Lemma 2. There exists a prime p such that the characteristic of R is p. 

Proof. By hypothesis, we have 2 = 1 m + 1 m = (1 + l)m = 2m. Thus, every element 
of R is of finite additive order. Let p be a prime and pa= 0, for some a ER and a'# 0. 
Let Rp = {x ER I px = 0}. Then Rp f:. (0) is clearly an ideal of R, and hence Rp ::::, S. If 
Rq f:. (0) for some prime q f:. p, then Rq ::::, S. Since SC Rq n Rp = (0), we would have a 
contradiction. 

Now by hypothesis again, pm = p and so p(pm-l - 1) = 0. Since (p,pm-l - 1) = 1, 
by the result above we conclude that Rp = R. 

Lemma 3. If R is not commutative, then p divides m. 

Proof. Suppose the contrary. Then by (10) and Lemma 2, we have [x, y] = 0 for 
all x, y in R, a contradiction. Hence, p divides m. 

We are now ready to prove Theorem 1. 
Proof of Theorem 1. Suppose that R is not commutative. Using Lemma 1, we 

see that mis the latter case stated in Theorem 1. Then by Lemmas 2 and 3, charR = p 
and p divides m for some odd prime p. Let k f:. 0, 1, and k E GF(p). By hypothesis, 
we have km . k. Since (k,p) = 1, app1ying Fermat's Little Theorem repeatedly, we get 
k = km = (kP' )n = kn and so kn-l = 1. Thus, the multiplicative order of k divides n -1, 
a contradiction. Hence, R is commutative. This completes the proof of Theorem 1. 

In Theorem A, if we add the assumption that the mapping x --+ xm in R is onto then 
R is commutative. This result shows that in Herstein's another theorem [1, Theorem 3], 
the multiplicative homomorphism can be eliminated. We have our second main 
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'I'heore1n 2. If R is a ring, not necessarily with identity, in which the mapping x -+ 
xm for a fixed integer m > 1 is an additive homomorphism onto, then R is commutative. 

To prove Theorem 2, we need the following lemmas .. Assume that aU the hypotheses 
as in Theorem 2 are satisfied. 

Lernma 4. If a E R is nilpotent, and all a2, a3, ••. E Z, then 

Proof. See [1, pp. 31-32]. 

Le1nma 5. If a E R and a2 = 0, th.en a E Z. 

Proof. Let a ER and a2 = 0. 
Replacing x by ax in (11), and using a2 = 0, we have -(ax)ma = -(a.xa)m = 0 for 

c.ll x in R. Thus, left-multiplying by a in (11) we get -axma = -a(xa)m = -(ax)ma = O 
for all x in R. Since the mapping x -+ xm in R is onto, we have 

{ 1 ")\ \ i, .. /" axa = 0 for all x in R. 

Hence by (12), xm + am = (x + a)m implies that 

and so 
x{xm-Ia + xm-2ax + · · · + xaxm-2 + a;t:m-l} = 

{xm-la + xm-2ax + · · · + xaxm-2 + axm-1}x for all X in R. 

'T'hus, we get xma = axm for all x in R. Since the mapping x-+ xm in R is onto, a ER 
results. 

By Theorem A, every commutator [x, y] in R is nilpotent. Applying Lemma 5, it is 
easy to show that the nilpotency index of [x, y] is at most 3. 

If m = 2, then ( x + y )2 = x2 + y2 implies that xy = -yx and so xy2 = ( -yx )y = 
(-y)xy = y2x for all x, yin R. Since the mapping x-+ x2 in R is onto, the commutativity 
of R results. 

Henceforth, we assume that m > 2. By the result above, we have [x, y]m = 0 for all 
x,y in R. 

Lemrrm 6. If b E R and b3 = 0, then b E Z. 

Proof. Let b E R and b3 = 0. 
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Since (b2)2 = 0, b2 E Z by Lemma 5. Replacing a by bin (11), and using thr, result 
above, we have that 

bxm - xmb- bxmb + b2xm = (bx)m - (xb)m - (bxb)m + (b2x)m 
= (bx - xb)m - bxb2xb(bxb)m-2 + b4x2(b2:c)m-2 
= 0 for all x in R. 

Thus, we get 

0 = b(bxm - xmb - bxmb + b2xm) 
= b2xm - bxmb 

and so 
for all x inR. 

Since the mapping x-+ xm in R is onto, b E Z results. 
We are now ready to prove Theorem 2. 
Proof of Theorem 2. Since [x,y]3 = 0, by Lemma 6 [x, y] E Z for all x, yin R. 
The equality [x, y]m = 0 implies that 

for all x, yin R. 

Hence, we have 

for all x, y in R. 

Since the mapping x -+ xm in R is onto, so R is commutative. This completes the prcof 
of Theorem 2. 

3. Remark and example. 

We end this paper with 

Remark. In Herstein's Theorem 3 of [1], we do not know whether the additive 
endomorphism can be eliminated. It is easy to prove that in Theorem 1, all the stated 
values of m are essential as Examples 1 and 2 of [6] show. From those examples, we see 
that in Theorem 1 the equality can not be replaced by the weaker condition " ( x + y )m - 
xm - ym E Z for all x, y in R". Finally, because of the proof of Lemma 1, we ask in 
Lemma 1, when m > 2, whether R is a subdirect sum of Ro's, vihere Ro is described in 
the following. 

Example. Let Ro be a ring with identity 1 and of characteristic 2 such that for all 
x E Ro, either x2 = 0 or x2 = 1. Theri Ro is generated by invertible elements, and thus 
Ro is commutative. It is easy to verify that (x + y)2n := x2n + y2n for all x, y E Ro and 
all n EN. 
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Acknowledgement. The author thanks the referee for pointing out the error of 
the original proof of Claim 6 of Lemma 1. 

Added in Proof. Theorem 2 is included in H. Tominaga's paper "Some commu­ 
tativity conditions" Math. J. Okayama Univ. 29(1987), 191-192. The proof of Theorem 
2 is different. The author thanks Professor Hisao Tominaga for pointing out an error 
(2r, m) = 2, which is in the proof of Lemma 1, Claim 6. 
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