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Abstract. Let R be an associative ring with identity such that for some fixed
integerm > 1, (z4+y)™ = z™+y™ forallz,y in R. Ii m = 2 (mod 4), or p—1|lm-1
for each prime factor p of m, then R is commutative. The restriction on m is
essential. Moreover, in case of m = 2 (mod 4) and m > 2, then R is isomorphic to
a subdirect sum of subdirectly irreducible rings R; each of which, as homomorphic
images of R, satisfies the same polynomial identity (z + ¥)™ = z™ + y™; and for
each z in R;, either z2 = 0 or 229 = 1, where (g,m) = 1.

1. Introduction.

In [3], Johnsen, Qutcalt, and Yaqub proved that m = 2 is the unique integer such that
the following is true: if R is an associative ring with identity in which for some
fixed integer m > 1, (zy)™ = z™y™ for all z,y in R, then R is commutative. When the
multiplicative equality is replaced by additive one, then we ask that for what integers m
that can force R to be commutative? In this paper, we find all such integers m that can
imply the commutativity of R.

From now on, R will be an associative ring. In [1], Herstein proved.

Theorem A. Let R be a ring in which for some fized integer m > 1, (z +y)™ =
g™ +y™ forall z,y in R. Then every commutator in R is nilpotent, and the nilpoteni
elements of R form an ideal.

In general, R is not necessarily commutative in Theorem A; if R has no identity or
the mapping £ — z™ in R is not onto, then for each such integer m > 1, we can easily
find an example which shows that R is not commutative. Let R be a ring with identity
1. We shall denote the commutator zy — yz in R by [z,y], the center of R by z, the
Jacobson radical of R by J, the group of units of R by R*, and the set of all positive
integers by N. For all n,m in N, we denote the greatest common divisor of n and m by
(n,m). .

To obtain our results, we need the following lemma which can be found for example

in [5].
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Lemma A. Lel R be a ring with identity 1, and let f : R — R be a funclion such
that f(z + 1) = f(z) holds for all z € R. If for all z € R, there ezists a positive integer
n such that z" f(z) = 0, then necessarily f(z) =0 for all z € R.

2. Main Results

We have our first main.

Theorem 1. Let R be a ring with identity 1 such that for some fized integer m >
L, (z4+y)" =z +y™ forallz,y in R. f m =2 (mod 4); or m = p'n, where p is any
odd prime divisor of m, and i and n are in N, and n > 1 is odd, and the multiplicative
order of j does not divide n — 1 for some j # 0,1, and j € GF(p), the Galois field with
p elements, then R is commultative.

To prove Theorem 1, we need the following lemmas.
Lemma 1. If m =2 (mod 4), then R is commutative.

Proof. Note that 2 =1™ + (-1)™ = (1 — 1)™ = 0, Hence, char R = 2. If m = 2,
then (z+y)? = 22 +y? for all z,y in R, and so ¢y = —yz = yz. Thus, let m = 2k, where
k€ N isodd and k > 1.

By hypotheses, we get 1+ 2™ = (1 +m)™ = {(1 + z)?}* = {(1 + z?)}* for all z in
R. This implies that

k-1
(1) z? + Z; (l:) (z2) = 2%f(z) = 0 for all z in R,

where fz) =1 + kf (i J’: 1)(22).-,

i=1

Note that for 2 € R, f(z) = 0 implies that z is invertible. By Theorem A, every
commutator [z,y] in R is nilpotent. Let [z,y)’ = 0. If j > 2, then replacing z by [z, ]
in (1) and left-multiplying by [z,y}? =3, we have that [z,y}’~! = 0. Hence, continuing in
this manner, we finally obtain that

(2 [,4]2 = 0 for all z,y in R.
Thus, by (2) we get
(3) (zy)™ — (yz)™ = [z,y]™ = 0 for all z,y in R.

Let u = [z,y]. Then by (2) and (3) we get {(1+u)z(1+u)}™ = {(1+u)%2}™ = 2™, and
so uz™ = z™u for all z in R. Hence, we get

(4) [z,y]z™ = 2™[z,y] for all z,y, z in R.

Claim 1. For z,y € R, zy = 0 implies yz = 0.
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Assume that zy = 0. Then replacing z by z in (4), we have —yz™*! = (. Thus, using
(1) repeatedly, we finally obtain that yz? = 0. Similarly, we get y?z = 0. By induction
and using zy = yz? = y?z = 0, we can easily show that (z + )% = z% + y% for all
integers ¢ > 2. Hence, using this equality and (1) we have

0= (a,-+y)2+kz_:1 (f)(z+y)2"

i=2

k-1 k k-1 %
_ 21 § : 24
=E (Z)x i — (i)y

i=1
= yz.

By Birkhoff’s Theorem [4, p. 55], every ring is isomorphic to a subdirect sum of
subdirectly irreducible rings. Thus, we may assume that R is a subdirectly irreducible
ring. Henceforth, R is a subdirectly irreducible ring. Let H be the heart of R, i.e., the
smallest nonzero ideal of R. Let A denote the set of all zero divisors of R (together with
0). Then A is a proper subset of R.

Claim 2. Ais anideal of R, and A= Ann(H) = {z |z € R,z H = 0}.

By Claim 1 there is no distinction between left and right zero divisors in R, and for
any nonempty subset S of R, the left and right annihilator of S coincide and form a two
sided ideal of R, which we denote by Ann(S). Clearly, Ann(H) C A. Conversely, let a
be any element in A. Since Ann(a) is a nonzero dieal of R, it contains H. This means
that @ € Ann(H). Thus, A = Ann(H) and so A is an ideal of R.

Claim 3. For each z € R, either 22 = 0 or f(z) = 0, where f(z) is as in (1); in the
latter case ¢ € R*.

If f(z) € A, then by (1) and Claim 2 we see that 2 ¢ A. Thus by the definition of
A and by (1) again, we get f(z) = 0 and so z € R*.

If f(z) € A, then we have 22 = 0 by (1) and so z € A.

Since char R =2, weget z = (z+ 1)+ 1forall z in R. If 22 = 0, then z + 1 is
invertible. Hence, by (2), Claim 2 and Claim 3 we have

Claim 4. R is generated by invertible elements, and A =J = {z | z € R, z? = 0},
and R/J is a field.

Claim 5. Forallz € R,z™ € Z.

Let z,y € R. By Claim 3, either y? = 0 or y is invertible. If y is invertible, then by
(3) we get (yzy~!)™ = (y~'yz)™ = z™ and so yz™ = z™y. If y? = 0, then (1 +y)? =1
and by the result above we have (1 + y)z™ = z™(1 + y). Hence, yz™ = ™y and so
2™ € Z,

Claim 6. Forall z € R,z? € Z.
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By Claim 3, either 2 = 0 or z is invertible for all z in R. If 22 = 0, then z% € Z and
we are done. Let z be invertible in R. By Claim 3 again, f(z) = 0. Then GF(2)[z] is a
finite ring. Thus, * = z’ for some positive integers ¢ < j, and so 2" = 1, where n = j—1.
Let (m,n) =t,nft =r and m/t =s. Then we get (1+ 2" )" =1+2z™" =1+4+2" =0
and so (1+ z")? = 0 by Claim 3. Hence, 2" = 1. Continuing in this manner, we finally
obtain z2¢ = 1 for some ¢ € N and (g9,m) = 1. Since (2¢,m) = 2, and by Claim 5,
™ € Z, we conclude that z2 € Z. '

Using Claim 6 and (2), and recalling char R = 2, we can easily show that (zy)% =
(yz)?, (zy)® = y323 and (zy)* = z*y? for all z,y in R. Thus, using these equalities we
can prove that (z + y)* = z* + y* for all z,y in R.

Using the above results, we have that

(zy+2)" = (zy)™ + ™
gk zm—zym—z(a:y)?. e ™
=z™ Y (y""lzy + z)
and

{z(y+ 1)} {z(y + 1)}
22y + 1)z (y + DY’
2™ Y (y+ 1) ey + (y+ 1)™ 1z}, for all z,y in R.

(zy + )™

These two equalities are equal, and thus we get
(7 2™ Yy " lzy+z+(y+ )™ ey + (y+1)™ 2z} =0forall z,y in R. -

Since y™"ly+1+(y+ )™ ly+(y+1)™ 1 =y™ +1+4(y+1)™ =0, by Lemma A, (7)
implies that

(8) Y lzy+z 4+ (y+ 1) lzy+ (y+1)™ 'z =0forall 2,y in R.

Replacing z by (y + 1)z in (8), we have that

0=y™ Yy+ Dzy+ (y+z+ @+ D ey + (y+ )™z
=y"ey+y" ley+yz+z+ (Y™ + D2y + (" + Dz
=y lzy+ yz + zy + y"z.

Hence, we get
9) 1+y™ Hz,y) =0for all z,y in = R.

Claim 7. AC Z.
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For all y € A, we get y™~! € A by Claim 2. Since A is a proper ideal of R, we have
1+ y™-! ¢ A. Thus, (9) implies that [z,y] =0 for all z in R and so y € Z.

Finally, for all y 1n R, we consider the following two cases:

Case 1. 1+y™ 1 ¢ A.

Then using (9), we have [x,y]=0 for all z in R.

Case 2. 1 +y™~! € A.

Then 14+y™~! € Z by Claim 7. Hence for all z in R, we get z(1+y™ 1) = (1+y™ 1)z
and so zy™~! = y™1z. Thus, y™ 2[z,y] = 0 by Clsim 6. Since 1+ y™ ! € A, and
A = J, we must have that y ¢ A. Therefore, by Claim 3, y™~2[z,y] = 0 implies that
[z,y] =0 for all z in R. This completes the proof Lemma 1.

Since (1+ [z,y])™ = 1+ [z,y]™ for all z,y in R, by using Theorem A repeatedly we
have for some positive integer j = j(z,y), depending on z and y,

(10) m[z,y] =0 for all z,y in R.

In order to prove the Theorem 1, it is sufficient to do it for subdirectly irreducible
rings. We henceforth assume that R is a subdirectly irreducible ring. Let S # (0) be the
intersection of the nonzero ideals of R. Of course, S is the unique minimal ideal of R.
The argument of [2, p. 84] shows the following

Lemma 2. There ezists a prime p such that the characteristic of R is p.

Proof. By hypothesis, we have 2 = 1™ + 1™ = (14 1)™ = 2™. Thus, every element
of R is of finite additive order. Let p be a prime and pa = 0, for some ¢ € R and a # 0.
Let R, = {z € R| pz = 0}. Then R, # (0) is clearly an ideal of R, and hence R, D S. If
Ry # (0) for some prime g # p, then R; D S. Since S C RN R, = (0), we would have a
contradiction.

Now by hypothesis again, p™ = p and so p(p™~! — 1) = 0. Since (p,p™" ! — 1) = 1,
by the result above we conclude that R, = R.

Lemma 3. If R is not commutative, then p divides m.

Proof. Suppose the contrary. Then by (10) and Lemma 2, we have [z,y] = 0 for
all z,y in R, a contradiction. Hence, p divides m.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Suppose that R is not commutative. Using Lemma 1, we
see that m is the latter case stated in Theorem 1. Then by Lemmas 2 and 3, charR = p
and p divides m for some odd prime p. Let k # 0,1, and k¥ € GF(p). By hypothesis,
we have k™ = k. Since (k,p) = 1, apprying Fermat’s Little Theorem repeatedly, we get
¥ (kP )* = k™ and so k"1 = 1. Thus, the multiplicative order of k divides n—1,
a contradiction. Hence, R is commutative. This completes the proof of Theorem 1.

In Theorem A, if we add the assumption that the mapping z — z™ in R is onto then
R is commutative. This result shows that in Herstein’s another theorem [1, Theorem 3],
the multiplicative homomorphism can be eliminated. We have our second main
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Theorem 2. If R is a ring, not necessarily with identity, in which the mapping z —

z™ for a fized integer m > 1 is an additive homomorphism onto, then R is commulative.

To prove Theorem 2, we need the following lemmas. Assume that all the hypotheses
as in Theorem 2 are satisfied.

Lemma 4. Ifa € R is nilpotent, and all a®,a3,... € Z, then
(1) az™ — z™a — az™a + a’z™ = (az)™ — (za)™ — (aza)™ + (a’z)™ for all z in R.

Proof. See [1, pp. 31-32).
Lemma 5. Ifa € R and a®> =0, thena € Z.
Prcof. Let a € R and a2 = 0.

Replacing z by az in (11), and using a® = 0, we have —(az)™a = —(aza)™ = 0 for
all z in R. Thus, left-multiplying by a in (11) we get —az™a = —a(za)™ = —(az)™a =0
for all z in R. Since the mapping z — z™ in R is onto, we have

(12) aza = 0 for all z'in R.

Hence by (12), 2™ + a™ = (z + a)™ implies that

z™ la+ 2™ 2az 4+ ... 4 zaz™ 24+ az™ 1 =0,

and so

.

z{z™ la +z™ %az + .. + zaz™ ? 4 ax™" !} =

{a:m*la +2™ 2%z 4.+ zaz™? 4+ a:z:m_l}:i: for all z in R.

Thus, we get 2™a = az™ for all z in R. Since the mapping £ — z™ in R is onto, a € R
results.

By Theorem A, every commutator [z,y] in R is nilpotent. Applying Lemma 5, it is
easy to show that the nilpotency index of [z, y] is at most 3.

If m = 2, then (z 4+ y)? = 22 + y? implies that zy = —yz and so zy? = (—~yz)y =
(~y)zy = y*x for all z,y in R. Since the mapping ¢ — 2 in R is onto, the commutativity
of R results.

Henceforth, we assume that m > 2. By the result above, we have [z,y]™ = 0 for all
e,y 1n R.

Lemma 6. Ifbe R and b3 =0, then b € Z.

Proof. Let b € R and 43 = 0.



ON A THEOREM OF HERSTEIM 129

Since (b2)? = 0,5 € Z by Lemma 5. Replacing a by b in (11), and using the resuif
above, we have that

bz™ — z™b — bz™b + b2z™ = (bz)™ — (zb)™ — (bzb)™ + (b*z)™
= (bz — zb)™ — bzb?zb(bzb)™ > + b 22 (b%z)™ 2
=0 for all z in R.

Thus, we get

0 = b(bz™ — z™b — bz™b + b%z™)
= b%z™ — ba™b
and so

bx™ = z™b for all z inR.

Since the mapping £ — z™ in R is onto, b € Z results.
We are now ready to prove Theorem 2.
Proof of Theorem 2. Since [z,y]® = 0, by Lemma 6 [z,y] € Z for all z,y in R.
The equality [z,y]™ = 0 implies that

m—1,_ m—1

0= (zy)™ — (yz)™ = mz™ y™ [z,y] for all z,y in R.

Hence, we have

g™y™ — y"z™ = mPz™ 1y z,y] = 0 for all =,y in R.
Since the mapping £ — =™ in R is onto, so R is commutative. This completes the proof
of Theorem 2.

3. Remark and example.
We end this paper with

Remark. In Herstein’s Theorem 3 of [1], we do not know whether the additive
endomorphism can be eliminated. It is easy to prove that in Theorem 1, all the stated
values of m are essential as Examples 1 and 2 of [6] show. From those examples, we see
that in Theorem 1 the equality can not be replaced by the weaker condition ”{z + y}™ —
™ — y™ € Z for all z,y in R”. Finally, because of the proof of Lemma 1, we ask in
Lemma 1, when m > 2, whether R is a subdirect sum of Ry’s, where R is described in
the following.

Example. Let Ry be aring with identity 1 and of characteristic 2 such that for all
z € Ry, either 22 = 0 or 22 = 1. Then Ry is generated by invertible elements, and thus
Ro is commutative. It is easy to verify that (z + y)*" = &?® + y*" for all =,y € Ro and
alln € N.



130 CNEN-TE YEN

Acknowledgement. The author thanks the referee for pointing out the error of
the original proof of Claim 6 of Lemma 1.

Added in Proof. Theorem 2 is included in H. Tominaga’s paper “Some commu-
tativity conditions” Math. J. Okayama Univ. 29(1987), 191-192. The proof of Theorem
2 is different. The author thanks Professor Hisao Tominaga for pointing out an error
(2r,m) = 2, which is in the proof of Lemma 1, Claim 6.
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