ON A THEOREM OF HERSTEIN DEDICATED TO PROFESSOR SHIH-TONG TU ON HIS 60TH BIRTHDAY

CHEN-TE YEN

Abstract. Let R be an associative ring with identity such that for some fixed integer m > 1, $(x+y)^m = x^m + y^m$ for all x, y in R. If $m \equiv 2 \pmod{4}$, or p-1|m-1for each prime factor p of m, then R is commutative. The restriction on m is essential. Moreover, in case of $m \equiv 2 \pmod{4}$ and m > 2, then R is isomorphic to a subdirect sum of subdirectly irreducible rings R_i each of which, as homomorphic images of R, satisfies the same polynomial identity $(x + y)^m = x^m + y^m$; and for each x in R_i , either $x^2 = 0$ or $x^{2q} = 1$, where (q, m) = 1.

1

1. Introduction.

In [3], Johnsen, Outcalt, and Yaqub proved that m = 2 is the unique integer such that the following is true: if R is an associative ring with identity in which for some fixed integer m > 1, $(xy)^m = x^m y^m$ for all x, y in R, then R is commutative. When the multiplicative equality is replaced by additive one, then we ask that for what integers mthat can force R to be commutative? In this paper, we find all such integers m that can imply the commutativity of R.

From now on, R will be an associative ring. In [1], Herstein proved.

Theorem A. Let R be a ring in which for some fixed integer m > 1, $(x + y)^m = x^m + y^m$ for all x, y in R. Then every commutator in R is nilpotent, and the nilpotent elements of R form an ideal.

In general, R is not necessarily commutative in Theorem A; if R has no identity or the mapping $x \to x^m$ in R is not onto, then for each such integer m > 1, we can easily find an example which shows that R is not commutative. Let R be a ring with identity 1. We shall denote the commutator xy - yx in R by [x, y], the center of R by z, the Jacobson radical of R by J, the group of units of R by R^* , and the set of all positive integers by N. For all n, m in N, we denote the greatest common divisor of n and m by (n, m).

To obtain our results, we need the following lemma which can be found for example in [5].

Received December 20, 1988; revised June 26, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 16A70.

Key words and phrases. Subdirect sums, subdirectly irreducible rings.

Lemma A. Let R be a ring with identity 1, and let $f : R \to R$ be a function such that f(x+1) = f(x) holds for all $x \in R$. If for all $x \in R$, there exists a positive integer n such that $x^n f(x) = 0$, then necessarily f(x) = 0 for all $x \in R$.

2. Main Results

We have our first main.

Theorem 1. Let R be a ring with identity 1 such that for some fixed integer m > 1, $(x + y)^m = x^m + y^m$ for all x, y in R. If $m \equiv 2 \pmod{4}$; or $m = p^i n$, where p is any odd prime divisor of m, and i and n are in N, and n > 1 is odd, and the multiplicative order of j does not divide n - 1 for some $j \neq 0, 1$, and $j \in GF(p)$, the Galois field with p elements, then R is commutative.

To prove Theorem 1, we need the following lemmas.

Lemma 1. If $m \equiv 2 \pmod{4}$, then R is commutative.

Proof. Note that $2 = 1^m + (-1)^m = (1-1)^m = 0$, Hence, char R = 2. If m = 2, then $(x+y)^2 = x^2 + y^2$ for all x, y in R, and so xy = -yx = yx. Thus, let m = 2k, where $k \in N$ is odd and k > 1.

By hypotheses, we get $1 + x^m = (1 + m)^m = \{(1 + x)^2\}^k = \{(1 + x^2)\}^k$ for all x in R. This implies that

(1)
$$x^{2} + \sum_{i=2}^{k-1} \binom{k}{i} (x^{2})^{i} = x^{2} f(x) = 0 \text{ for all } x \text{ in } R,$$

where $f(x) = 1 + \sum_{i=1}^{k-2} \binom{k}{i+1} (x^{2})^{i}.$

Note that for $x \in R$, f(x) = 0 implies that x is invertible. By Theorem A, every commutator [x, y] in R is nilpotent. Let $[x, y]^j = 0$. If j > 2, then replacing x by [x, y] in (1) and left-multiplying by $[x, y]^{j-3}$, we have that $[x, y]^{j-1} = 0$. Hence, continuing in this manner, we finally obtain that

(2)
$$[x,y]^2 = 0 \text{ for all } x, y \text{ in } R.$$

Thus, by (2) we get

(3)
$$(xy)^m - (yx)^m = [x, y]^m = 0$$
 for all x, y in R .

Let u = [x, y]. Then by (2) and (3) we get $\{(1+u)z(1+u)\}^m = \{(1+u)^2z\}^m = z^m$, and so $uz^m = z^m u$ for all z in R. Hence, we get

(4)
$$[x,y]z^m = z^m[x,y] \text{ for all } x, y, z \text{ in } R.$$

Claim 1. For $x, y \in R$, xy = 0 implies yx = 0.

Assume that xy = 0. Then replacing z by x in (4), we have $-yx^{m+1} = 0$. Thus, using (1) repeatedly, we finally obtain that $yx^2 = 0$. Similarly, we get $y^2x = 0$. By induction and using $xy = yx^2 = y^2x = 0$, we can easily show that $(x + y)^{2i} = x^{2i} + y^{2i}$ for all integers $i \ge 2$. Hence, using this equality and (1) we have

$$0 = (x + y)^{2} + \sum_{i=2}^{k-1} \binom{k}{i} (x + y)^{2i}$$
$$= yx + \sum_{i=1}^{k-1} \binom{k}{i} x^{2i} + \sum_{i=1}^{k-1} \binom{k}{i} y^{2i}$$
$$= yx.$$

By Birkhoff's Theorem [4, p. 55], every ring is isomorphic to a subdirect sum of subdirectly irreducible rings. Thus, we may assume that R is a subdirectly irreducible ring. Henceforth, R is a subdirectly irreducible ring. Let H be the heart of R, i.e., the smallest nonzero ideal of R. Let A denote the set of all zero divisors of R (together with 0). Then A is a proper subset of R.

Claim 2. A is an ideal of R, and $A = Ann(H) = \{x \mid x \in R, xH = 0\}.$

By Claim 1 there is no distinction between left and right zero divisors in R, and for any nonempty subset S of R, the left and right annihilator of S coincide and form a two sided ideal of R, which we denote by Ann(S). Clearly, $Ann(H) \subseteq A$. Conversely, let abe any element in A. Since Ann(a) is a nonzero dieal of R, it contains H. This means that $a \in Ann(H)$. Thus, A = Ann(H) and so A is an ideal of R.

Claim 3. For each $x \in R$, either $x^2 = 0$ or f(x) = 0, where f(x) is as in (1); in the latter case $x \in R^*$.

If $f(x) \in A$, then by (1) and Claim 2 we see that $x^2 \notin A$. Thus by the definition of A and by (1) again, we get f(x) = 0 and so $x \in \mathbb{R}^*$.

If $f(x) \notin A$, then we have $x^2 = 0$ by (1) and so $x \in A$.

Since char R = 2, we get x = (x + 1) + 1 for all x in R. If $x^2 = 0$, then x + 1 is invertible. Hence, by (2), Claim 2 and Claim 3 we have

Claim 4. R is generated by invertible elements, and $A = J = \{x \mid x \in R, x^2 = 0\}$, and R/J is a field.

Claim 5. For all $x \in R, x^m \in Z$.

Let $x, y \in R$. By Claim 3, either $y^2 = 0$ or y is invertible. If y is invertible, then by (3) we get $(yxy^{-1})^m = (y^{-1}yx)^m = x^m$ and so $yx^m = x^my$. If $y^2 = 0$, then $(1+y)^2 = 1$ and by the result above we have $(1+y)x^m = x^m(1+y)$. Hence, $yx^m = x^my$ and so $x^m \in \mathbb{Z}$.

Claim 6. For all $x \in R, x^2 \in Z$.

By Claim 3, either $x^2 = 0$ or x is invertible for all x in R. If $x^2 = 0$, then $x^2 \in Z$ and we are done. Let x be invertible in R. By Claim 3 again, f(x) = 0. Then GF(2)[x] is a finite ring. Thus, $x^i = x^j$ for some positive integers i < j, and so $x^n = 1$, where n = j - 1. Let (m, n) = t, n/t = r and m/t = s. Then we get $(1 + x^r)^m = 1 + x^{mr} = 1 + x^{ns} = 0$ and so $(1 + x^r)^2 = 0$ by Claim 3. Hence, $x^{2r} = 1$. Continuing in this manner, we finally obtain $x^{2q} = 1$ for some $g \in N$ and (g, m) = 1. Since (2q, m) = 2, and by Claim 5, $x^m \in Z$, we conclude that $x^2 \in Z$.

Using Claim 6 and (2), and recalling char R = 2, we can easily show that $(xy)^2 = (yx)^2$, $(xy)^3 = y^3x^3$ and $(xy)^4 = x^4y^4$ for all x, y in R. Thus, using these equalities we can prove that $(x + y)^4 = x^4 + y^4$ for all x, y in R.

Using the above results, we have that

$$(xy + x)^{m} = (xy)^{m} + x^{m}$$

= $x^{m-2}y^{m-2}(xy)^{2} + x^{m}$
= $x^{m-1}(y^{m-1}xy + x)$

and

$$\begin{aligned} (xy+x)^m &= \{x(y+1)\}^{m-2} \{x(y+1)\}^2 \\ &= x^{m-2} (y+1)^{m-2} \{x(y+1)\}^2 \\ &= x^{m-1} \{(y+1)^{m-1} xy + (y+1)^{m-1} x\}, \text{ for all } x, y \text{ in } R. \end{aligned}$$

These two equalities are equal, and thus we get

(7)
$$x^{m-1}\{y^{m-1}xy + x + (y+1)^{m-1}xy + (y+1)^{m-1}x\} = 0$$
 for all x, y in R .

Since $y^{m-1}y + 1 + (y+1)^{m-1}y + (y+1)^{m-1} = y^m + 1 + (y+1)^m = 0$, by Lemma A, (7) implies that

(8)
$$y^{m-1}xy + x + (y+1)^{m-1}xy + (y+1)^{m-1}x = 0$$
 for all x, y in R .

Replacing x by (y+1)x in (8), we have that

$$0 = y^{m-1}(y+1)xy + (y+1)x + (y+1)^m xy + (y+1)^m x$$

= $y^m xy + y^{m-1}xy + yx + x + (y^m+1)xy + (y^m+1)x$
= $y^{m-1}xy + yx + xy + y^m x$.

Hence, we get

(9)
$$(1+y^{m-1})[x,y] = 0 \text{ for all } x, y \text{ in } = R.$$

Claim 7. $A \subseteq Z$.

127

For all $y \in A$, we get $y^{m-1} \in A$ by Claim 2. Since A is a proper ideal of R, we have $1 + y^{m-1} \notin A$. Thus, (9) implies that [x, y] = 0 for all x in R and so $y \in Z$.

Finally, for all y in R, we consider the following two cases:

Case 1. $1 + y^{m-1} \notin A$.

Then using (9), we have [x,y]=0 for all x in R.

Case 2. $1 + y^{m-1} \in A$.

Then $1+y^{m-1} \in Z$ by Claim 7. Hence for all x in R, we get $x(1+y^{m-1}) = (1+y^{m-1})x$ and so $xy^{m-1} = y^{m-1}x$. Thus, $y^{m-2}[x,y] = 0$ by Clsim 6. Since $1 + y^{m-1} \in A$, and A = J, we must have that $y \notin A$. Therefore, by Claim 3, $y^{m-2}[x,y] = 0$ implies that [x,y] = 0 for all x in R. This completes the proof Lemma 1.

Since $(1 + [x, y])^m = 1 + [x, y]^m$ for all x, y in R, by using Theorem A repeatedly we have for some positive integer j = j(x, y), depending on x and y,

(10)
$$m^{j}[x,y] = 0 \text{ for all } x, y \text{ in } R.$$

In order to prove the Theorem 1, it is sufficient to do it for subdirectly irreducible rings. We henceforth assume that R is a subdirectly irreducible ring. Let $S \neq (0)$ be the intersection of the nonzero ideals of R. Of course, S is the unique minimal ideal of R. The argument of [2, p. 84] shows the following

Lemma 2. There exists a prime p such that the characteristic of R is p.

Proof. By hypothesis, we have $2 = 1^m + 1^m = (1+1)^m = 2^m$. Thus, every element of R is of finite additive order. Let p be a prime and pa = 0, for some $a \in R$ and $a \neq 0$. Let $R_p = \{x \in R \mid px = 0\}$. Then $R_p \neq (0)$ is clearly an ideal of R, and hence $R_p \supset S$. If $R_q \neq (0)$ for some prime $q \neq p$, then $R_q \supset S$. Since $S \subset R_q \cap R_p = (0)$, we would have a contradiction.

Now by hypothesis again, $p^m = p$ and so $p(p^{m-1} - 1) = 0$. Since $(p, p^{m-1} - 1) = 1$, by the result above we conclude that $R_p = R$.

Lemma 3. If R is not commutative, then p divides m.

Proof. Suppose the contrary. Then by (10) and Lemma 2, we have [x, y] = 0 for all x, y in R, a contradiction. Hence, p divides m.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Suppose that R is not commutative. Using Lemma 1, we see that m is the latter case stated in Theorem 1. Then by Lemmas 2 and 3, charR = p and p divides m for some odd prime p. Let $k \neq 0, 1$, and $k \in GF(p)$. By hypothesis, we have $k^m = k$. Since (k, p) = 1, applying Fermat's Little Theorem repeatedly, we get $k = k^m = (k^{p^i})^n = k^n$ and so $k^{n-1} = 1$. Thus, the multiplicative order of k divides n-1, a contradiction. Hence, R is commutative. This completes the proof of Theorem 1.

In Theorem A, if we add the assumption that the mapping $x \to x^m$ in R is onto then R is commutative. This result shows that in Herstein's another theorem [1, Theorem 3], the multiplicative homomorphism can be eliminated. We have our second main

Theorem 2. If R is a ring, not necessarily with identity, in which the mapping $x \rightarrow x^m$ for a fixed integer m > 1 is an additive homomorphism onto, then R is commutative.

To prove Theorem 2, we need the following lemmas. Assume that all the hypotheses as in Theorem 2 are satisfied.

Lemma 4. If $a \in R$ is nilpotent, and all $a^2, a^3, \ldots \in Z$, then

(11)
$$ax^m - x^m a - ax^m a + a^2 x^m = (ax)^m - (xa)^m - (axa)^m + (a^2x)^m$$
 for all x in R.

Proof. See [1, pp. 31-32].

Lemma 5. If $a \in R$ and $a^2 = 0$, then $a \in Z$.

Proof. Let $a \in R$ and $a^2 = 0$.

Replacing x by ax in (11), and using $a^2 = 0$, we have $-(ax)^m a = -(axa)^m = 0$ for all x in R. Thus, left-multiplying by a in (11) we get $-ax^m a = -a(xa)^m = -(ax)^m a = 0$ for all x in R. Since the mapping $x \to x^m$ in R is onto, we have

(12)
$$axa = 0$$
 for all x in R .

Hence by (12), $x^m + a^m = (x + a)^m$ implies that

$$x^{m-1}a + x^{m-2}ax + \dots + xax^{m-2} + ax^{m-1} = 0,$$

and so

$$x \{ x^{m-1}a + x^{m-2}ax + \dots + xax^{m-2} + ax^{m-1} \} = \{ x^{m-1}a + x^{m-2}ax + \dots + xax^{m-2} + ax^{m-1} \} \dot{x} \text{ for all } x \text{ in } R.$$

Thus, we get $x^m a = ax^m$ for all x in R. Since the mapping $x \to x^m$ in R is onto, $a \in R$ results.

By Theorem A, every commutator [x, y] in R is nilpotent. Applying Lemma 5, it is easy to show that the nilpotency index of [x, y] is at most 3.

If m = 2, then $(x + y)^2 = x^2 + y^2$ implies that xy = -yx and so $xy^2 = (-yx)y = (-y)xy = y^2x$ for all x, y in R. Since the mapping $x \to x^2$ in R is onto, the commutativity of R results.

Henceforth, we assume that m > 2. By the result above, we have $[x, y]^m = 0$ for all x, y in R.

Lemma 6. If $b \in R$ and $b^3 = 0$, then $b \in Z$.

Proof. Let $b \in R$ and $b^3 = 0$.

Since $(b^2)^2 = 0, b^2 \in \mathbb{Z}$ by Lemma 5. Replacing a by b in (11), and using the result above, we have that

$$bx^{m} - x^{m}b - bx^{m}b + b^{2}x^{m} = (bx)^{m} - (xb)^{m} - (bxb)^{m} + (b^{2}x)^{m}$$

= $(bx - xb)^{m} - bxb^{2}xb(bxb)^{m-2} + b^{4}x^{2}(b^{2}x)^{m-2}$
= 0 for all x in R.

Thus, we get

$$0 = b(bx^m - x^m b - bx^m b + b^2 x^m)$$
$$= b^2 x^m - bx^m b$$

and so

 $bx^m = x^m b$ for all x in R.

Since the mapping $x \to x^m$ in R is onto, $b \in Z$ results.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Since $[x, y]^3 = 0$, by Lemma 6 $[x, y] \in Z$ for all x, y in R. The equality $[x, y]^m = 0$ implies that

$$0 = (xy)^m - (yx)^m = mx^{m-1}y^{m-1}[x, y]$$
 for all x, y in R .

Hence, we have

 $x^m y^m - y^m x^m = m^2 x^{m-1} y^{m-1} [x, y] = 0$ for all x, y in R.

Since the mapping $x \to x^m$ in R is onto, so R is commutative. This completes the proof of Theorem 2.

3. Remark and example.

We end this paper with

Remark. In Herstein's Theorem 3 of [1], we do not know whether the additive endomorphism can be eliminated. It is easy to prove that in Theorem 1, all the stated values of m are essential as Examples 1 and 2 of [6] show. From those examples, we see that in Theorem 1 the equality can not be replaced by the weaker condition $(x + y)^m - x^m - y^m \in \mathbb{Z}$ for all x, y in \mathbb{R}^n . Finally, because of the proof of Lemma 1, we ask in Lemma 1, when m > 2, whether \mathbb{R} is a subdirect sum of \mathbb{R}_0 's, where \mathbb{R}_0 is described in the following.

Example. Let R_0 be a ring with identity 1 and of characteristic 2 such that for all $x \in R_0$, either $x^2 = 0$ or $x^2 = 1$. Then R_0 is generated by invertible elements, and thus R_0 is commutative. It is easy to verify that $(x + y)^{2n} = x^{2n} + y^{2n}$ for all $x, y \in R_0$ and all $n \in N$.

CNEN-TE YEN

Acknowledgement. The author thanks the referee for pointing out the error of the original proof of Claim 6 of Lemma 1.

Added in Proof. Theorem 2 is included in *H*. Tominaga's paper "Some commutativity conditions" Math. J. Okayama Univ. 29(1987), 191-192. The proof of Theorem 2 is different. The author thanks Professor Hisao Tominaga for pointing out an error (2r, m) = 2, which is in the proof of Lemma 1, Claim 6.

References

- [1] I. N. Herstein, "Power maps in rings," Michigan Math. J.,8(1961), 29-32.
- [2] I. N. Herstein, Noncommutative rings, Carus Math. Monographs, No. 15, Math. Assoc. of Amer., 1968.
- [3] E. C. Johnsen, D. L. Outcalt and Adil Yaqub, "An elementary commutativity theorem for rings," Amer. Math. Monthly, 75(1968), 288-289.
- [4] N. H. McCoy, The theory of rings, The Macmillan Company, New York, 1964.
- [5] W. K. Nicholson and A. Yaqub, "A commutativity theorem for rings and groups," Canad. Math. Bull., 22(1979), 419-423.
- [6] C. T. Yen, "On the commutativity of primary rings," Math. Japonica, 25(1980), 449-452.

Department of Mathematics, Chung Yuan Christian University, Chung Li, Taiwan, 32023, Republic of China.