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INTEGRALS OF CONFLUENT HYPERGEOMETRIC FUNCTIONS 

GIOVANNA PITTALUGA 

Abstract. The moments of the weight functions w(x) = e-xxµ(lnx)P, p = O, 1, 2, 
on [O, oo) with respect to the Confluent Hypergeometric function ¢( a - n, c; x), n = 
0, 1, 2, ... , are explicitly evaluated. 

1. Introduction 
In a previous paper Blue [1] gave a simply expression for the integral 
f01 Pn(2x - 1) ln(l/x)dx, where Pn(2x - 1) is the shiftr,d Legendre polynomial. Gautschi 
[5] treated f01 xaln(l/x)Pn(2x- l)dx,a > -1. 

The evaluation of these integrals is related to the construction of the modified mo 
ments with respect to certain classes of polynomials [4]. 

Afterwards Gatteschi [2] generalized these results by considering and explicitly evalu 
ating ihe modified moments of the weight functions w(x) = xP(l-x )a ln(l/x ), a, p > -1, 
on [O, 1), with respect to the shifted Jacobi polinomials P*~a,/3\x) = P~a,J3\2x - 1), and 
wp ( x) = xP e-x (ln x )P, p > -1, p = 1, 2 on [O, oo), with respect to the generalized Laguerre 
polynomials Lh a) ( x). 

In a more recent paper (6), Kalla, Conde and Luke have considered a different 
problem, not necessarily related to the modified moments. More precisely, they have 
examined the integral f ~ 1 (1 - x )0 ( 1 + x / PS a ·13\ x )dx, Re( a), Re( b) > -1, and its partial 
derivatives with respect to a and b, where PSa,/3\x) is the Jacobi function which reduces 
to the Jacobi polynomial if v is a positive integer. Gatteschi 's result about Laguerre 
polynomial integrals has been considered again by Kalla and Conde in a more recent 
paper [7]. 

The purpose of this paper is to evaluate the moments of the weight functions w( x) = 
e-xxµ(lnx)P,p = 0,1,2, ... on [O,oo) with respect to the Confluent Hypergeometric 
function ¢>(a, c; x), that is the integrals 

(1.1) Ip(a,µ)= fo00 

e-xxµ(lnx)P</>(a,c;x)dx,c,f O,-l,-2, ... ,µ>-1,p=l,2, ... 
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Since, by puttin'.;: 

(1.2) 
(0.:, 

J(a,µ) = f e·-xxµ<f>(a,c;x)dx, 
,) 0 

cf:.0,-1,-2, ... , µ > -l, 

it is 

p = 1,2, ... , 
the evaluation of integrals (1.1) follows from that of J(a,µ) and its partial derivatives 
with respect toµ. 

Here and throughout this paper, we use the notation of Gatteschi [3]. 

2. Integral·J(a,µ) and related derivatives 
For the computation of the integral J(a,µ) we make use of the known expansion [3, p.61] 

(2.1) 
~ (a)k xk 

¢;(a, c; x) = L.J -( ) k'. 
k=O C k • 

Indeed, by using (2.1) and termwise integration, we can write 

(2.2) J(a, µ) = f(µ + l) f (a)k(µ + l)k _!_ 
k=O (c)k k! 

= f(µ + l)F(a, µ + l; c; 1), 
where P(a, µ + l; c; 1) is the gaussian hypergeometric function. 

To insure the absolute convergence of the series (2.2), we must require Re(c - a - 
µ- 1) > 0. 

Consequently, taking into account that [3, p.50] 

f(c)f(c-a-µ-1) 
F(a,µ+l;c;l)=n, __ \nt_ ,\, 

we obtain 

(2.3) r(c)f(c- a-µ - l) 
J(a,µ) = f(µ + l) f(c - a)f(c - µ - l)' 

c I- 0, -1, - 2, ... , µ > - l, Re( c - a - µ - l) > 0. 
We now consider the problem of evaluating the integrals (1.1). 
Vve first examine the case p = l. Differentiating (2.3) with respect to µ gives 

(2.4) a oµ J(a,µ) = Ii(a,p,) 

= r'(µ + l )-r( c )_r ( c_-_a_-_µ_-_l) 
r(c-a)f(c-µ-1) 

· {1P(µ + 1) + ?f'(c- µ -1) - t/;(c - a - Ji - 1)}, 
c#0,-1,-2, ... , µ>-l, Re(c-a-µ-1)>0, 
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where 'lj;(x) = r'(x)/f(x) is the logarithmic derivative of the gamma function. 
The evaluation of (1.1) when p = 2,3, ... can be obtained by repeatedly differenti 

ating (2.4) with respect toµ. We shall only examine, with some details, the case p = 2. 
By a partial differentiation of (2.4) with respect to µ, we have 

(2.5) 
a2 
{)µ2 J(a,µ) = I2(a,µ) 

= r(µ + 1) r(c)r(c - a - µ - l) 
r(c-a)f(c-µ-1) 

· { [ 'lj;(µ + 1) + VJ( C - µ - 1) - VJ( C - a - µ - 1)] 2 
+ [ 'lj;1 (µ + 1) + 'lp1 

( C - a - µ - 1) - VJ1 ( C - µ - l)]}, 
cf0,-1,-2, ... , µ>-1, Re(c-a-µ-1)>0. 

3. Some sequences 
In this section we will evaluate the sequences of integrals (1.1) and (1.2) obtained from 
(2.3), (2.4), (2.5) when we change a into a - n, where n = 0, 1, 2, ... and a i= 0. 

By remembering that r(x + 1) = xr(x), we may derive a useful algorithm for the 
computation of the moments J(a - n, µ). 

Indeed, it is easily seen that, by putting 

J(a - n,µ) = an, 
that is, 

-r( l)r(c)f(c-a-µ+n-1) 
frn - µ + ( ) ( ) , fc-a+nrc-µ-1 

we have 

(3.1) frn+l = an c - a - µ + n I 
c-a+n 

ao = J(a,µ). 
n = 0, 1,2, ... , 

Moreover, for the computation of (2.4) when a is substituted by a-n, n = 0, 1, 2, ... , 
if we use the previously recalled property of function r( x) and the recurrent relation 
'lj;(x + 1) = 'lj;(x) + 1/x, we may construct, in addition to (3.1), the following sequence 

(3.2) 1 
f3n+l = f3n + 1 , n = 0, 1, 2, ... , c-a-µ+n- 

/30 = 'Ip(µ + 1) + VJ ( C - µ - 1) - VJ ( C - a - µ - 1), 
hence 

I1(a-n,µ)=an·/3n, n=0,1,2, .... 

Similarly, by replacing in (2.5) a with a - n, n = 0, l, 2, ... , and recalling that 
'lj;'(x + 1) = ¢'(x) - 1/x2, we obtain, together with the recurrent relationships (3.1) and 
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(3.2), the recursion formula 

(3.3) 
1 

1'n+l = Jn - ( )2' n = 0,1,2, ... , c-a-µ+n-1 
10 = 'lp1 (µ + 1) + 'lp1 ( C - a - µ - 1) - 'lp1 ( C - µ - 1), 

and, finally, the useful algorithm 

(3.4) h(a- n,µ) = an{.B~ +,n}, n = 0,1,2, .... 

4. Particular cases 
The results of the previous Sections reduce to the Gatteschi ones [2] when we assume 
a = -n in (2.3), (2.4) and (2.5) or a = 0 in Section 3 and, after setting c = a+ 1, we 
change µ in a + µ. 

This can be shown remembering that the Confluent Hpergeometric functions reduce 
to Laguerre polynomials when a= -n, n = 0, 1, 2, ... , and, more precisely, 

For instance from (2.3) we derive 

loo -x a+µL(a)( )d - (-It f(µ + l)f(µ + Q'. + 1) e X X X- , 
0 n n ! r (µ - n + 1) 

which is the formula given by Gatteschi [2, p.1295]. 
We consider now the case µ + 1 - c = m, m = 0, 1, 2, .... Recalling that, for any 

integer r 2:: 0, 
. 'lj;(-r + t) = (-1r-1r!, hm ) 
f-0 r(-r + l 

from (2.4) we obtain 

Ii (a, µ) = lim Ii (a, µ - €) 
f-0 

= f(µ + l)f(c) f(c - a - µ - 1) lim 1/;(c - µ - 1 + t) 
f(c-a) f-or(c-µ-l+t) 

= (-l)m-l T't~(c) _\ f(µ + l)f(-a - m)f(m + 1), 
µ + 1 - c = m, m = 0, 1, 2, ... , Re(a) < -m, µ > -1. 

Analogously, for the evaluation of h(a, µ), we have from (2.5) 

( 4.1) h(a,µ) = J~I2(a,µ- t) 
f(J.t + l)f(c)f(c - a - µ - l) {A(µ)+ 2B(µ)}, 

= r(c-a) 
where 
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A(µ) = lim 7P2 ( c - µ - l + t:) - tf;' ( c - µ - 1 + t:) 
f-+0 f(c-µ-l+t:) ' 

B(µ) = lim{[?p(µ + 1- t:)- t/;(c- a-µ- 1 + t:)]?f'(c- µ-1 + c)} 
,_,.Q f ( C - µ - 1 + c \ . 

By means of the two series expansions 

( 1y 1 00 

rcx)= -, --+ Eak(x+rl, 
r. x + r L .. :o 

r = 0, 1,2 ... , 

which hold for Ix+ r I< 1, it is easily seen· that 

A(µ)= (-1)µ-c21/J(2 + µ - c)f(2 + µ - c), 
B(µ) = (-lt-cr(2 + µ - c){1jJ(µ + 1) -1/J(c- a - µ - 1)}. 

Hence, substitution into ( 4.1), yields the final result 

h(a,µ) = (-1)m-12f(µ + l~~c~r!)m - a)r(m + 1) 
· {1P(m + 1) + 1/J(µ + 1) -1/J(-m - a)}, 
µ+1-c=m, m=0,1,2, ... , Re(a)<-m, µ>-1. 

References 

[1] J. L. Blue, "A Legendre polynomial integral," Math. Comp., 33(1979), 739-741. 
[2] L. Gatteschi, "On Some Orthogonal Polynomial Integral," Math. Comp., 35(1980), 1291-1298. 
[3J L. Gatteschi, "Funzioni Speciali," UTET, Torino(1973). 
[4) W. Gautschi, "On the Construction of Gaussian Quadrature Rules from Modified Moments," Math. 

Comp., 24(1970), 245-260. 
[5) W. Gautschi, On the preceding paper "A Legendre polynomial integral" by J. L. Blue, Math. 

Comp., 33(1979), 742-743. 
[6] S. L. Kalla, S. Conde and Y. L. Luke, "Integrals of Jacobi Functions," Math. Comp., 38(1982), 

207-214. 
[7] S. L. Kalla and S. Conde, "Integrals of generalized Laguerre polynomials," Serdica, 9(1983), 230- 

234. 

Dipartimento di Matematica dell'Universita, Via Carlo Alberto 10, I-10123 Torino, Italy. 


