INTEGRALS OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

GIOVANNA PITTALUGA

Abstract. The moments of the weight functions $w(x) = e^{-x}x^{\mu}(\ln x)^{\rho}$, $\rho = 0, 1, 2$, on $[0, \infty)$ with respect to the Confluent Hypergeometric function $\phi(a-n, c; x)$, $n = 0, 1, 2, \ldots$, are explicitly evaluated.

1. Introduction

In a previous paper Blue [1] gave a simply expression for the integral $\int_0^1 p_n(2x-1)\ln(1/x)dx$, where $P_n(2x-1)$ is the shifted Legendre polynomial. Gautschi [5] treated $\int_0^1 x^{\alpha} \ln(1/x) P_n(2x-1)dx$, $\alpha > -1$.

The evaluation of these integrals is related to the construction of the modified moments with respect to certain classes of polynomials [4].

Afterwards Gatteschi [2] generalized these results by considering and explicitly evaluating the modified moments of the weight functions $w(x) = x^{\rho}(1-x)^{\alpha} \ln(1/x), \alpha, \rho > -1$, on [0, 1], with respect to the shifted Jacobi polynomials $P_n^{*(\alpha,\beta)}(x) = P_n^{(\alpha,\beta)}(2x-1)$, and $w_p(x) = x^{\rho}e^{-x}(\ln x)^p, \rho > -1, p = 1, 2$ on $[0,\infty)$, with respect to the generalized Laguerre polynomials $L_n^{(\alpha)}(x)$.

In a more recent paper [6], Kalla, Conde and Luke have considered a different problem, not necessarily related to the modified moments. More precisely, they have examined the integral $\int_{-1}^{1} (1-x)^a (1+x)^b P_{\nu}^{(\alpha,\beta)}(x) dx$, $\operatorname{Re}(a)$, $\operatorname{Re}(b) > -1$, and its partial derivatives with respect to a and b, where $P_{\nu}^{(\alpha,\beta)}(x)$ is the Jacobi function which reduces to the Jacobi polynomial if ν is a positive integer. Gatteschi's result about Laguerre polynomial integrals has been considered again by Kalla and Conde in a more recent paper [7].

The purpose of this paper is to evaluate the moments of the weight functions $w(x) = e^{-x}x^{\mu}(\ln x)^{\rho}$, $\rho = 0, 1, 2, ...$ on $[0, \infty)$ with respect to the Confluent Hypergeometric function $\phi(a, c; x)$, that is the integrals

(1.1)
$$I_{\rho}(a,\mu) = \int_{0}^{\infty} e^{-x} x^{\mu} (\ln x)^{\rho} \phi(a,c;x) dx, c \neq 0, -1, -2, \dots, \mu > -1, \rho = 1, 2, \dots$$

Received February 17, 1989.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 33A30.

This work was supported by the Consiglio Nazionale delle Ricerche and by the Ministero della Pubblica Istruzione.

Since, by putting

(1.2)
$$J(a,\mu) = \int_0^\infty e^{-x} x^{\mu} \phi(a,c;x) dx, \quad c \neq 0, -1, -2, \dots, \quad \mu > -1$$

it is

$$I_{
ho}(a,\mu)=rac{\partial^{
ho}}{\partial\mu^{
ho}}J(a,\mu),\qquad
ho=1,2,\ldots,$$

the evaluation of integrals (1.1) follows from that of $J(a,\mu)$ and its partial derivatives with respect to μ .

Here and throughout this paper, we use the notation of Gatteschi [3].

2. Integral $J(a, \mu)$ and related derivatives

For the computation of the integral $J(a, \mu)$ we make use of the known expansion [3, p.61]

(2.1)
$$\phi(a,c;x) = \sum_{k=0}^{\infty} \frac{(a)_k}{(c)_k} \frac{x^k}{k!}.$$

Indeed, by using (2.1) and termwise integration, we can write

(2.2)
$$J(a,\mu) = \Gamma(\mu+1) \sum_{k=0}^{\infty} \frac{(a)_k (\mu+1)_k}{(c)_k} \frac{1}{k!}$$
$$= \Gamma(\mu+1) F(a,\mu+1;c;1),$$

where $F(a, \mu + 1; c; 1)$ is the gaussian hypergeometric function.

To insure the absolute convergence of the series (2.2), we must require $\operatorname{Re}(c-a-\mu-1) > 0$.

Consequently, taking into account that [3, p.50]

$$F(a,\mu+1;c;1) = \frac{\Gamma(c)\Gamma(c-a-\mu-1)}{\Gamma(c-a)\Gamma(c-\mu-1)},$$

we obtain

(2.3)
$$J(a,\mu) = \Gamma(\mu+1) \frac{\Gamma(c)\Gamma(c-a-\mu-1)}{\Gamma(c-a)\Gamma(c-\mu-1)}, \\ c \neq 0, -1, -2, \dots, \ \mu > -1, \ \operatorname{Re}(c-a-\mu-1) > 0.$$

We now consider the problem of evaluating the integrals (1.1).

We first examine the case $\rho = 1$. Differentiating (2.3) with respect to μ gives

(2.4)
$$\frac{\partial}{\partial \mu} J(a,\mu) = I_1(a,\mu) \\ = \Gamma(\mu+1) \frac{\Gamma(c)\Gamma(c-a-\mu-1)}{\Gamma(c-a)\Gamma(c-\mu-1)} \\ \cdot \{\psi(\mu+1) + \psi(c-\mu-1) - \psi(c-a-\mu-1)\}, \\ c \neq 0, -1, -2, \dots, \ \mu > -1, \ \operatorname{Re}(c-a-\mu-1) > 0,$$

132

where $\psi(x) = \Gamma'(x)/\Gamma(x)$ is the logarithmic derivative of the gamma function.

The evaluation of (1.1) when $\rho = 2, 3, ...$ can be obtained by repeatedly differentiating (2.4) with respect to μ . We shall only examine, with some details, the case $\rho = 2$.

By a partial differentiation of (2.4) with respect to μ , we have

(2.5)
$$\frac{\partial^2}{\partial \mu^2} J(a,\mu) = I_2(a,\mu) = \Gamma(\mu+1) \frac{\Gamma(c)\Gamma(c-a-\mu-1)}{\Gamma(c-a)\Gamma(c-\mu-1)} \cdot \{ [\psi(\mu+1) + \psi(c-\mu-1) - \psi(c-a-\mu-1)]^2 + [\psi'(\mu+1) + \psi'(c-a-\mu-1) - \psi'(c-\mu-1)] \}, c \neq 0, -1, -2, \dots, \mu > -1, \operatorname{Re}(c-a-\mu-1) > 0.$$

3. Some sequences

In this section we will evaluate the sequences of integrals (1.1) and (1.2) obtained from (2.3), (2.4), (2.5) when we change a into a - n, where n = 0, 1, 2, ... and $a \neq 0$.

By remembering that $\Gamma(x+1) = x\Gamma(x)$, we may derive a useful algorithm for the computation of the moments $J(a - n, \mu)$.

Indeed, it is easily seen that, by putting

$$J(a-n,\mu)=\alpha_n,$$

that is,

$$\alpha_n = \Gamma(\mu+1) \frac{\Gamma(c)\Gamma(c-a-\mu+n-1)}{\Gamma(c-a+n)\Gamma(c-\mu-1)},$$

we have

(3.1)
$$\alpha_{n+1} = \alpha_n \frac{c - a - \mu + n - 1}{c - a + n}, \qquad n = 0, 1, 2, \dots,$$
$$\alpha_0 = J(a, \mu).$$

Moreover, for the computation of (2.4) when a is substituted by a-n, n = 0, 1, 2, ..., if we use the previously recalled property of function $\Gamma(x)$ and the recurrent relation $\psi(x+1) = \psi(x) + 1/x$, we may construct, in addition to (3.1), the following sequence

(3.2)
$$\beta_{n+1} = \beta_n + \frac{1}{c - a - \mu + n - 1}, \ n = 0, 1, 2, \dots,$$
$$\beta_0 = \psi(\mu + 1) + \psi(c - \mu - 1) - \psi(c - a - \mu - 1),$$

hence

 $I_1(a-n,\mu) = \alpha_n \cdot \beta_n, \ n = 0, 1, 2, \dots$

Similarly, by replacing in (2.5) *a* with a - n, n = 0, 1, 2, ..., and recalling that $\psi'(x+1) = \psi'(x) - 1/x^2$, we obtain, together with the recurrent relationships (3.1) and

(3.2), the recursion formula

(3.3)
$$\gamma_{n+1} = \gamma_n - \frac{1}{(c-a-\mu+n-1)^2}, \ n = 0, 1, 2, \dots,$$
$$\gamma_0 = \psi'(\mu+1) + \psi'(c-a-\mu-1) - \psi'(c-\mu-1)$$

and, finally, the useful algorithm

(3.4)
$$I_2(a-n,\mu) = \alpha_n \{\beta_n^2 + \gamma_n\}, \ n = 0, 1, 2, \dots$$

4. Particular cases

The results of the previous Sections reduce to the Gatteschi ones [2] when we assume a = -n in (2.3), (2.4) and (2.5) or a = 0 in Section 3 and, after setting $c = \alpha + 1$, we change μ in $\alpha + \mu$.

This can be shown remembering that the Confluent Hpergeometric functions reduce to Laguerre polynomials when a = -n, n = 0, 1, 2, ..., and, more precisely,

$$L_n^{(\alpha)}(x) = \binom{n+\alpha}{n}\phi(-n,\alpha+1;x).$$

For instance from (2.3) we derive

$$\int_0^\infty e^{-x} x^{\alpha+\mu} L_n^{(\alpha)}(x) dx = \frac{(-1)^n}{n!} \frac{\Gamma(\mu+1)\Gamma(\mu+\alpha+1)}{\Gamma(\mu-n+1)},$$

which is the formula given by Gatteschi [2, p.1295].

We consider now the case $\mu + 1 - c = m, m = 0, 1, 2, \ldots$ Recalling that, for any integer $r \ge 0$,

$$\lim_{\epsilon \to 0} \frac{\psi(-r+\epsilon)}{\Gamma(-r+\epsilon)} = (-1)^{r-1} r!,$$

from (2.4) we obtain

$$I_1(a,\mu) = \lim_{\epsilon \to 0} I_1(a,\mu-\epsilon)$$

= $\Gamma(\mu+1)\Gamma(c)\frac{\Gamma(c-a-\mu-1)}{\Gamma(c-a)}\lim_{\epsilon \to 0}\frac{\psi(c-\mu-1+\epsilon)}{\Gamma(c-\mu-1+\epsilon)}$
= $(-1)^{m-1}\frac{\Gamma(c)}{\Gamma(c-a)}\Gamma(\mu+1)\Gamma(-a-m)\Gamma(m+1),$
 $\mu+1-c=m, \ m=0,1,2,\ldots, \ \operatorname{Re}(a) < -m, \ \mu > -1.$

Analogously, for the evaluation of $I_2(a, \mu)$, we have from (2.5)

(4.1)
$$I_{2}(a,\mu) = \lim_{\epsilon \to 0} I_{2}(a,\mu-\epsilon) \\ = \frac{\Gamma(\mu+1)\Gamma(c)\Gamma(c-a-\mu-1)}{\Gamma(c-a)} \{A(\mu)+2B(\mu)\},$$

where

134

INTEGRALS OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

$$A(\mu) = \lim_{\epsilon \to 0} \frac{\psi^2(c - \mu - 1 + \epsilon) - \psi'(c - \mu - 1 + \epsilon)}{\Gamma(c - \mu - 1 + \epsilon)},$$

$$B(\mu) = \lim_{\epsilon \to 0} \{ [\psi(\mu + 1 - \epsilon) - \psi(c - a - \mu - 1 + \epsilon)] \frac{\psi(c - \mu - 1 + \epsilon)}{\Gamma(c - \mu - 1 + \epsilon)} \}.$$

By means of the two series expansions

$$\Gamma(x) = \frac{(-1)^r}{r!} \frac{1}{x+r} + \sum_{k=0}^{\infty} a_k (x+r)^k,$$

$$\psi(x) = \frac{-1}{x+r} + \psi(1+r) + \sum_{k=1}^{\infty} b_k (x+r)^k,$$

$$r = 0, 1, 2...,$$

which hold for |x + r| < 1, it is easily seen that

$$A(\mu) = (-1)^{\mu-c} 2\psi(2+\mu-c)\Gamma(2+\mu-c),$$

$$B(\mu) = (-1)^{\mu-c}\Gamma(2+\mu-c)\{\psi(\mu+1)-\psi(c-a-\mu-1)\}.$$

Hence, substitution into (4.1), yields the final result

$$I_{2}(a,\mu) = (-1)^{m-1} 2 \frac{\Gamma(\mu+1)\Gamma(c)\Gamma(-m-a)}{\Gamma(c-a)} \Gamma(m+1)$$

 $\cdot \{\psi(m+1) + \psi(\mu+1) - \psi(-m-a)\},\$
 $\mu+1-c=m, \ m=0,1,2,\dots, \ \operatorname{Re}(a) < -m, \ \mu > -1.$

References

- [1] J. L. Blue, "A Legendre polynomial integral," Math. Comp., 33(1979), 739-741.
- [2] L. Gatteschi, "On Some Orthogonal Polynomial Integral," Math. Comp., 35(1980), 1291-1298.
- [3] L. Gatteschi, "Funzioni Speciali," UTET, Torino(1973).
- [4] W. Gautschi, "On the Construction of Gaussian Quadrature Rules from Modified Moments," Math. Comp., 24(1970), 245-260.
- [5] W. Gautschi, On the preceding paper "A Legendre polynomial integral" by J. L. Blue, Math. Comp., 33(1979), 742-743.
- [6] S. L. Kalla, S. Conde and Y. L. Luke, "Integrals of Jacobi Functions," Math. Comp., 38(1982), 207-214.
- [7] S. L. Kalla and S. Conde, "Integrals of generalized Laguerre polynomials," Serdica, 9(1983), 230-234.

Dipartimento di Matematica dell'Università, Via Carlo Alberto 10, I-10123 Torino, Italy.