COMPLEMENTARY NIL DOMINATION NUMBER OF A GRAPH

T. TAMIZH CHELVAM AND S. ROBINSON CHELLATHURAI

Abstract

A set $S \subseteq V$ is said to be a complementary nil dominating set of a graph G if it is a dominating set and its complement $V-S$ is not a dominating set for G. The minimum cardinality of a $c n d$-set is called the complementary nil domination number of G and is denoted by $\gamma_{\mathrm{cnd}}(G)$. In this paper some results on the complementary nil domination number are obtained.

1. Introduction

A set $S \subseteq V$ of vertices of a simple graph $G=(V, E)$ is a dominating set if for every vertex v in $V-S$, there exists a vertex u in S such that v is adjacent to u. The minimum cardinality of a dominating set in G is called the domination number of G and is denoted by $\gamma(G)$ [2]. Similarly the maximum cardinality of a minimal dominating set of a graph G is called the upper domination number $\Gamma(G)[2]$. A dominating set D of a graph G is a split dominating set if the induced subgraph $\langle V-D\rangle$ is disconnected. The split domination number $\gamma_{s}(G)$ is the minimum cardinality of a split dominating set [4]. The uniform domination number $\gamma_{u}(G)$ of a graph G is the least positive integer k such that any set with k vertices is a dominating set of G [5]. Let $S \subseteq V$. Then a vertex $v \in S$ is said to be an enclave of S if $N[v] \subseteq S$. The graphs considered here are finite, undirected, without loops or multiple edges and connected with p vertices and q edges. The corona of two graphs G and H is the graph $G o H$ formed from one copy of G and $|V(G)|$ copies of H where the $i^{\text {th }}$ vertex of G is adjacent to every vertex in the $i^{\text {th }}$ copy of H. Any undefined terms in this paper may be found in Harary [1].

Definition 1.1. A set $S \subseteq V$ is said to be a $c n d$-set of a graph G if it is a dominating set and its complement $V-S$ is not a dominating set. The minimum cardinality of a $c n d$-set is called the complementary nil domination number of G and is denoted by $\gamma_{\mathrm{cnd}}(G)$.

[^0]Hereafter by a cnd-set we mean a complementary nil dominating set. We note that $\gamma_{\text {cnd }}$ sets exist if and only if the graph is not complete. Here after, we assume that G is a non-complete connected graph.

2. Characterization of complementary nil dominating sets

First let us prove some basic results on the newly introduced parameter.
Lemma 2.1. Let S be a cnd-set of a graph G. Then S contains at least one enclave of S.

Proof. Let S be a $c n d$-set of a graph G. By Definition 1.1, $V-S$ is not a dominating set, which implies that there exists a vertex $v \in S$ such that v is not adjacent to any vertex in $V-S$ and so $N[v] \subseteq S$.

Remark 2.2. The enclave of a $\gamma_{\text {cnd }}$-set need not be unique. For example, in the graph $C_{5} o C_{3}$, every γ_{cnd}-set contains three enclaves.

Proposition 2.3. Let G be a graph and S be $a \gamma_{\mathrm{cnd}}-$ set. If u and v are two enclaves of S, then $N[u] \cap N[v] \neq \phi$ and u and v are adjacent.

Proof. Let u and v be two enclaves of S. Suppose $N[u] \cap N[v]=\phi$. Then u is an enclave of $S-N(\mathrm{v})$. Clearly $S-N(v)$ is a $c n d$-set of G and $|S-N(v)|<|S|=\gamma_{\mathrm{cnd}}(G)$, which is a contradiction to the minimality of S. Hence $N[u] \cap N[v] \neq \phi$. Suppose u and v are non-adjacent, $u \notin N(v)$ and so $S-\{v\}$ contains an enclave u of $S-\{v\}$. Hence $S-\{v\}$ is a $c n d$-set, which is a contradiction to the minimality of S .

Since the complement of an independent set is a dominating set, we get the following.
Proposition 2.4. A cnd-set of a graph G is not an independent dominating set.
The following result is used in the sequel.
Theorem 2.5.([2]) A dominating set S is a minimal dominating set if and only if for each vertex $u \in S$, one of the following two conditions holds:
(a) u is an isolate of S,
(b) there exists a vertex $v \in V-S$ for which $N(v) \cap S=\{u\}$.

Theorem 2.6. Let S be a cnd-set of a graph G. Then S is minimal if and only if for each vertex $u \in S$ one of the following conditions is satisfied.
(i) u has a private neighbour
(ii) $V-(S-\{u\})$ is a dominating set of G.

Proof. Suppose S is minimal. On the contrary if there exists a vertex $u \in S$ such that u does not satisfy any of the given conditions (i) and (ii), then by Theorem 2.5,
$S_{1}=S-\{u\}$ is a dominating set of G. Also by (ii), $V-(S-\{u\})$ is not a dominating set. This implies that S_{1} is a $c n d$-set of G, which is a contradiction.

Conversely, suppose that S is a $c n d$-set and for each vertex $u \in S$, one of the two stated conditions holds. We show that S is a minimal $c n d$-set of G. On the contrary, we assume that S is not a minimal $c n d$-set. That is, there exists a vertex $u \in S$ such that $S-\{u\}$ is a $c n d$ of G. Hence u is adjacent to atleast one vertex in $S-\{u\}$. Also $S-\{u\}$ is a dominating set, every vertex in $V-S$ is adjacent to atleast one vertex in $S-\{u\}$. That is, condition (i) does not hold. Since $S-\{u\}$ is a $c n d$-set, $V-(S-\{u\})$ is not a dominating set. That is condition (ii) does not hold. Therefore there exists a vertex $u \in S$ such that which does not satisfy conditions (i) and (ii), a contradiction to the assumption.

Theorem 2.7. For any graph G, every γ_{cnd}-set intersects with every γ-set of G.
Proof. Let S_{1} be a $\gamma_{\text {cnd }}{ }^{-}$set and S be a γ-set of G. Suppose that $S_{1} \cap S=\phi$, then $\mathrm{S} \subseteq V-S_{1}, V-S_{1}$ contains a dominating set S . Therefore $V-S_{1}$ itself is a dominating set, which is a contradiction.

Corollary 2.8. In any graph G, any two γ_{cnd}-sets intersect.
Proposition 2.9. Let S be a cnd-set of a graph G. Then there exists a vertex v in S such that v has no private neighbour.

Proof. Since complement of a minimal dominating set is a dominating set, S cannot be a minimal dominating set of G. So there exists a vertex v in S such that v has no private neighbour.

3. Bounds for complementary nil domination number

In this section, we obtain some bounds for the $c n d$-number of graphs.
Theorem 3.1. For any graph $G, \delta+1 \leq \gamma_{\text {cnd }}(G) \leq \gamma(G)+\delta$.
Proof. Let S be a $\gamma_{\text {cnd }}$-set of G. Since $V-S$ is not a dominating set, there exists a vertex $v \in S$ which is not adjacent to any of the vertices in $V-S$. Therefore $N[v] \subseteq S$ which implies that $|N[v]| \leq|S|$, that is $d(v)+1 \leq|S|$ and so $\delta+1 \leq \gamma_{\text {cnd }}(G)$. Let S_{1} be a γi set of G. Let $u \in V$ such that $d(u)=\delta$. Then atleast one vertex $u_{1} \in N[u]$ such that $u_{1} \in S_{1}$. Now $S_{1} \cup\left(N[u]-\left\{u_{1}\right\}\right)$ is a cnd-set of G, which implies that $\gamma_{\text {cnd }}(G) \leq$ $\left|S_{1} \cup\left(N[u]-\left\{u_{1}\right\}\right)\right| \leq\left|S_{1}\right|+\left|N[u]-\left\{u_{1}\right\}\right|=\gamma+\delta$. Therefore $\delta+1 \leq \gamma_{\mathrm{cnd}}(G) \leq \gamma+\delta$.

In view of the above Theorem 3.1, we have the following corollaries.
Corollary 3.2. For any graph G with $\delta=1, \gamma_{\text {cnd }}(G)=\gamma(G)+1$.
Since, for any graph $\mathrm{G}, \gamma(G) \leq p-\Delta[2]$, we have the following corollary.

Corollary 3.3. For any graph $G, \gamma_{\mathrm{cnd}}(G) \leq p-\Delta+\delta$.
Observation 3.4.
(i) For any graph $G, \gamma(G)<\gamma_{\text {cnd }}(G)$.
(ii) For any tree $T, \gamma_{\mathrm{cnd}}(T)=\gamma(T)+1$. In particular $\gamma_{\mathrm{cnd}}\left(P_{p}\right)=\gamma\left(P_{p}\right)+1$.
(iii) $\gamma_{\mathrm{cnd}}\left(C_{p}\right)=\left\{\begin{array}{l}\gamma\left(C_{p}\right)+1 \text { if } \mathrm{p} \text { is not a multiple of } 3 . \\ \gamma\left(C_{p}\right)+2 \text { if } \mathrm{p} \text { is a multiple of } 3 .\end{array}\right.$
(iv) $\gamma_{\text {cnd }}\left(W_{p}\right)=4, p \geq 5$, where W_{p} is a wheel with p vertices.
(v) $\gamma_{\mathrm{cnd}}\left(K_{m, n}\right)=\min \{m, n\}+1$.
(vi) $\gamma_{\text {cnd }}\left(K_{p}-\{e\}\right)=p-1$, where e is an edge in K_{p}.
(vii) $\gamma_{\text {cnd }}\left(\overline{m K}_{2}\right)=2 m-1$, for $m>1$.
(viii) $2 \leq \gamma_{\text {cnd }}(G) \leq p-1$, for $p \geq 3$.

One can easily prove the following propositions.
Proposition 3.5. For $\mathrm{k}>1$
(i) $\gamma_{\text {cnd }}\left(P_{2} \times P_{k}\right)=\left\{\begin{array}{l}\gamma\left(P_{2} \times P_{k}\right)+1 \text { if } \mathrm{k} \text { is even } \\ \gamma\left(P_{2} \times P_{k}\right)+2 \text { if } k \text { is odd }\end{array}\right.$
(ii) $\gamma_{\text {cnd }}\left(C_{3} \times P_{k}\right)=\gamma\left(C_{3} \times P_{k}\right)+2$.

Proposition 3.6.

(i) $\gamma_{\mathrm{cnd}}\left(\overline{K_{m, n}-e}\right)=m+1$ for $m \leq n$, where e is an edge in $K_{m, n}$.
(ii) $\gamma_{\text {cnd }}\left(\bar{P}_{p}\right)=p-2$ for $p>4$ and $\gamma_{\text {cnd }}\left(\bar{P}_{4}\right)=3$.
(iii) $\gamma_{\mathrm{cnd}}\left(\bar{C}_{p}\right)=p-2$ for $p>4$.

Theorem 3.7. For any graph G with $p>1,\left\lceil\frac{p}{\Delta+1}\right\rceil<\gamma_{\text {cnd }}(G) \leq 2 q-p+1$. Also if $\gamma_{\text {cnd }}(G)=2 q-p+1$ then G is a tree.

Proof. Since $\left\lceil\frac{p}{\Delta+1}\right\rceil \leq \gamma(G)<\gamma_{\mathrm{cnd}}(G)$, the first inequality follows. For any graph $\mathrm{G}, \gamma_{\text {cnd }}(G) \leq p-1=2(p-1)-p+1 \leq 2 q-p+1$.
Also if $\gamma_{\text {cnd }}(G)=2 q-p+1$. Then $2 q-p+1 \leq p-1$ and so $q \leq p-1$. Hence $q=p-1$. Therefore G must be a tree.

Theorem 3.8. Let G be a graph such that both G and its complement \bar{G} are connected. Then $\gamma_{\mathrm{cnd}}(G)+\gamma_{\mathrm{cnd}}(\bar{G}) \leq(p-1)(p-2)$. Equality holds for $G=P_{4}$.

Proof. By Theorem 3.7, $\gamma_{\text {cnd }}(G) \leq 2 q-p+1$ and $\gamma_{\text {cnd }}(\bar{G}) \leq 2 q-p+1$, then $\gamma_{\text {cnd }}(G)$ $+\gamma_{\mathrm{cnd}}(\bar{G}) \leq 2(q+q)-2(p-1)=p(p-1)-2(p-1)=(p-1)(p-2)$.

Theorem 3.9. Let G_{1} and G_{2} be two connected graphs. Then $\gamma_{\text {cnd }}\left(G_{1} \circ G_{2}\right)=\left|V\left(G_{1}\right)\right|$ $+\delta\left(G_{1} \circ G_{2}\right)$.

Proof. Clearly $V\left(G_{1}\right)$ is a $\gamma\left(G_{1} \circ G_{2}\right)$-set. We choose a vertex v in $G_{1} \circ G_{2}$ such that $d(v)=\delta\left(G_{1} \circ G_{2}\right)$. Then v must be one of the vertices in $V\left(G_{2}\right)$. Let u be the
vertex in $V\left(G_{1}\right)$ adjacent to v. Now $\left(V\left(G_{1}\right)-\{u\}\right) \cup N[v]$ is a $\gamma_{\text {cnd }}$-set of $G_{1} \circ G_{2}$ and $\gamma_{\text {cnd }}\left(G_{1} \circ G_{2}\right)=\left|\left(V\left(G_{1}\right)-\{u\}\right) \cup N[v]\right|=\left|V\left(G_{1}\right)\right|+\delta\left(G_{1} \circ G_{2}\right)$.

In view of Theorem 3.9, we have the following corollaries.
Corollary 3.10. Let G_{1} be any connected graph and G_{2} be a complete graph. Then $\gamma_{\mathrm{cnd}}\left(G_{1} \circ G_{2}\right)=\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|$.

Corollary 3.11. For any connected graph $H, \gamma_{\mathrm{cnd}}\left(H o K_{1}\right)=|V(H)|+1$.
Theorem 3.12. Let T be a tree with diam $(T)>2$. Then $\gamma_{\mathrm{cnd}}(\bar{T}) \leq p+1-\Delta(T)$. Equality holds for $G=P_{4}$.

Proof. Since $\gamma(\bar{T})=2$, then $\gamma_{\mathrm{cnd}}(\bar{T}) \leq \gamma(\bar{T})+\delta(\bar{T})=2+p-1-\Delta(T)$. Hence $\gamma_{\text {cnd }}(\bar{T}) \leq p+1-\Delta(T)$.

Theorem 3.13. Let \bar{G} be the connected complement of a graph G. Then $\gamma_{\mathrm{cnd}}(G)+$ $\gamma_{\mathrm{cnd}}(\bar{G}) \leq \frac{3 p}{2}+1+\delta(G)-\Delta(G)$. Equality holds for $G=P_{4}$.

Proof. From Theorem 3.1, $\gamma_{\text {cnd }}(G) \leq \gamma(G)+\delta(G)$ and $\gamma_{\text {cnd }}(\overline{\mathrm{G}}) \leq \gamma(\overline{\mathrm{G}})+\delta(\overline{\mathrm{G}})=$ $\gamma(\overline{\mathrm{G}})+\mathrm{p}-1-\Delta(\mathrm{G})$. Thus $\gamma_{\text {cnd }}(\mathrm{G})+\gamma_{\text {cnd }}(\overline{\mathrm{G}}) \leq \gamma(\mathrm{G})+\gamma(\overline{\mathrm{G}})+\mathrm{p}-1+\delta(\mathrm{G})-$ $\Delta(\mathrm{G})$. Since $\gamma(G)+\gamma(\bar{G}) \leq \frac{p}{2}+2$ (by Theorem 9.5 [2]), from the above, we have $\gamma_{\mathrm{cnd}}(G)+\gamma_{\mathrm{cnd}}(\bar{G}) \leq \frac{p}{2}+2+p-1+\delta(G)-\Delta(G)$. Hence $\gamma_{\mathrm{cnd}}(G)+\gamma_{\mathrm{cnd}}(\bar{G}) \leq \frac{3 p}{2}+1+$ $\delta(G)-\Delta(G)$.

Proposition 3.14. For any tree T, $\gamma_{\mathrm{cnd}}(T)+\in(T) \leq p+1$, where $\in(T)$ is the number of pendant vertices in T. Equality holds for $G=K_{1, p-1}$, where $p>2$.

Proof. All the non pendant vertices together a pendant vertex form a complementary nil dominating set. Therefore $\gamma_{\mathrm{cnd}}(T) \leq p-\in(T)+1$ and so $\gamma_{\mathrm{cnd}}(T)+\in(T) \leq p+1$.

Proposition 3.15. For any graph G, $\gamma_{s}(G)<\gamma_{\text {cnd }}(G)$.
Proof. Let S be a $\gamma_{\text {cnd }}$-set of G. Then there exists a vertex $v \in S$ such that $N[v] \subseteq S$. Clearly $S-\{v\}$ is a split dominating set and so $|S-\{v\}| \geq \gamma_{s}(G)$. Therefore $\gamma_{\text {cnd }}(G)-1$ $\geq \gamma_{s}(G)$. Hence $\gamma_{s}(G) \leq \gamma_{\text {cnd }}(G)-1<\gamma_{\text {cnd }}(G)$.

Theorem 3.16. For any graph $G, \Gamma(G)+\gamma_{\mathrm{cnd}}(G) \leq p+1$.
Proof. Let S be Γ-set of G. Then there exists a vertex $v \in S$ such that $S-\{v\}$ is not a dominating set of G. But $V-(S-\{v\})$ is a dominating set and so $V-(S-\{v\})$ is a $c n d$-set. Therefore $|(V-S) \cup\{v\}| \geq \gamma_{\text {cnd }}(G)$. Hence $\Gamma(G)+\gamma_{\text {cnd }}(G) \leq p+1$.

Remark 3.17. In the above Theorem 3.16 , the bound $\Gamma(G)+\gamma_{\text {cnd }}(G)=p+1$ is reachable for the following graphs.
(i) $\mathrm{K}_{\mathrm{p}}-\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots \ldots ., \mathrm{e}_{\mathrm{k}}\right\}$ where $1 \leq k \leq\lfloor p / 2\rfloor, e_{i}$'s are independent edges, $p>2$.
(ii) All the trees with every non-end vertex is adjacent to atleast one end vertex.

4. Particular values of complementary nil domination number

Theorem 4.1. For any graph G, $\gamma_{\text {cnd }}(\mathrm{G})=2$ if and only if $\gamma(\mathrm{G})=1$ and $\delta=1$.
Proof. Suppose $\gamma_{\text {cnd }}(G)=2$. Then $\gamma(G)<\gamma_{\text {cnd }}(G)=2$, implies $\gamma(G)=1$. Therefore there exits a vertex u in G such that $\mathrm{d}(\mathrm{u})=\mathrm{p}-1$. If $\delta>1$, since $\delta+1 \leq \gamma_{\mathrm{cnd}}(G)$, which implies that $\gamma_{\mathrm{cnd}}(G)>2$, which is a contradiction to $\gamma_{\mathrm{cnd}}(G)=2$. Converse follows from Theorem 3.1.

Theorem 4.2. Let G be a graph with $\delta>1$ and $p>3$. Then $\gamma_{\text {cnd }}(\mathrm{G})=\mathrm{p}-1$ if and only if $\delta=\mathrm{p}-2$.

Proof. Suppose that $\gamma_{\mathrm{cnd}}(G)=p-1$. On the contrary, let us assume that $\delta \leq p-3$. Then there exists a vertex $v \in V(G)$ such that v is not adjacent to atleast two vertices say u, w in $V(G)$. Then $V-\{u, w\}$ is a cnd-set. So $|V-\{u, w\}| \geq \gamma_{\mathrm{cnd}}(G)$. Hence $\gamma_{\text {cnd }}(G) \leq p-2$, which is a contradiction to the hypothesis. Conversely if $\delta=\mathrm{p}-2$, there exists a vertex v in G with $\mathrm{d}(\mathrm{v})=\mathrm{p}-2$ and $\mathrm{N}[\mathrm{v}]$ is a $c n d$-set. Therefore $|\mathrm{N}[\mathrm{v}]| \geq \gamma_{\text {cnd }}(\mathrm{G})$, so $\delta+1 \geq \gamma_{\text {cnd }}(G)$. By Theorem 3.1, $\gamma_{\text {cnd }}(G)=\delta+1$. Hence $\gamma_{\text {cnd }}(G)=p-1$.

Corollary 4.3 .

(i) Let G be a graph with $\delta>1$ and $\mathrm{p}>3$. Then $\gamma_{\mathrm{cnd}}(G)=p-1$ if and only if $G=K_{p}-\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ where $1 \leq \mathrm{k} \leq\lfloor\mathrm{p} / 2\rfloor, \mathrm{e}_{\mathrm{i}}$'s are independent edges.
(ii) Let G be a graph with $\delta=1$ and $\mathrm{p} \geq 5$. Then $\gamma_{\text {cnd }}(\mathrm{G}) \leq \mathrm{p}-2$.

Remark 4.4.

(i) When $\delta=1$, Theorem 4.2 need not be true, as can be seen from the graph P_{4}.
(ii) In view of Corollary 4.3 , for $\delta=1$, only graphs satisfying $\gamma_{\mathrm{cnd}}(\mathrm{G})=\mathrm{p}-1$ are P_{3} and P_{4}.

One can easily prove the following propositions.
Proposition 4.5. Let G be graph with $\delta=1$. Then there exists a $\gamma_{\text {cnd }}$-set which contains atleast one pendant vertex.

Proposition 4.6. Let T be a tree. Then there exists a γ_{cnd}-set which contain all the supports and exactly one pendant vertex. Hence $\mathrm{s}+1 \leq \gamma_{\mathrm{cnd}}(\mathrm{G})$, where s is the number of supports in T.

In view of Proposition 4.6, we have the following corollary.
Corollary 4.7. Let T be a tree such that every non-end vertex is adjacent to atleast one end vertex. Then $\gamma_{\mathrm{cnd}}(G)$. $=\mathrm{s}+1$

Theorem 4.8. Let G be a graph with $\operatorname{diam}(G) \geq 3$. Then $\gamma_{\mathrm{cnd}}(G) \leq p-\delta$.
Proof. Let $v \in V$ with $d(v)=\delta$. Since $\operatorname{diam}(G) \geq 3$, there exists a vertex $u \in$ $V-N[v]$ but u is not adjacent to any vertex in $N[v]$. Now, $V-N(v)$ is a dominating set but $\mathrm{N}(\mathrm{v})$ is not a dominating set. Therefore $|V-N(v)| \geq \gamma_{\mathrm{cnd}}(G)$ and $\gamma_{\mathrm{cnd}}(G) \leq p-\delta$.

For any graph G, $\gamma_{u}(G)=p-\delta[5]$ and hence we have the following corollary.
Corollary 4.9. Let G be a graph with diam $(G) \geq 3$. Then $\gamma_{\text {cnd }}(G) \leq \gamma_{\mathrm{u}}(\mathrm{G})$.
Remark 4.10. Corollary 4.9 fails if $\operatorname{diam}(G)=2$. For consider $\mathrm{K}_{2 \mathrm{n}}-\mathrm{X}$ where X is a 1-factor in $\mathrm{K}_{2 \mathrm{n}}$. Here $\gamma_{\mathrm{cnd}}=2 \mathrm{n}-1$ for $\mathrm{n}>1$ but $\gamma_{\mathrm{u}}=2$.

Theorem 4.11. Let G be a graph. Then diam $(G)=2$ if and only if $\gamma_{\text {cnd }}(G)=\delta+1$.
Proof. Let v be a vertex in G such that $\mathrm{d}(\mathrm{v})=\delta$, since G is not complete $\delta \leq p-2$. Suppose diam $(G)=2$, every vertex $u \notin N(v)$ must be adjacent to some vertex in $N(v)$. Therefore $\mathrm{N}[\mathrm{v}]$ is a complement nil dominating set of G. So $|\mathrm{N}[\mathrm{v}]| \geq \gamma_{\text {cnd }}, \delta+1 \geq \gamma_{\text {cnd }}(\mathrm{G})$. Also by Theorem $3.11, \delta+1 \leq \gamma_{\mathrm{cnd}}(G)$. Hence $\gamma_{\mathrm{cnd}}(G)=\delta+1$. Convesely, suppose that $\gamma_{\text {cnd }}(\mathrm{G})=\delta+1$. Then there exists a vertex $\mathrm{v} \in \mathrm{G}$ with $\mathrm{d}(\mathrm{v})=\delta$ such that $\mathrm{N}[\mathrm{v}]$ is a $\gamma_{\text {cnd }}{ }^{-}$ set. Therefore every vertex not in $N(v)$ must be adjacent to some vertex in $N(v)$ and so $\operatorname{diam}(G)=2$.

In view of the above Theorem 4.11 and $\gamma_{u}(G)=p-\delta$ [5], we have the following corollary.

Corollary 4.12. Let G be a graph. Then diam $(G)=2$ if and only if $\gamma_{\text {cnd }}(\mathrm{G})+$ $\gamma_{\mathrm{u}}(\mathrm{G})=\mathrm{p}+1$.

Proposition 4.13. Let G be a bipartite graph with its complement $\overline{\mathrm{G}}$ connected. Then $\gamma_{\mathrm{cnd}}(\overline{\mathrm{G}})=\mathrm{p}-\Delta(\mathrm{G})$ or $\mathrm{p}-\Delta(\mathrm{G})+1$.

Proof. Let (X, Y) be a partition of G. In $\bar{G},\langle X\rangle$ and $\langle Y\rangle$ are complete. Let u be a vertex in $\overline{\mathrm{G}}$ such that $\delta(\overline{\mathrm{G}})=\mathrm{d}(\mathrm{u})$. Without loss of generality we may assume that u is in X. If $\mathrm{N}[\mathrm{u}] \cap \mathrm{Y} \neq \phi$, then $\gamma_{\text {cnd }}(\overline{\mathrm{G}})=|\mathrm{N}[\mathrm{u}]|=\delta(\overline{\mathrm{G}})+1$, since $\delta(\overline{\mathrm{G}})=\mathrm{p}-1-\Delta(\mathrm{G}), \gamma_{\text {cnd }}(\overline{\mathrm{G}})$ $=p-\Delta(G)$. If $\mathrm{N}[\mathrm{u}] \cap \mathrm{Y}=\phi$, then $N[u]$ together with a vertex from Y is a $\gamma_{\text {cnd }}$-set of $\overline{\mathrm{G}}$. In this case $\gamma_{\text {cnd }}(\overline{\mathrm{G}})=\delta(\overline{\mathrm{G}})+2, \gamma_{\text {cnd }}(\overline{\mathrm{G}})=\mathrm{p}-\Delta(\mathrm{G})+1$.

Theorem 4.14. For any graph G, if $\gamma(G)=\frac{\mathrm{p}}{2}$, then $\gamma_{\text {cnd }}(G)=\frac{\mathrm{p}}{2}+1$.
Proof. Suppose $\gamma(\mathrm{G})=\frac{\mathrm{p}}{2}$. Let S be a γ-set of G, which implies $V-S$ is a dominating set with $|V-S|=\frac{p_{2}^{2}}{2}$. For any vertex $x \in V-S,(V-S)-\{x\}$ is not a dominating set. But $S \cup\{x\}$ is a dominating set and so $S \cup\{x\}$ is a cnd-set. Therefore $|S \cup\{x\}| \geq \gamma_{\text {cnd }}(G)$. So $\gamma(\mathrm{G})+1 \geq \gamma_{\text {cnd }}(\mathrm{G})$. By Theorem 3.1, $\gamma_{\mathrm{cnd}}(\mathrm{G})=\gamma(\mathrm{G})+1$.

Remark 4.15. Converse of the above Theorem 4.14 is not true. For consider C_{6}. Here $\gamma_{\text {cnd }}\left(C_{6}\right)=4=\frac{p}{2}+1$, but $\gamma\left(C_{6}\right)=2 \neq \frac{p}{2}$. Assume that $\delta=1$ and $\gamma_{\text {cnd }}(G)=\frac{p}{2}+1$. By Corollary 3.2, $\gamma(G)+1=\gamma_{\mathrm{cnd}}(G)=\frac{p}{2}+1$ and so $\gamma(G)=\frac{p}{2}$.

Acknowledgement

This work is supported by the University Grants Commission, New Delhi, under the Faculty Improvement Programme for the second author.

References

[1] F. Harary, Graph Theory, Addision Wesely, Reading M.A., 1969.
[2] Teresa W. Haynes, Stephen T. Hedetnimi, Peter. J. Slater, Fundamentals of Domination in Graphs, Marcel Decker, 1998.
[3] J. Paulraj Joseph and S. Arumugam, Domination in graphs, International J. Management Systems 11(1995), 177-182.
[4] V.R. Kulli and B.Janakiram, The split domination number of a graph, Graph Theory Notes of New York, New York Academy of Sciences XXXII(1997), 16-19.
[5] S. Arumugam and J. Paulraj Joseph, The uniform domination number of a graph, International J. Management. Systems 11(1995), 111-116.

Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627 012, Tamil Nadu, India.

E-mail: tamche_59@yahoo.co.in
Department of Mathematics, Scott Christian College, Nagercoil 629 003, Tamil Nadu, India.
E-mail: robinchel@rediffmail.com

[^0]: Corresponding author: T. Tamizh Chelvam.
 Received April 12, 2007; revised September 23, 2008.
 2000 Mathematics Subject Classification. 05C.
 Key words and phrases. Domination number, split domination number, independence number, uniform domination number and enclave.

