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COMPLEMENTARY NIL DOMINATION NUMBER OF A GRAPH

T. TAMIZH CHELVAM AND S. ROBINSON CHELLATHURAI

Abstract. A set S ⊆ V is said to be a complementary nil dominating set of a

graph G if it is a dominating set and its complement V − S is not a dominating

set for G. The minimum cardinality of a cnd-set is called the complementary nil

domination number of G and is denoted by γcnd(G). In this paper some results on

the complementary nil domination number are obtained.

1. Introduction

A set S ⊆ V of vertices of a simple graph G = (V, E) is a dominating set if for every

vertex v in V − S, there exists a vertex u in S such that v is adjacent to u. The minimum

cardinality of a dominating set in G is called the domination number of G and is denoted

by γ(G) [2]. Similarly the maximum cardinality of a minimal dominating set of a graph

G is called the upper domination number Γ(G)[2]. A dominating set D of a graph G

is a split dominating set if the induced subgraph <V − D> is disconnected. The split

domination number γs(G) is the minimum cardinality of a split dominating set [4]. The

uniform domination number γu(G) of a graph G is the least positive integer k such that

any set with k vertices is a dominating set of G [5]. Let S ⊆ V . Then a vertex v ∈ S is

said to be an enclave of S if N [v] ⊆ S. The graphs considered here are finite, undirected,

without loops or multiple edges and connected with p vertices and q edges. The corona

of two graphs G and H is the graph GoH formed from one copy of G and |V (G)| copies

of H where the ith vertex of G is adjacent to every vertex in the ith copy of H . Any

undefined terms in this paper may be found in Harary [1].

Definition 1.1. A set S ⊆ V is said to be a cnd-set of a graph G if it is a dominating

set and its complement V − S is not a dominating set. The minimum cardinality of a

cnd-set is called the complementary nil domination number of G and is denoted by

γcnd(G).
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Hereafter by a cnd-set we mean a complementary nil dominating set. We note that

γcnd sets exist if and only if the graph is not complete. Here after, we assume that G is

a non-complete connected graph.

2. Characterization of complementary nil dominating sets

First let us prove some basic results on the newly introduced parameter.

Lemma 2.1. Let S be a cnd-set of a graph G. Then S contains at least one enclave

of S.

Proof. Let S be a cnd-set of a graph G. By Definition 1.1, V −S is not a dominating

set, which implies that there exists a vertex v ∈ S such that v is not adjacent to any vertex

in V − S and so N [v] ⊆ S.

Remark 2.2. The enclave of a γcnd-set need not be unique. For example, in the

graph C5oC3, every γcnd-set contains three enclaves.

Proposition 2.3. Let G be a graph and S be a γcnd-set. If u and v are two enclaves

of S, then N [u]∩N [v] 6= φ and u and v are adjacent.

Proof. Let u and v be two enclaves of S. Suppose N [u]∩N [v] = φ. Then u is an

enclave of S − N(v). Clearly S −N(v) is a cnd-set of G and |S −N(v)| < |S| = γcnd(G),

which is a contradiction to the minimality of S. Hence N [u]∩N [v] 6= φ. Suppose u and

v are non-adjacent, u /∈N(v) and so S − {v} contains an enclave u of S − {v}. Hence

S − {v} is a cnd-set, which is a contradiction to the minimality of S.

Since the complement of an independent set is a dominating set, we get the following.

Proposition 2.4. A cnd-set of a graph G is not an independent dominating set.

The following result is used in the sequel.

Theorem 2.5.([2]) A dominating set S is a minimal dominating set if and only if

for each vertex u ∈ S, one of the following two conditions holds:

(a) u is an isolate of S,

(b) there exists a vertex v ∈ V − S for which N(v)∩S= {u}.

Theorem 2.6. Let S be a cnd-set of a graph G. Then S is minimal if and only if

for each vertex u ∈ S one of the following conditions is satisfied.

(i) u has a private neighbour

(ii) V − (S − {u}) is a dominating set of G.

Proof. Suppose S is minimal. On the contrary if there exists a vertex u∈S such

that u does not satisfy any of the given conditions (i) and (ii), then by Theorem 2.5,
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S1 = S − {u} is a dominating set of G. Also by (ii), V − (S − {u}) is not a dominating

set. This implies that S1 is a cnd-set of G, which is a contradiction.

Conversely, suppose that S is a cnd-set and for each vertex u ∈ S, one of the two

stated conditions holds. We show that S is a minimal cnd-set of G. On the contrary, we

assume that S is not a minimal cnd-set. That is, there exists a vertex u ∈ S such that

S − {u} is a cnd of G. Hence u is adjacent to atleast one vertex in S − {u}. Also S − {u}

is a dominating set, every vertex in V − S is adjacent to atleast one vertex in S − {u}.

That is, condition (i) does not hold. Since S − {u} is a cnd-set, V − (S − {u})is not a

dominating set. That is condition (ii) does not hold. Therefore there exists a vertex

u ∈ S such that which does not satisfy conditions (i) and (ii), a contradiction to the

assumption.

Theorem 2.7. For any graph G, every γcnd-set intersects with every γ-set of G.

Proof. Let S1 be a γcnd- set and S be a γ-set of G. Suppose that S1∩S = φ, then

S ⊆ V –S1, V − S1 contains a dominating set S. Therefore V − S1 itself is a dominating

set, which is a contradiction.

Corollary 2.8. In any graph G, any two γcnd-sets intersect.

Proposition 2.9. Let S be a cnd-set of a graph G. Then there exists a vertex v in

S such that v has no private neighbour.

Proof. Since complement of a minimal dominating set is a dominating set, S cannot

be a minimal dominating set of G. So there exists a vertex v in S such that v has no

private neighbour.

3. Bounds for complementary nil domination number

In this section, we obtain some bounds for the cnd-number of graphs.

Theorem 3.1. For any graph G, δ + 1 ≤ γcnd(G) ≤ γ(G) + δ.

Proof. Let S be a γcnd-set of G. Since V − S is not a dominating set, there exists a

vertex v ∈ S which is not adjacent to any of the vertices in V − S. Therefore N [v]⊆ S

which implies that |N [v]| ≤ |S|, that is d(v)+1 ≤ |S| and so δ + 1 ≤ γcnd(G). Let S1 be

a γ i set of G. Let u ∈ V such that d(u) = δ. Then atleast one vertex u1 ∈ N [u] such

that u1 ∈ S1. Now S1 ∪ (N [u] − {u1}) is a cnd-set of G, which implies that γcnd(G) ≤

|S1 ∪ (N [u] − {u1})| ≤ |S1| + |N [u]− {u1}| = γ + δ. Therefore δ + 1 ≤ γcnd(G) ≤ γ + δ.

In view of the above Theorem 3.1, we have the following corollaries.

Corollary 3.2. For any graph G with δ = 1, γcnd(G) = γ(G) + 1.

Since, for any graph G, γ(G) ≤ p − ∆[2], we have the following corollary.
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Corollary 3.3. For any graph G, γcnd(G) ≤ p − ∆ + δ.

Observation 3.4.

(i) For any graph G, γ(G) < γcnd(G).

(ii) For any tree T, γcnd(T ) = γ(T ) + 1. In particular γcnd(Pp) = γ(Pp) + 1.

(iii) γcnd(Cp) =

{

γ(Cp) + 1 if p is not a multiple of 3.

γ(Cp) + 2 if p is a multiple of 3.

(iv) γcnd(Wp) = 4, p ≥ 5, where Wp is a wheel with p vertices.

(v) γcnd(Km,n) = min{m, n} + 1.

(vi) γcnd(Kp − {e}) = p − 1, where e is an edge in Kp.

(vii) γcnd(mK2) = 2m − 1, for m > 1.

(viii) 2 ≤ γcnd(G) ≤ p − 1, for p ≥ 3.

One can easily prove the following propositions.

Proposition 3.5. For k > 1

(i) γcnd(P2 × Pk) =

{

γ(P2 × Pk) + 1 if k is even

γ(P2 × Pk) + 2 if k is odd

(ii) γcnd(C3 × Pk) = γ(C3 × Pk) + 2.

Proposition 3.6.

(i) γcnd(Km,n − e) = m + 1 for m ≤ n, where e is an edge in Km,n.

(ii) γcnd(P̄p) = p − 2 for p > 4 and γcnd(P̄4) = 3.

(iii) γcnd(C̄p) = p − 2 for p > 4.

Theorem 3.7. For any graph G with p > 1, ⌈ p

∆+1
⌉ < γcnd(G) ≤ 2q − p + 1. Also if

γcnd(G) = 2q − p + 1 then G is a tree.

Proof. Since ⌈ p

∆+1
⌉ ≤ γ(G) < γcnd(G), the first inequality follows. For any graph

G, γcnd(G) ≤ p − 1 = 2(p − 1) − p + 1 ≤ 2q − p + 1.
Also if γcnd(G) = 2q − p + 1. Then 2q − p + 1 ≤ p − 1 and so q ≤ p − 1. Hence q = p − 1.
Therefore G must be a tree.

Theorem 3.8. Let G be a graph such that both G and its complement Ḡ are con-

nected. Then γcnd(G)+γcnd(Ḡ) ≤ (p − 1)(p − 2). Equality holds for G = P4.

Proof. By Theorem 3.7, γcnd(G) ≤ 2q − p + 1 and γcnd(Ḡ) ≤ 2q−p + 1, then γcnd(G)
+γcnd

¯(G) ≤ 2(q + q) − 2(p − 1) = p(p − 1) − 2(p − 1) = (p − 1)(p − 2).

Theorem 3.9. Let G1 and G2 be two connected graphs. Then γcnd(G1 ◦ G2) =|V (G1)|
+δ(G1 ◦ G2).

Proof. Clearly V (G1) is a γ(G1 ◦ G2)-set. We choose a vertex v in G1 ◦ G2 such
that d(v) = δ(G1 ◦ G2). Then v must be one of the vertices in V (G2). Let u be the
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vertex in V (G1) adjacent to v. Now (V (G1) − {u}) ∪ N [v] is a γcnd-set of G1 ◦ G2 and

γcnd(G1 ◦ G2) = |(V (G1) − {u})∪N [v]| = |V (G1)|+δ(G1 ◦ G2).

In view of Theorem 3.9, we have the following corollaries.

Corollary 3.10. Let G1 be any connected graph and G2 be a complete graph. Then

γcnd(G1 ◦ G2) = |V (G1)| + |V (G2)|.

Corollary 3.11. For any connected graph H, γcnd(HoK1) = |V (H)| + 1.

Theorem 3.12. Let T be a tree with diam (T ) > 2. Then γcnd(T̄ ) ≤p + 1 − ∆(T ).

Equality holds for G = P4.

Proof. Since γ(T̄ ) = 2, then γcnd(T̄ ) ≤ γ(T̄ ) + δ(T̄ ) = 2 + p − 1 − ∆(T ). Hence

γcnd(T̄ ) ≤ p + 1 − ∆(T ).

Theorem 3.13. Let Ḡ be the connected complement of a graph G. Then γcnd(G)+

γcnd(Ḡ) ≤ 3p

2
+ 1 + δ(G) − ∆(G). Equality holds for G = P4.

Proof. From Theorem 3.1, γcnd(G) ≤ γ(G) + δ(G) and γcnd(Ḡ) ≤ γ(Ḡ) + δ(Ḡ) =

γ(Ḡ) + p − 1 − ∆(G). Thus γcnd(G) + γcnd(Ḡ) ≤ γ(G) + γ(Ḡ) + p − 1 + δ(G) −

∆(G). Since γ(G) + γ(Ḡ) ≤ p

2
+ 2 (by Theorem 9.5 [2]), from the above, we have

γcnd(G) + γcnd(Ḡ) ≤p

2
+ 2 + p − 1 + δ(G) − ∆(G). Hence γcnd(G) + γcnd(Ḡ) ≤ 3p

2
+ 1 +

δ(G) − ∆(G).

Proposition 3.14. For any tree T, γcnd(T )+ ∈ (T ) ≤ p + 1, where ∈ (T ) is the

number of pendant vertices in T . Equality holds for G = K1,p−1, where p >2.

Proof. All the non pendant vertices together a pendant vertex form a complementary

nil dominating set. Therefore γcnd(T ) ≤ p− ∈ (T ) + 1 and so γcnd(T )+∈ (T ) ≤ p + 1.

Proposition 3.15. For any graph G, γs(G) < γcnd(G).

Proof. Let S be a γcnd-set of G. Then there exists a vertex v ∈ S such that N [v] ⊆ S.

Clearly S − {v} is a split dominating set and so |S − {v}| ≥ γs(G). Therefore γcnd(G) − 1

≥ γs(G). Hence γs(G) ≤ γcnd(G) − 1 < γcnd(G).

Theorem 3.16. For any graph G, Γ(G) + γcnd(G) ≤ p + 1.

Proof. Let S be Γ-set of G. Then there exists a vertex v ∈ S such that S − {v} is

not a dominating set of G. But V − (S − {v}) is a dominating set and so V − (S − {v})

is a cnd-set. Therefore |(V − S)∪{v}| ≥ γcnd(G). Hence Γ(G) + γcnd(G) ≤ p + 1.

Remark 3.17. In the above Theorem 3.16, the bound Γ(G) + γcnd(G) = p + 1 is

reachable for the following graphs.

(i) Kp − {e1, e2, . . . . . . ., ek} where 1 ≤ k ≤ ⌊p/2⌋, ei’s are independent edges, p > 2.

(ii) All the trees with every non-end vertex is adjacent to atleast one end vertex.
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4. Particular values of complementary nil domination number

Theorem 4.1. For any graph G, γcnd(G) = 2 if and only if γ(G) = 1 and δ = 1.

Proof. Suppose γcnd(G) = 2. Then γ(G) < γcnd(G) = 2, implies γ(G) = 1. There-
fore there exits a vertex u in G such that d(u) = p − 1. If δ > 1, since δ + 1 ≤ γcnd(G),
which implies that γcnd(G) > 2, which is a contradiction to γcnd(G) = 2. Converse
follows from Theorem 3.1.

Theorem 4.2. Let G be a graph with δ > 1 and p > 3. Then γcnd(G) = p − 1 if and

only if δ = p − 2.

Proof. Suppose that γcnd(G) = p − 1. On the contrary, let us assume that δ ≤ p − 3.
Then there exists a vertex v ∈ V (G) such that v is not adjacent to atleast two vertices
say u, w in V (G). Then V − {u, w} is a cnd-set. So |V − {u, w}| ≥ γcnd(G). Hence
γcnd(G) ≤ p−2, which is a contradiction to the hypothesis. Conversely if δ = p − 2, there
exists a vertex v in G with d(v) = p − 2 and N[v] is a cnd-set. Therefore |N[v]| ≥ γcnd(G),
so δ + 1 ≥ γcnd(G). By Theorem 3.1, γcnd(G) = δ + 1. Hence γcnd(G) = p − 1.

Corollary 4.3.

(i) Let G be a graph with δ > 1 and p > 3. Then γcnd(G) = p − 1 if and only if

G = Kp − {e1, e2, . . . , ek} where 1 ≤ k ≤ ⌊p/2⌋, ei’s are independent edges.

(ii) Let G be a graph with δ = 1 and p ≥ 5. Then γcnd(G) ≤ p − 2.

Remark 4.4.

(i) When δ = 1, Theorem 4.2 need not be true, as can be seen from the graph P4.

(ii) In view of Corollary 4.3, for δ = 1, only graphs satisfying γcnd(G) = p − 1 are P3

and P4.

One can easily prove the following propositions.

Proposition 4.5. Let G be graph with δ = 1. Then there exists a γcnd-set which

contains atleast one pendant vertex.

Proposition 4.6. Let T be a tree. Then there exists a γcnd-set which contain all the

supports and exactly one pendant vertex. Hence s + 1 ≤ γcnd(G), where s is the number

of supports in T .

In view of Proposition 4.6, we have the following corollary.

Corollary 4.7. Let T be a tree such that every non-end vertex is adjacent to atleast

one end vertex. Then γcnd(G).=s+1

Theorem 4.8. Let G be a graph with diam(G) ≥ 3. Then γcnd(G) ≤ p − δ.

Proof. Let v ∈ V with d(v) = δ. Since diam(G) ≥ 3, there exists a vertex u ∈
V −N [v] but u is not adjacent to any vertex in N [v]. Now, V −N(v) is a dominating set
but N(v) is not a dominating set. Therefore |V −N(v)| ≥ γcnd(G) and γcnd(G) ≤ p− δ.
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For any graph G, γu(G) = p − δ [5] and hence we have the following corollary.

Corollary 4.9. Let G be a graph with diam (G) ≥ 3. Then γcnd(G) ≤ γu(G).

Remark 4.10. Corollary 4.9 fails if diam(G) = 2. For consider K2n − X where X is
a 1-factor in K2n. Here γcnd = 2n − 1 for n > 1 but γu = 2.

Theorem 4.11. Let G be a graph. Then diam (G) = 2 if and only if γcnd(G) =δ + 1.

Proof. Let v be a vertex in G such that d(v) = δ, since G is not complete δ ≤ p− 2.
Suppose diam (G) = 2, every vertex u /∈ N(v) must be adjacent to some vertex in N(v).
Therefore N[v] is a complement nil dominating set of G. So |N[v]| ≥ γcnd, δ + 1 ≥ γcnd(G).
Also by Theorem 3.11, δ + 1 ≤ γcnd(G). Hence γcnd(G) = δ + 1. Convesely, suppose that
γcnd(G) = δ + 1. Then there exists a vertex v ∈ G with d(v) = δ such that N[v] is a γcnd-
set. Therefore every vertex not in N(v) must be adjacent to some vertex in N(v) and so
diam (G) = 2.

In view of the above Theorem 4.11 and γu(G) = p − δ [5], we have the following
corollary.

Corollary 4.12. Let G be a graph. Then diam (G) = 2 if and only if γcnd(G) +
γu(G) = p + 1.

Proposition 4.13. Let G be a bipartite graph with its complement Ḡ connected.

Then γcnd(Ḡ) = p − ∆(G) or p − ∆(G) + 1.

Proof. Let (X, Y ) be a partition of G. In Ḡ, <X> and <Y > are complete. Let u be a
vertex in Ḡ such that δ(Ḡ) = d(u). Without loss of generality we may assume that u is in
X. If N[u] ∩ Y 6= φ, then γcnd(Ḡ) = |N[u]| = δ(Ḡ) + 1, since δ(Ḡ) = p − 1 − ∆(G), γcnd(Ḡ)
= p − ∆(G). If N[u] ∩ Y = φ, then N [u] together with a vertex from Y is a γcnd-set of
Ḡ. In this case γcnd(Ḡ) =δ(Ḡ) + 2, γcnd(Ḡ) = p − ∆(G) + 1.

Theorem 4.14. For any graph G, if γ(G) = p

2
, then γcnd(G) = p

2
+ 1.

Proof. Suppose γ(G) = p
2
. Let S be a γ-set of G, which implies V − S is a dom-

inating set with |V − S| = p

2
. For any vertex x ∈ V − S, (V − S) − {x} is not a dom-

inating set. But S ∪ {x} is a dominating set and so S ∪ {x} is a cnd-set. Therefore
|S ∪ {x}| ≥ γcnd(G). So γ(G) + 1 ≥ γcnd(G). By Theorem 3.1, γcnd(G) = γ(G) + 1.

Remark 4.15. Converse of the above Theorem 4.14 is not true. For consider C6.
Here γcnd(C6) = 4 = p

2
+1, but γ(C6) = 2 6= p

2
. Assume that δ = 1 and γcnd(G) = p

2
+1.

By Corollary 3.2, γ(G) + 1 = γcnd(G) = p

2
+ 1 and so γ(G) = p

2
.
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