CR-SUBMANIFOLDS OF TWO DIMENSIONAL COMPLEX PROJECTIVE SPACE

SHARIEF DESHMUKH AND M. A. AL-GWAIZ

1.

Among all submanifolds of a Kaehler manifold there are three typical classes: the complex submanifolds, the totally real submanifolds and the CR-submanifolds. The notion of a CR-submanifold of a Kaehler manifold was introduced by Bejancu [1] and it includes the other two classes as special cases. If \overline{M} is a Kaehler manifold with complex structure J and M is a submanifold of \overline{M} , M is called a *CR-submanifold* of \overline{M} if there exists a pair of orthogonal complementary distributions D and D^{\perp} on M satisfying JD = D and $JD^{\perp} \subset \nu$, where ν is the normal bundle of M.

It is known that every compact and orientable 3-manifold M possesses a contact structure, that is, M carries a globally defined 1-form η with $\eta \wedge d\eta \neq 0$ everywhere on M [4]. One can associate with η a vector field t determined by $\eta(t) = 1$ and $d\eta(t, X) = 0$ for all vector fields X on M. If, in addition, M is a Riemannian manifold with metric g and η satisfies $\eta(t) = g(X, t)$, then η is called the contact metric stucture on M.

The object of the present paper is to study the 3-dimensional CR-submanifold of the 2-dimensional complex projective space CP^2 . It is shown that a simply connected 3-dimensional CR-submanifold M of CP^2 is either a contact manifold or a certain 2dimensional distribution on M is integrable. We next consider those compact and simply connected CR-submanifolds which admit contact metric structure with respect to the induced metric, and prove that they are either diffeomorphic to S^3 or minimal submanifolds.

2.

Let J be the almost complex structure and g be the metric of constant holomorphic sectional curvature 4 on CP^2 . If $\overline{\nabla}$ is the Riemannian connection on CP^2 , then we have

(2.1)
$$(\overline{\nabla}_X J)(Y) = 0.$$

Let M be a 3-dimensional CR-submanifold of CP^2 . Then on M there are two orthogonal complementary distributions, D and D^{\perp} , satisfying JD = D and $JD^{\perp} = T^{\perp}M$,

Received June 3, 1989.

¹⁾ This work has been supported by grant No. (Math/1409/05) of the Research Center, College of Science, King Saud University, Riyadh, Saudi Arabia.

where $T^{\perp}M$ is the normal line boundle of M (cf. [1]). It is clear that dim D = 2 and dim $D^{\perp} = 1$. Suppose N is the unit normal vector field to M and put $\xi = -JN$. Then ξ is a globally defined unit vector field on M which lies in D^{\perp} . We shall denote by g both the metric on CP^2 and the induced metric on M. The Riemannian connection $\overline{\nabla}$ of CP^2 induces a Riemannian connection ∇ on M and they are related by the formulae

(2.2)
$$\overline{\nabla}_X Y = \nabla_X Y + h(X,Y), \ \overline{\nabla}_X J\xi = -AX, \ X, Y \in \mathcal{X}(M),$$

where h(X,Y) is the second fundamental form, A is the Weingarten map and $\mathcal{X}(M)$ is the lie-algebra of vector fields on M. We also have the following relations for the hypersurface M:

$$\begin{array}{l} (2.3) \ g(h(X,Y),J\xi) = g(AX,Y) \\ (2.4) \quad \overline{R}(X,Y)J\xi = (\nabla_Y A)(X) - (\nabla_X A)(Y) \\ (2.5) \ R(X,Y;Z,W) = \overline{R}(X,Y;Z,W) + g(h(Y,Z),h(X,W) - g(h(X,Z),h(Y,W)), \\ \quad X,Y,Z,W \in \mathcal{X}(M), \end{array}$$

where R is the curvature tensor of M and \overline{R} is the curvature tensor of CP^2 given by

(2.6)
$$\overline{R}(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(JY,Z)JX - g(JX,Z)JY + 2g(X,JY)JZ, \quad X,Y,Z \in \mathcal{X}(CP^2).$$

If the trace of the second fundamental form h(X,Y) is zero, then M is called a minimal submanifold of \mathbb{CP}^2 .

3.

If we take $X \in D$, add the expansions of the equations $(\overline{\nabla}_{JX}J)(X) = 0$ and $J(\overline{\nabla}_XJ)(X) = 0$, and use (2.2) we get

(3.1) $\nabla_X X + \nabla_{JX} JX + h(X, X) + h(JX, JX) + J[X, JX] = 0, X \in D.$

Theorem 3.1 Let M be a simply connected 3-dimensional CR-submanifold of CP^2 . Then there exists a 1-form α on M which either defines a contact structure on M or the distribution given by the kernel of α is integrable.

Proof. We note that for each unit vector field $e \in D$, $\{e, Je\}$ is an orthonormal local frame for D. Let $\{\omega^1, \omega^2\}$ be the dual frame of $\{e, Je\}$. We shall now show that the 2-form $\omega^1 \wedge \omega^2$ is independent of the frame $\{e, Je\}$. If $\{X, JX\}$ is another orthonormal frame for D with dual frame $\{p, q\}$, then there exist smooth functions f and g such that, locally, we have X = fe + gJe, JX = -ge + fJe and $f^2 + g^2 = 1$. Consequently $p = f\omega^1 + g\omega^2$, $q = -g\omega^1 + f\omega^2$ and $p \wedge q = \omega^1 \wedge \omega^2$. Taking the inner product with ξ in (3.1), since $J\xi$ is normal, we get $g(\nabla_X X + \nabla_J X JX, \xi) = 0, X \in D$. And

since ξ is a unit vector field we have $\xi \cdot g(\xi,\xi) = 0$, that is, $g(\nabla_{\xi}\xi,\xi) = 0$. For the orthonormal frame $\{e, Je, \xi\}$ on M, we get $d(\omega^1 \wedge \omega^2)(e, Je, \xi) = 0$, which means that the form $\omega^1 \wedge \omega^2$ is closed. Since M is simply connected the cohomology group $H^2(M,R)$ is trivial. Thus the closed 2-form $\omega^1 \wedge \omega^2$ is exact and there exists a 1-form α on M such that $d\alpha = \omega^1 \wedge \omega^2$. Now consider the set $U = \{p \in M : (\alpha \wedge d\alpha)_p \neq 0\},\$ which is an open subset of M. U is orientable as it has a non-vanishing 3-form $\alpha \wedge d\alpha$. The 1-form α defines a contact structure on U, so there exists a vector field t on U determined by $\alpha(t) = 1, d\alpha(t, X) = 0$ for all vector fields X on U (cf. [2]). Since $d\alpha = \omega^1 \wedge \omega^2$, it follows from $d\alpha(t,e) = 0$ and $d\alpha(t,Je) = 0$ that $\omega^1(t) = 0$ and $\omega^2(t) = 0$, that is, the vector field t is parallel to ξ . On the other hand it is not difficult to see that $(\alpha \wedge d\alpha)_p \neq 0$ if and only if $\alpha_p(t) = 1, \omega_p^1(t) = 0$ and $\omega_p^2(t) = 0$. For $\alpha_p(t) = 1, \omega_p^1(t) = 0$ and $\omega_p^2(t) = 0$ imply that $\{t, e, Je\}$ are mutually orthogonal tangent vectors at p and therefore $(\alpha \wedge d\alpha)_p(t, e, Je) = (\alpha \wedge \omega^1 \wedge \omega^2)_p(t, e, Je) = 1 \neq 0$. Hence $U = \{p \in M : \alpha_p(t) = 1, \omega_p^1(t) = 0, \omega_p^2(t) = 0\}$ is a closed subset of M. Thus the set U is both an open and a closed subset of M. M, being simply connected, is connected, and therefore either U = M or U is empty. When U = M, α defines a contact structure on M and when U is empty we have $\alpha \wedge d\alpha = 0$ everywhere on M, which is the condition for integrability of the distribution $\{X \in \mathcal{X}(M) : \alpha(X) = 0\}$.

4.

In this section we study the simply connected 3-dimensional CR-submanifolds of CP^2 on which α defines a contact structure. Our main result is

Theorem 4.1 Let M be a compact and simply connected 3-dimensional CRsubmanifold of CP^2 . If the 1-form α defines a contact structure on M which is also a contact metric structure with respect to the induced metric on M, then either M is a minimal submanifold or M is diffeomorphic to S^3 .

Proof. Since α defines a contact metric structure on M with respect to the induced metric structure on M, we have $\alpha(X) = g(X,t), X \in \mathcal{X}(M)$. From this it follows that g(t,t) = 1, that is, t is a unit vector field which is parallel to ξ , and thus $t = \xi$. If η is a 1-form dual to ξ , then we get $\alpha = \eta$. Since $d\eta = \omega^1 \wedge \omega^2$, from $d\eta(\xi, e) = 0$ and $d\eta(\xi, Je) = 0$, we get $g(\nabla_{\xi}\xi, e) = 0$ and $g(\nabla_{\xi}\xi, Je) = 0$. As we already have $g(\nabla_{\xi}\xi, \xi) = 0$ we conclude that $\nabla_{\xi}\xi = 0$. Now using (2.2) in $(\overline{\nabla}_{\xi}J)(\xi) = 0$, we get $A\xi + Jh(\xi,\xi) = 0$. If we take $h(\xi,\xi) = \nu J\xi$, where ν is a smooth function, we obtain $A\xi = \nu\xi$, that is, ξ is an eigenvector of A. The other two eigenvectors of A will be from D. Suppose the two eigenvectors from D are e and Je with $Ae = \lambda e$ and $AJe = \mu Je$. Since the frame $\{e, Je, \xi\}$ diagonalizes A we have h(e, Je) = 0, $h(e, \xi) = 0$ and $h(Je, \xi) = 0$. Using (2.2) in $(\overline{\nabla}eJ)(e) = 0$ and taking the inner product with $J\xi$ we get $g(\nabla_e e, \xi) = 0$. Similarly we get $g(\nabla_{\xi} e, \xi) = 0$. Furthermore $\nabla_{\xi}\xi = 0$ implies that $g(\nabla_{\xi}e, \xi) = 0$ and $g(\nabla_{\xi}Je, \xi) = 0$.

of M, we have the following local equations

(4.1)
$$\begin{aligned} \nabla_e e &= aJe, & \nabla_{Je}Je = be, & \nabla_{\xi}\xi = 0 \\ \nabla_e \xi &= \lambda Je, & \nabla_{Je}\xi = -\mu e, & \nabla_{\xi}e = fJe \\ \nabla_{\xi}Je &= -fe, & \nabla_e Je = -ae - \lambda\xi, & \nabla_{Je}e = -bJe + \mu\xi \end{aligned}$$

where a, b, λ, μ, ν and f are smooth functions.

Now consider the set $V = \{p \in M : \lambda \mu \nu \neq 0\}$. Since V is an open subset of M every point in V has a neighbourhood where the equations (4.1) hold.

Equation (2.4) with different combinations of the frame vectors $\{e, Je, \xi\}$, in view of (4.1) and (2.6), gives

(4.2)
$$f(\mu - \lambda) + \lambda(\nu - \mu) = -1, \ f(\mu - \lambda) + \mu(\lambda - \nu) = 1, \ \nu(\lambda + \mu) = 2(\lambda\mu - 1)$$

and

(4.3)
$$\xi \cdot \lambda = 0, \ \xi \cdot \mu = 0, \ e \cdot \nu = 0, \ J e \cdot \nu = 0, \ e \cdot \mu = b(\mu - \lambda), \ J e \cdot \lambda = a(\lambda - \mu).$$

Adding the first two equations in (4.2), we get $(\lambda - \mu)(\nu - 2f) = 0$. Thus either $\lambda = \mu$ or $\nu = 2f$. Also from $d\eta = \omega^1 \wedge \omega^2$, we get $-\eta([e, Je]) = 2$, and hence, using (4.1), we have $\lambda + \mu = 2$. In case $\lambda = \mu$, we get $\lambda = \mu = 1$ and, from (4.2), $\nu = 0$, which does not occur on V. Thus on V we have $\lambda \neq \mu$, and therefore $\nu = 2f$. To compute the values of λ, μ, ν we note from (4.2) that $\nu = \lambda \mu - 1$. Using the first two equations in (4.3), we get $\xi.\nu = 0$, and , in view of (4.3), this implies that ν is constant.

Now solving the equations $\lambda + \mu = 2$ and $\lambda - \mu = \sqrt{4 - 4\lambda\mu} = 2\sqrt{-\nu}$, we get $\lambda = 1 + \sqrt{-\nu}$ and $\mu = 1 - \sqrt{-\nu}$. This shows that λ and μ are both constants and, since $\lambda \neq \mu$, from (4.3) we get a = 0 b = 0. Using (2.5) and (2.6) together with (4.1) to compute R(e, Je, e), we get

$$e.b + Je.a = a^2 + b^2 + f(\lambda + \mu) + 4 + 2\lambda\mu.$$

From the above equation we have $f + \nu + 3 = 0$. Solving it with $\nu = 2f$, we get $\nu = -2$ and consequently $\lambda = 1 + \sqrt{2}$, $\mu = 1 - \sqrt{2}$. With the set $V = \{p \in M : \lambda \mu \nu = 2\}$, and which is therefore closed, using the connectedness of M we get either V = M or Vis empty. When V = M, we have $\lambda + \mu + \nu = 0$, that is M is a minimal submanifold of CP^2 , and when V is empty we have $\lambda = 1$, $\mu = 1$ and $\nu = 0$. If Ric denotes the Ricci tensor of M, then from (2.5) and (2.6) the Ricci tensor of M is given by Ric(X,Y) = 5g(X,Y) + tr.Ag(AX,Y) - g(AX,AY). For $\lambda = 1$, $\mu = 1$ and $\nu = 0$, we get Ric(e,e) = 6, Ric(Je,Je) = 6, $Ric(\xi,\xi) = 5$. Ric(e,Je) = 0, $Ric(Je,\xi) = 0$. Thus for any non-zero vector field $X \in \mathcal{X}(M)$, we have locally $X = \omega^1(X)e + \omega^2(X)Je + \eta(X)\xi$, and

$$Ric(X,X) = [\omega^{1}(x)]^{2}Ric(e,e) + [\omega^{2}(x)]^{2}Ric(Je,Je) + [\eta(x)]^{2}Ric(\xi,\xi) > 0.$$

M is therefore of strictly positive Rici curvature and, being compact and simply connected, by Hamiltons Theorem M is diffeomorphie to S^3 (cf. [3]).

CR-SUBMANIFOLDS OF TWO DIMENSIONAL COMPLEX PROJECTIVE SPACE

Remark. We note that if M is any real hypersurface of CP^2 , then the unit normal vector field N gives rise to the unit vector field $\xi = -JN$ on M. Then the kernel of the 1-form η dual to ξ gives rise to a smooth 2-dimensional distribution D which satisfies JD = D, and ξ spans the 1-dimensional distribution D^{\perp} which satisfies $JD^{\perp} = T^{\perp}M$. Thus a real hypersurfaces of CP^2 is a 3-dimensional CR-submanifold of CP^2 and our theorems hold for the real hypersurface of CP^2 . In a forthcoming paper we shall study 3-dimensional simply connected CR-submanifolds of CP^2 on which α does not define the contact structure given by theorem 3.1.

References

- [1] A. Bejancu, "CR-submanifolds of a Kachler manifold-I," Proc. Amer Math. Soc. 69 (1978), 134-142.
- [2] D. E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer Verlag, Berlin and New York 1976.
- [3] R. S. Hamilton, "Three manifolds with positive Ricci curvature," J. Diff. Geom. 17 (1982), 255-306.
- [4] J. Martinet, Formés de contact sur lés variétés de diménsion 3, Proc. Liverpool Singularities Symp. II, Springer lecture notes in Math. 209 (1971), 142-163.

Department of Mathematics, College of Science, King Saud University, POB 2455, Riyadh-11451, Saudi Arabia.