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CR-SUBMANIFOLDS OF TWO DIMENSIONAL
COMPLEX PROJECTIVE SPACE
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1.

Among all submanifolds of a Kaehler manifold there are three typical classes:

the complex submanifolds, the totally real submanifolds and the CR-submanifolds. The
notion of a CR-submanifold of a Kaehler manifold was introduced by Bejancu [1] and it
includes the other two classes as special cases. If M is a Kaehler manifold with complex
structure J and M is a submanifold of M, M is called a CR-submanifold of M if there
exists a pair of orthogonal complementary distributions D and D+ on M satisfying
JD = D and JD*+ C v, where v is the normal bundle of M.

It is known that every compact and orientable 3-manifold M possesses a contact
structure, that is, M carries a globally defined 1-form n with 7 A dn # 0 everywhere on
M [4]. One can associate with 1 a vector field ¢ determined by n(t) = 1 and dn(t, X) =0
for all vector fields X on M. If, in addition, M is a Riemannian manifold with metric g
and 7 satisfies 9(t) = g(X,t), then 7 is called the contact metric stucture on M.

The object of the present paper is to study the 3-dimensional CR-submanifold of
the 2-dimensional complex projective space CP2. It is shown that a simply connected
3-dimensional CR-submanifold M of CP? is either a contact manifold or a certain 2-
dimensional distribution on M is integrable. We next consider those compact and sim-
ply connected CR-submanifolds which admit contact metric structure with respect to
the induced metric, and prove that they are either diffeomorphic to S? or minimal sub-
manifolds.

2.

Let J be the almost complex structure and g be the metric of constant holomorphic
sectional curvature 4 on CP2. If V is the Riemannian connection on C P2, then we have

(2.1) (VxJ)Y)=0.

Let M be a 3-dimentional CR-submanifold of CP2. Then on M there are two or-
thogonal complementary distributions, D and Dt satisfying JD = D and JD* = T+ M,
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where T M is the normal line boundle of M (cf. [1]). It is clear that dim D = 2 and
dim D+ = 1. Suppose N is the unit normal vector field to M and put £ = —J N. Then £
is a globally defined unit vector field on M which lies in D+. We shall denote by g both
the metric on C P2 and the induced metric on M. The Riemannian connection V of C P?
induces a Riemannian connection V on M and they are related by the formulae

(2.2) VxY =VxY +h(X,Y), VxJ¢ = —AX, X,Y € X(M),

where h(X,Y) is the second fundamental form, A is the Weingarten map and X (M)
is the lie-algebra of vector fields on M. We also have the following relations for the
hypersurface M :

(2.3) 9(h(X,Y), J€) = 9(AX,Y)

(24)  B(X,¥)IE = (Vy A)X) - (Vx A)Y)

(2.5) R(X,Y;Z, W)= R(X, Y;Z, W)+ g(h(Y,Z2),hM(X,W) — g(h(X, Z), R(Y, W)),
X,Y,2,W € X(M),

where R is the curvature tensor of M and R is the curvature tensor of CP? given by

(2.6) R(X,Y)Z =g(Y,2)X — g(X,2)Y 4+ g(JY, 2)JX —g(JX, Z)JY
+29(X,JY)IZ, X,Y,Z € X(CP?).

If the trace of the second fundamental form h(X,Y) is zero, then M is called a
minimal submanifold of CP2.

3.

If we take X € D, add the expansions of the equations (V;xJ)(X) = 0 and J(VxJ)(X) =
0, and use (2.2) we get

(3.1) VxX +VixJX +h(X,X)+h(JX,JX)+ J[X,JX]=0,X € D.

Theorem 3.1 Let M be a simply connected 3-dimensional CR-submanifold of CP2.
Then there exists a I-form o on M which either defines a contact struciure on M or the
distribution given by the kernel of a is integrable.

Proof. We note that for each unit vector field e € D, {e, Je} is an orthonormal
local frame for D. Let {w!,w?} be the dual frame of {e, Je}. We shall now show that the
2-form w' A w? is independent of the frame {e, Je}. If {X, JX} is another orthonormal
frame for D with dual frame {p,q}, then there exist smooth functions f and g such
that, locally, we have X = fe+ gJe, JX = —ge + fJe and f2 + g% = 1. Consequently
P = fu'+gw? ¢ = —gw! + fw? and pA g = w! Aw? Taking the inner product
with £ in (3.1), since J¢ is normal, we get 9(VxX +VixJX,€) = 0,X € D. And
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since £ is a unit vector field we have £ - g(£,€) = 0, that is, g(V¢£,£) = 0. For the
orthonormal frame {e, Je, £} on M, we get d(w' Aw?)(e, Je,€) = 0, which means that the
form w! A w? is closed. Since M is simply connected the cohomology group H2(M, R)
is trivial. Thus the closed 2-form w! A w? is exact and there exists a 1-form « on
M such that do = w! Aw? Now consider the set U = {p € M : (a A da), # 0},
which is an open subset of M. U is orientable as it has a non-vanishing 3-form a A da.
The 1-form « defines a contact structure on U, so there exists a vector field ¢ on U
determined by a(t) = 1,da(t,X) = 0 for all vector fields X on U (cf. [2]). Since
da = w! A w?, it follows from de(t,e) = 0 and da(t,Je) = 0 that w'(f) = 0 and
w?(t) = 0, that is, the vector field ¢ is parallel to £. On the other hand it is not difficult
to see that (a A de), # 0 if and only if ay(t) = 1,wi(t) = 0 and wj(t) = 0. For
ap(t) = 1,wi(t) = 0 and w2(t) = 0 imply that {t,e, Je} are mutually orthogonal tangent
vectors at p and therefore (o A da)y(t,e,Je) = (a Aw! Aw?),(t,e,Je) =1 # 0. Hence
U={p€M:apt)=1wl(t)=0,w2(t) = 0} is a closed subset of M. Thus the set U is
both an open and a closed subset of M. M, being simply connected, is connected, and
therefore either U = M or U is empty. When U = M, « defines a contact structure on
M and when U is empty we have a A da = 0 everywhere on M, which is the condition
for integrability of the distribution {X € X (M) : a(X) = 0}.

4.

In this section we study the simply connected 3-dimensional CR-submanifolds of CP?
on which o defines a contact structure. Our main result is

Theorem 4.1 Let M be a compact and simply connected 3-dimensional CR-
submanifold of CP2. If the 1-form a defines a contact structure on M which is also a
contact meiric structure with respect to the induced meiric on M, then either M is a
minimal submanifold or M is diffeomorphic to S°.

Proof. Since a defines a contact metric structure on M with respect to the induced
metric structure on M, we have o(X) = ¢g(X,t),X € X(M). From this it follows that
g(t,t) = 1, that is, ¢ is a unit vector field which is parallel to &, and thus t = . If g
is a 1-form dual to £, then we get a = 7. Since dn = w! A w?, from dn(€,e) = 0 and
dn(€é,Je) = 0, we get g(Ve€,e) = 0 and g(V¢&, Je) = 0. As we already have g(V¢€,£) =0
we conclude that V¢€ = 0. Now using (2.2) in (V¢J)(€) = 0, we get A¢ + Jh(£,€) = 0.
If we take h(é,€) = vJE, where v is a smooth function, we obtain A§ = v¢, that is, £
is an eigenvector of A. The other two eigenvectors of A will be from D. Suppose the
two eigenvectors from D are e and Je with Ae = Ae and AJe = pJe. Since the frame
{e, Je,£} diagonalizes A we have h(e, Je) = 0, h(e,€) = 0 and h(Je,€) = 0. Using (2.2) in
(VeJ)(e) = 0 and taking the inner product with J¢€ we get g(V.e, &) = 0. Similarly we get
9(VieJe, &) = 0. Furthermore V¢€ = 0 implies that g(V¢e, &) = 0 and g(VeJe, §) = 0.
Then, in view of the equations (VeJ)(€) = 0, (V.J)(€) = 0 and the structure equations
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of M, we have the following local equations
V.e =ale, VieJe = be, V=0
(4.1) V€ = Ae, Vi€ = —pe, Vee= fle
Vele=—fe, Vele=—ae—X, Vje=—ble+pt,
where 2,b, A, 1, v and f are smooth functions.

Now consider the set V = {p € M : Auv # 0}. Since V is an open subset of M every
point in V' has a neighbourhood where the equations (4.1) hold.

Equation (2.4) with different combinations of the frame vectors {e, Je,£}, in view
of (4.1) and (2.6), gives

(42)  Fu=N+Aw— ) =1, fa=2)+uh—9) =1, ¥+ ) = 2du—1)
and
(4.3) EX=0,¢6p=0,ev=0, Jer=0, eu=b(p—-2A), Je.A =a(A—p).

Adding the first two equations in (4.2), we get (A — p)(v — 2f) = 0. Thus either A =
or v = 2f. Also from dn = w! A w?, we get —1([e, Je]) = 2, and hence, using (4.1), we
have A 4+ p = 2. In case A = y, we get A = u =1 and, from (4.2), » = 0, which does not
occur on V. Thus on V we have A # u, and therefore v = 2f. To compute the values of
A, ¢, v we note from (4.2) that ¥ = Ap — 1. Using the first two equations in (4.3), we get
£.v =0, and , in view of '(4.3), this implies that v is constant.

Now solving the equations A+ p = 2 and A — p = /4 — 4Ag = 2¢/=v, we get

= 14 +/=v and g = 1~ +/=v. This shows that A and p are both constants and,
since A # u, from (4.3) weget a =056 =0. Usmg (2.5) and (2.6) together with (4.1) to
compute R(e, Je, Je,e), we get

eb+ Je.a=a?+ b2+ f(A+ p) +4+2)p.

From the above equation we have f + v+ 3 = 0. Solving it with v = 2f, we get v = -2
and consequently A = 1+ v/2, p = 1—-+/2. With theset V = {p € M : Apv = 2},
and which is therefore closed, using the connectedness of M we get either V =M or V
is empty. When V = M, we have A + u + v = 0, that is M is a minimal submanifold
of CP?, and when V is empty we have A = 1, g = 1 and » = 0. If Ric denotes
the Ricci tensor of M, then from (2.5) and (2.6) the Ricci tensor of M is given by
Ric(X,Y) = 59(X,Y)+tr.Ag(AX,Y)—g(AX,AY).For A=1, p=1and v = 0, we get
Ric(e,e) = 6, Ric(Je,Je) = 6, Ric(£,€) ='5. Ric(e,Je) = 0, Ric(Je, &) = 0. Thus for
any non-zero vector field X € X(M), we have locally X = w!(X)e +w?(X)Je + n(X)E,

and
Ric(X,X) = [w!(2z))?Ric(e, €) + [w?(z)]*Ric(Je, Je) + [n(z)]?Ric(€,€) > 0.

M is therefore of strictly positive Rici curvature and, being compact and simply con-
nected, by Hamiltons Theorem M is diffeomorphie to S3 (cf. [3]).
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Remark. We note that if M is any real hypersurface of C P2, then the unit normal
vector field N gives rise to the unit vector field £ = —J N on M. Then the kernel of the
1-form 7 dual to £ gives rise to a smooth 2-dimensional distribution D which satisfies
JD = D, and ¢ spans the 1-dimensional distribution D' which satisfies JD*+ = T+ M.
Thus a real hypersurfaces of CP? is a 3-dimensional CR-submanifold of CP? and our
theorems hold for the real hypersurface of CP2. In a forthcoming paper we shall study
3-dimensional simply connected CR-submanifolds of CP? on which o does not define the
contact structure given by theorem 3.1.
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