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CR-SUBMANIFOLDS OF TWO DIMENSIONAL 
COMPLEX PROJECTIVE SPACE 

SHARIEF DESHMUKH AND M.A. AL-GWAIZ 

1. 
Among all submanifolds of a Kaehler manifold there are three typical classes: 
the complex submanifolds, the totally real submanifolds and the CR-submanifolds. The 
notion of a CR-submanifold of a Kaehler manifold was introduced by Bejancu [1] and it 
includes the other two classes as special cases. If M is a Kaehler manifold with complex 
structure J and M is a submanifold of M, M is called a CR-submanifold of M if there 
exists a pair of orthogonal complementary distributions D and Dl. on M satisfying 
JD= D and J Dl. C v, where v is the normal bundle of M. 

It is known that every compact and orientable 3-manifold M possesses a contact 
structure, that is, M carries a globally defined 1-form T/ with T/ A dTJ =f O everywhere on 
M [4]. One can associate with T/ a vector field t determined by TJ(t) = 1 and dTJ(t, X) = 0 
for all vector fields X on M. If, in addition, M is a Riemannian manifold with metric g 
and T/ satisfies TJ(t) = g(X, t), then T/ is called the contact metric stucture on M. 

The object of the present paper is to study the 3-dimensional CR-submanifold of 
the 2-dimensional complex projective space C P2• It is shown that a simply connected 
3-dimensional CR-submanifold M of C P2 is either a contact manifold or a certain 2- 
dimensional distribution on M is integrable. We next consider those compact and sim­ 
ply connected CR-submanifolds which admit contact metric structure with respect to 
the induced metric, and prove that they are either diffeomorphic to S3 or minimal sub­ 
manifolds. 

2. 

Let J be the almoot complex structure and g be the metric of constant holomorphic 
sectional curvature 4 on CP2• If 'vis the Riemannian connection on CP2, then we have 

(2.1) ('v xJ)(Y) = 0. 
Let M be a 3-dimentional CR-submanifold of C P2. Then on M there are two or­ 

thogonal complementary distributions, D and Dl., satisfying JD = D and J Dl. = Tl. M, 
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where Tj_ M is the normal line boundle of M ( cf. [l]). It is clear that dim D = 2 and 
dim DJ_ = 1. Suppose N is the unit normal vector field to M and put e = -J N. Then e 
is a globally defined unit vector field on M which lies in DJ_. We shall denote by g both 
the metric on CP2 and the induced metric on M. The Riemannian connection "v of G;P2 

induces a Riemanhian connection "v on M and they are related by the formulae 

(2.2) "v x Y = "v x Y + h(X, Y), "v x Je = -AX, X, Y E X(M), 

where h(X, Y) is the second fundamental form, A is the Weingarten map and X(M) 
is the lie-algebra of vector fields on M. We also have the following relations for the 
hypersurface M : 

(2.3) g(h(X, Y), JE) = g(AX, Y) 
(2.4) R(X, Y)J{ = ("vy A)(X) - ("v x A)(Y) 
(2.5) R(X, Y; Z, W) = R(X, Y; Z, W) + g(h(Y, Z), h(X, W) - g(h(X, Z), h(Y, W)), 

X, Y, Z, WE X(M), 

where R is the curvature tensor of M and R is the curvature tensor of CP2 given by 

(2.6) R(X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX - g(JX, Z)JY 
+ 2g(X, JY)J Z, X, Y, Z E X(CP2). 

If the trace of the second fundamental form h(X, Y) is zero, then M is called a 
minimal submanifold of C P2• · 

3. 

Ifwe take XE D, add the expansions of the equations ("v 1xJ)(X) = 0 and J("v xJ)(X) = 
0, and use (2.2) we get 

(3·.l) "vxX + "v 1xJX + h(X, X) + h(JX,JX) + J[X, JX] = O,X ED. 

Theorem 3.1 Let M be a simply connected 3-dimensional CR-submanifold of CP2• 

Then there exists a 1-form a on M which either defines a contact structure on M or the 
distribution given by the kernel of a is integrable. 

Proof. We note that for each unit vedor field e E D, { e, J e} is an orthonormal 
local frame for D. Let { w1, w2} be the dual frame of { e, J e}. We shall now show that the 
2-form w1 /\ w2 is independent of the frame { e, J e}. If { X, J X} is another orthonormal 
frame for D with dual frame {p, q}, then there exist smooth functions f and g such 
that, locally, we have X = fe + gJe, JX = -ge + fJe and /2 + g2 = 1. Consequently 
p = fw1 + gw2, q = -gw1 + fw2 and p /\ q = w1 /\ w2. Taking the inner product 
with E in (3.1), since Je is normal, we get g("v x X + "v 1xJ X, e) = 0, X E D. And 
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since e is a unit vector field we have e · g(e, e) = 0, that is, g(V {(, () = 0. For the 
orthonormal frame {e,Je,e} on M, we get d(w1 t\w2)(e, Je,e) = 0, which means that the 
form w1 A w2 is closed. Since M is simply connected the cohomology group H2(M, R) 
is trivial. Thus the closed 2-form w1 A w2 is exact and there exists a I-form a on 
M such that da = w1 I\ w2• Now consider the set U = {p E M : (a A da)p =j:. O}, 
which is an open subset of M. U is orientable as it has a non-vanishing 3-form a I\ da. 
The 1-form a defines a contact structure on U, so there exists a vector field t on U 
determined by a(t) = 1, da(t, X) = 0 for all vector fields X on U ( cf. [2]). Since 
da = w1 I\ w2, it follows from da(t,e) = 0 and da(t,Je) = 0 that w1(t) = 0 and 
w2(t) = 0, that is, the vector fi~ld tis parallel toe. On the other hand it is not difficult 
to see that (a I\ da)p =j:. 0 if and only if ap(t) = 1,w!(t) = 0 and w~(t) = 0. For 
ap(t) = 1,w;(t) = 0 and w;(t) = 0 imply that {t,e, Je} are mutually orthogonal tangent 
vectors at p and therefore (a I\ da)p(t,e,Je) = (a t\w1 t\w2)p(t,e,Je) = 1 =j:. 0. Hence 
U = {p EM: ap(t) = l,w:(t) = 0,w;(t) = O} is a closed subset of M. Thus the set U is 
both an open and a closed subset of M. M, being simply connected, is connected, and 
therefore either U =Mor U is empty. When U = M, a defines a contact structure on 
M and when U is empty we have a: Ada= 0 everywhere on M, which is the condition 
for integrability of the distribution {XE X(M): o:(X) = O}. 

4. 

In this section we study the simply connected 3-dimensional CR-submanifolds of C P2 

on which a defines a contact structure. Our main result is 

Theorem 4.1 Let M be a compact and simply connected 3-dimensional CR- 
submanifold of CP2• If the 1-form a defines a contact structure on M which is also a 
contact metric structure with respect to the induced metric on M, then either M is a 
minimal submanifold or M is diffeomorphic to S3. 

Proof. Since a: defines a contact metric structure on M with respect to the induced 
metric structure on M, we have a(X) = g(X, t), X E X(M). From this it follows that 
g(t, t) = 1, that is, t is a unit vector field which is parallel to e, and thus t = e. If 1J 
is a 1-form dual to{, then we get a: = TJ. Since d1J = w1 A w2, from dTJ(e, e) = 0 and 
dTJ((, Je) = 0, we get g(V€e, e) = 0 and g(V~e, Je) = 0. As we already have g(V {e, e) = 0 
we conclude that V€e = 0. Now using (2.2) in (V€J)(e) = 0, we get Ae + Jh(e,e) = 0. 
If we take h(e,e) = vJe, where 11 is a smooth function, we obtain Ae = ve, that is, e 
is an eigenvector of A. The other two eigenvectors of A will be from D. Suppose the 
two eigenvectors from D are e and J e with Ae = Ae and AJ e = µJ e. Since the frame 
{e, Je,e} diagonalizes A we have h(e, Je) = 0, h(e,e) = 0 and h(Je,e) = 0. Using (2.2) in 
(VeJ)( e) = 0 and taking the inner product with Je we get g(Vee, e) = 0. Similarly we get 
g(V Jele,e) = 0. Furthermore Vee= 0 implies that g(Vee,e) = 0 and g(VeJe,e) = 0. 
Then, in view of the equations (VeJ)(e) = 0, (v' iel)(e) = 0 and the structure equations 
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of M, we have the following local equations 
Vee= aJe, 'v JeJe = be, 've! = o 

(4.1) 've{ = )...Je, 'v Jee= -µe, 'vee = f Je 
'veJe = -fe, 'v eJ e = -ae - >.e' 'v Jee= -bJe + µ{, 

where a, b, A,µ, JI and / are smooth functions. 
Now consider the set V = {p E A1 : >.µv =f O}. Since Vis an open subset of M every 

point in V has a neighbourhood where the equations (4.1) hold. 
Equation (2.4) with different combinations of the frame vectors {e,Je,€}, in view 

of (4.1) and (2.6), gives 

(4.2) /(µ - .X) + .X(J1 - µ) = -1, /(µ - .X) + µ(.X - J1) =· 1, J1(A + µ) = 2(-Xµ - 1) 

and 

(4.3) (.A= 0, (.µ = 0, e.v = 0, Je.v = 0, e.µ = b(µ - )...), Je.>. = a(,\ - µ). 

Adding the first two equations in ( 4.2), we get (,\ - µ)(JI - 2/) = 0. Thus either ,\ = µ 
or v = 2/. Also from dTJ = w1 Aw2, we get -TJ([e, Je]) = 2, and hence, using (4.1), we 
have A + µ = 2. In case ,\ = µ, we get ,\ = µ = 1 and, from ( 4.2), v = 0, which does not 
occur on V. Thus on V we have ,\ ¥ µ, and therefore JI = 2/. To compute the values of 
A,µ, v we note from ( 4.2) that v = )...µ - 1. Using the first two equations in ( 4.3), we get 
e.JI = 0, and, in view of (4.3), this implies that vis constant. 

Now solving the equations A+µ = 2 and >. - µ = ..;-4-_-4-_x-µ ::: 2,V:::V, we get 
A = 1 + .;='v a.nd µ = 1 - ~. This shows that ;\ and µ are both constants and, 
since A":/;µ, from (4.3) we get a= 0 b = 0. Using (2.5) and (2.6) together with (4.1) to 
compute R(e,Je,Je,e), we get 

e.b + Je.a = a2 + b2 + /(.~ + µ) + 4 + 2-Xµ. 

From the above equation we have/+ JI+ 3 = 0. Solving it with JI= 2/, we get v = -2 
and consequently ;\ = 1 + ../2, µ = 1 - ../2. With the set V = {p E M : AµJI = 2}, 
and which is therefore closed, using the connectedness of M we get either V =- M or V 
is empty. When V = M, we have A + µ + 11 = 0, that is M is a minimal submanifold 
of C P2, and when V is empty we have )... = 1, µ = 1 and JI = O. If Ric denotes 
the Ricci tensor of M, then from (2.5) and (2.6) the Ricci tensor of M is given by 
Ric(X, Y) = 5g(X, Y) +tr.Ag(AX, Y)- g(AX, AY). For>.= 1, µ = 1 and v = 0, we get 
Ric(e,e) = 6, Ric(Je,Je) = 6, Ric((,() =·5. Ric(e,Je) = 0, Ric(Je,() = 0. Thus for 
any non-zero vector field XE X(M), we have locally X = w1(X)e +w2(X)Je + TJ(X)€, 
and 

Ric(X,X) = [w1(x)]2Ric(e,e) + [w2(x)]2Ric(Je,Je) + [TJ(x)]2Ric(e,{) > O. 
M is therefore of strictly positive Rici curvature and, being compact and simply con­ 
nected, by Hamiltons Theorem Mis diffeomorphie to S3 (cf. [3]). 
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Remark. We note that if M is any real hypersurface of C P2, then the unit normal 
vector field N gives rise to the unit vector field E = -J Non M. Then the kernel of the 
l-form J"/ dual to { gives rise to a smooth 2-dimensional distribution D which satisfies 
JD= D, and { spans the I-dimensional distribution D..1 which satisfies J DJ.. = T.1 M. 
Thus a real hypersurfaces of CP2 is a 3-dimensional CR-submanifold of CP2 and our 
theorems hold for the real hypersurface of CP2• In a forthcoming paper we shall study 
3-dim~nsional simply connected CR-submanifolds of CP2 on which a does not define the 
contact structure given by theorem 3.1. 
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