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ON INTEGRAL INEQUALITIES RELATED TO OPIAL'S INEQUALITY 

TIAN-SHOW HWANG AND GOU-SHENG YANG 

1. Introduction 

In 1960, Z. Opial [4] proved the following integral inequality: 

Theorem A. Let u be of class c1 on [O, b], and satisfy u(O) = u(b) = 0, u > 0 on 
(0,6). Then 

l·b b b 

0 
I u(x)u'(x) I dx < 411 u'(x) 12 dx (1) 

where the constant b/4 is the best possible. 

We note that if we replaced u(O) = u(b) = 0 by u(O) = 0 (or u(b) = 0), then (1) 
be conies 

lb b lb 
I u(x)u'(x) I dx ~ - I u'(x) 12 dx 

0 2 0 
(1') 

C. Olech [5] showed that (1) is valid for any function u which is absolutely continuous 
on [O,b], and satisfies the boundary conditions u(O) = u(b) = 0, and Olech's proof of (1) 
was simplier than that of Opial. 

In 1967, E.K.Godunova, and VJ.Levin [1] generalized (1') and (1) in the following 
forms: 

Theorem B. Let u be absolutely continuous on [a, b] with u(a) = 0. If f is convex 
increasing on [O, oo) and f (0) = 0. Then 

l !'(I u(x) I) I u'(x) I dx < !(J.' I u'(x) I dx) (2) 

Theorem C. Let u be absolutely continuous on [a, b] with u(a) = u(b) = 0. Let p 
be positive on [a,b] and J:p(x)dx = 1, and let f,h be convex increasing on (O,oo), and 
/(0) = 0. Then 

l J'(I u(x) I) I u'(z) I dx < 2f(h-'(l p(x)h(I ::~~~ l)dx)) (3) 

In 1966, G.S.Yang [6] generalized (1') and (1) in the following forms: 
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Theorem D. If u is absolutely continuous on [a, b] with u( a) = 0, then 

where m 2::: 0, n 2::: 1. 

Theorem E. If u is absolutely continuous on [a, b] with u(a) = u(b) = 0, then 

(5) 

where m 2: 0, n 2::: 1. 

Theorem F. Let p be positive on [a, b] with J: p(~)dx < oo, and let q be positive, 
bounded and nonincreasing on [a,b]. Ifu is absolutely continuous on [a,b] with u(a) = 0, 
then 

lb lb 1 lb 2 a q(x) I u(x) 11 u'(x) I dx:::; ( a p(x) dx) ( a p(x)q(x) I u'(x) 1
2 dx) (6) 

The aim of this paper is to establish some new integral inequalities which generalize 
(2), (3), ( 4), (5), and ( 6). 

2. Main results 

Throughout, we assume that n is a real number such that n 2:: 1, and k = (b-a)"-1. 
Theorem 1. Let u1, u2 be absolutely continuous on [a, b] with u1 (a) = u2( a) = 0. 

Let /1, h be nonnegative, continuous on [O, oo) with /1 (0) = 0 such that /{, f~ exist, 
nonnegative, continuous, and nondecreasing on [O, oo ). Then 

lb[fi(I u1(x) ln)/~(I u;(x) In) I u;(x) In +h(I u2(x) ln)f{(I u1(x) In) I u~(x) ln]dx 

<:; if,(k J.' 1 u\(x) I" dx)h(k [ 1 u;(x) I" dx) (7) 

Proof. For x E [a, b], and i = 1, 2, define 

Then y: ( x) = I uH x) In, and using Holder inequality, we have 
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Since /i,f[ are nondecreasing, nonnegative, and continuous on [0,oo), we have 
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J.' [/,(I u,(z) I")/;(! u2(z) I") I u!,(z) I"+ Ml u2(z) l")/:0 u,(z) I") I u\(x) l"]dx 

S [ (/,(l:y,)/;(l:112)!/, + /,(l:112)/Hl:y,)y\]dx 

116 
d = k a dz [fi(kyi)f2(ky2)]dx 

1 16 16 = kfi(k a I u~(x) r dx)h(k a I u;(x) In dx) 

This completes the proof of Theorem 1. 

Remark. 

1. Let n = 1, and fi(x) = /(x), h(z) = 1, u1(x) = u2(x) = u(x) in Theorem 1. 
Then, it follows from (7) that 

[ !'(I u(z) I) I u'(x) I dz< t(J.' I u'(x) I dx), 

which is the inequality (2). [ See also [2], p159, Theorem 13 ] 
2. Let fi(x) = z(m+n)/n, where m > 0, and let h(x) = 1, u1(x) = u2(x) = u(x) in 

Theorem 1. Then it follows from (7), and Holder inequality that 

16 
I u(x) 1ml u'(x) I~ dx < n .!.{k 16 

I u'(x) In dx }(m+n)/n 
a m+nk a 

n 16 16 < , k':( dx)':( I u'(x) lm+n dx) 
m+n a a 

n 16 = (b - a)m I u'(x) lm+n dx, 
m+n a 

which is the inequality (4). ( See [6], Lemma 7] 
3. If q is a positive, bounded, and nonincreasing function on [a, b], and pis a positive 

function with J: p(z)dx < oo, let /i(x) = x2, h(x) = 1, n = 1, and u1(x) = u2(x) = 
J.z v1i(t) I u'(t) I dt in Theorem 1. We have a . 

2 [ <[ v1i(t} I u'(t) I dt)""9W I u'(z) I dz<<[ ""9W I u'(x) I dx)2 

Since q is nonincreasing, we have 

·1:e v1i(t) 1 u'(t), dt > ""9W 1:e , u'(t) 1 dt >I ""9W 1x u'(t)dt I= ""9W, u(x), 
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Thus 

2 [ q(x) I u(x) 11 u'(x) I dx < 2 J.' ([ yq{t) I u'(t) I dt)./iw I u'(x) I dx 

< <lb ./iw I u'(x) I dx)2 

lb 1 = ( /pW/pW.jqw I u'(x) I dx)2 
a p(x) 
[b 1 lb 

~ (la p(x)dx)( a p(x)q(x) I u'(x) 1
2 dx), 

which is the inequality (6). [ See [6], Theorem 3] 

Theorem 2. For i = 1, 2, let Ui, Ii, ft be . as in Theorem 1. Let Pi be positive on 
[a,b], and J: Pi(x)dx = 1. If h is a positive, convex, and increasing function on [O,oo), 
then 

l[J,(I u,(x) l")J;(I u,(x) I") I u;(x) I" +!,(I u,(x) l")/{(I u,(x) I") I u;(x) l"]dx 

::; ! fi(2kh-1(1b P1(x)h( I u;(x) In )dx))h(2kh-1(1b P2(x)h( I u;(x) r )dx)) 
k a 2p1(x) a 2pix 

Proof. For i = 1, 2, it follows from Jensen's inequality, that 

11b lb I u'(x) In h(- I u~(x) In dx) ~ Pi(x)h( i - )dx. 
2 a a 2pi(x) 

Since h is increasing, so that 

which. together with Theorem 1 imply that 

ib[!i(I u1(x) ln)1;c1 u2(x) In) I u;(x) In +h(I u2(x) ln)l{(I u1(x) In) I u~(x) ln]dx 

~ it,(2kh-1( !' P,(x)h( I?;> r )dx))!,(2kh-'( f' p,(x)h( I ~~(;~t )dx)) la Pl X la 
This is the desired inequality. 

Theorem 3. For i == 1, 2, let Ui be absolutely continuous functions on fa, b] with 
ui(a) = ui(b) = 0. Let Ii be nonnegative, continuous, nondecreasing functions on [O,oo) 
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with fi(O) = 0 and that ff exist, nonnegative, continuous, and nondecreasing on [O,oo). 
Then 

lb[!i(I u1(x) ln)!HI u2(x) In) I u;(x) t +h(I u2(x) ln)/HI u1(x) In) I u~(x) r·]dx 
2n-l lb l(a+b)/2 

< -k-/2(21-nk a I u;(x) In dx)[Ji(21-"k a I u~(x) In dx) 

+ /i(21-"k lb I u~(x) In dx)] (8) 
(a+b)/2 

and 

(9) 

Proof. For i = 1, 2, we note first that, by defining Yi(x) = J: I u~(x) In dx, and 
using a similar argument as in the proof of Theorem 1. We see that the inequality (1) 
still holds if we replaced u1(a) = u2(a) = 0 by u1(b) = u2(b) = 0. Now for any c E (a, b), 
we have 

lc[fi(I u1(x) l")/~(I u2(x) In) I u;(x) In +h(I u2(x) ln)/f(I u1(x) I") I u~(x) l"]dx 

< : fi(k1 jc I u~(x) In dx)h(k1 jc I u;(x) in dx) 
1 a a 

where k1 = (c - ar-1, and 
t [/,(I u,(x) l")f~(I u,(x) I") I u;(x) I"+ !,(I u,(x) l")fi(I u,(x) I") I u\(x) l"]dx 

l lb lb :::; k fi(k2 I u~(x) In dx)h(k2 I u;(x) In dx) 
2 C C 

where k2 = (b - c)"-1. 
Hence 
b . 1 [!1(1 u1(x) ln)/~(I u2(x) In) I u;(x) In +h(I u2(x) ln)/{(I u1(x) In) I u~(x) ln]dx 

:::; : /1(k1 le I u~(x) I" dx)h(k1 lc I u;(x) I" dx) 
1 a a 

+ : fi(k2 lb I u~(x) In dx)h(k2 lb I u;(x) In dx) 
2 C C 

(10) 
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By taking c = (a~b) in (10), we have k1 = k2 = 21-nk, and since '2 is nondecreasing, so 
that 

/1/,(1 u,(z) l")//(1 u2(x) I") I u2(z) I" +'2(1 u2(z) l")/al u,(z) I") I u\(z) l"]dz 
2n-l 1b 1(a+b)/2 

~ -k-/2(21-nk a I u;(x) In dz)[/i(21-nk 
O 

I u~(x) In dz) 

+ fi(21-"k lb I u~(x) In dx)] 
(a+b)/2 

This is the inequality (8). 
If we choose c in ( 4) so that 

le lb 11• a I u~ ( x) In dx = e I u~ ( X) In dz = 2 a I u~ ( z) in dz, 
then, 

b 1 [fi(I u1(x) l")/~(I u2(x) I") I u;(x) In +h(I u2(x) ln)/{(I u1(z) In) I u~(x) l")dx 

l k 1b le ~ -k Ii(.....!. I u~(x) I" dx)h(k1 I u;(z) I" dz) 
1 2 a a 

l k 1b 11, + -k Ji(~ I u~(x) I" dx)h(k2 I u~(z) I" dx) 
2 2 a C 

1b 1 k 1b ~ h(k I u;(x) I" dx)[k Ji( 2
1 I uHx) In dx) 

a 1 a 

1 k lb + k Ji( 2
2 I u~(x) I" dx)J 

2 a 

= h(k 1b I u;(x) I" dx)[: /i(i ~ lb I u~(z) In dz) 
a 1 a 

+ J2J1(~~ 1b I u~(x) In dx)] 

2 k 1b lb < k/1(2 a I u~(z) I" dx)h(k a I u;(x) In dx) 
This completes the proof of Theorem 3. 

Remark. For m ~ 0, let fi(x) = z(m+n)/n, h(z) = 1, u1(x) = u2(z) = u(x) in 
Theorem 3, it follows from (8), and Holder inequality that 

1b I u(x) Im I u'(x) In dx ~ n (b 2 a)m 16 I u'(x) 1m+n dx, 
a m+n a 

which is the inequality (5). ( See [6), Theorem 6 J 
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Theorem 4. For i = 1, 2, let Ui, Ii, ff be as in Theorem 3. Let Pi be positive on 
[a, b], and J: Pi(x )dx = 1. If h is a positive, convex, and increasing function on [O, oo ), 
then 

1b[fi(I u1(x) ln)fHI u2(x) In) I u;(x) In +h(I u2(x) ln)l{(I u1(x) In) I u~(x) t]dx 

::; rfi(kh-1(1b P1(x)h( I ;H~) r )dx))h(2kh-1(1b P2(x)h( I ~~(~~r )dx)) (11) 
a Pl X a 

Proof. For i = 1, 2, it follows from Jensen's inequality, that 

h(! lb I u~(x) In, dx) ~ lb Pi(x)h( I u~(x) r )dx. 
2 a a 2pj{x 

Since h is increasing, we have 

(12) 

The desired inequality (11) is then follows from (9), and (12). 

Remark. For i = 1, 2, let Pi(x) = p(x), ui(x) = u(x), and let n = l, fi(x) 
f(x), h(x) = 1 in Theorem 4. Then it follows from the inequality (11) that 

which is the inequality (3). [ See also (2), p159, Theorem 12] 
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