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CR-submanifolds of SQ-Sasakian manifold

S. K. Yadav, S. K. Hui, Mohd. Iqbal, P. Mandal and Mohd. Aslam

Abstract. In this paper we discussed the geometry of CR-submanifolds of a SQ-
Sasakian manifold. Next, we considered Chaki pseudo parallel as well as Deszcz
pseudo parallel CR-submanifolds of SQ-Sasakian manifolds. Further we studied
almost Ricci soliton and almost Yamabe soliton with torse forming vector field on a
CR-submanifold of a SQ-Sasakian manifold using semi-symmetric metric connection.
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1 Introduction

In 1978 A. Bejancu [8, 9] gave the notion of CR-submanifolds as a generalization of invariant
and anti-invariant submanifolds of Kähler manifold. After that a lot of investigation were done
on CR-submanifolds in both complex and almost contact manifolds. Moreover, CR-submanifolds
of Sasakian manifold were studied by many authors [16, 24, 16]. M. Shahid [25, 26] studied
CR-submanifolds of trans Sasakian manifold (a generalization of α-Sasakian and β-Kenmotsu
manifolds). The same author also studied CR-submanifolds of Sasakian manifold with vanishing
contact Bochner curvature tensor [27]. In [6, 30] CR-submanifolds were studied in cosymplectic
and Kenmotsu manifold. K. Yano [32] introduced the notion of f -structure on a (2n + s)-
dimensional manifold as a tensor field f of type (1,1) and rank 2n satisfying f3 + f = 0. Almost
complex (s = 0) and almost contact (s = 1) structures are well-known examples of f -structures.
Further the study of CR-submanifolds was extended to f -structures by I. Mihai, L. Ornea and
L. M. Fernandez [1, 2, 3, 12, 18, 20, 22, 23].
In 1993, J. H. Kwon and B. H. Kim [17] introduced a new class of almost contact metric manifolds
known as a special quasi-Sasakian manifold or briefly as SQ-Sasakian manifold. In [29] Shaikh
and Ahmad obtained some interesting results on SQ-Sasakian manifolds. Further S. K. Hui and J.
Roy [15] studied invariant and anti-invariant submanifolds of SQ-Sasakian manifolds with respect
to Levi-Civita connection as well as semi-symmetric metric connection. They also deal with the
Chaki-pseudo parallel as well as Deszcz-pseudo parallel invariant submanifolds of SQ-Sasakian
manifolds with respect to Levi-Civita connection as well as semi-symmetric metric connection.
In the present paper, we discussed integrability and totally geodesic condition of CR-submanifold
of SQ-Sasakian manifold. Next we studied almost Ricci soliton and almost Yamabe soliton with
torse forming vector field on a CR-submanifold of a SQ-Sasakian manifold using semi-symmetric
metric connection.
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2 Preliminaries

Let M̄2n+1 with the structure (ϕ, ξ, η, g) be an almost contact metric manifold such that

η(ξ) = 1, ϕ2(X) = −X + η(X)ξ,

ϕξ = 0, g(X, ξ) = η(X),

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ) g(ϕX, Y ) = −g(X,ϕY )

for any vector fields X,Y in TM̄, where ϕ, ξ and η are the (1,1) tensor field, characteristic vector
field and one form respectively.
The fundamental two form Φ is defined on M̄ by Φ(X,Y ) = g(X,ϕY ). If dη(X,Y ) = g(X,ϕY ) for
all vector fieldsX,Y on M̄2n+1(ϕ, ξ, η, g), then the almost contact metric manifold M̄2n+1(ϕ, ξ, η, g)
is called a contact metric manifold. A normal contact metric manifold is called a Sasakian man-
ifold [10]. A normal almost contact metric manifold is called quasi-Sasakian if Φ is closed. A
three dimensional almost contact metric manifold is called quasi-Sasakian if and only if [19]

∇̄Xξ = −βϕX, (2.1)

for some smooth function β on M̄ such that (ξβ) = 0. The equation (2.1) does not hold for a
quasi-Sasakian manifold of dimension greater than three. An almost contact metric manifold is
called SQ-Sasakian manifold [17] if the following conditions are satisfied

∇̄Xξ = −βϕX, dΦ = 0 (2.2)

and (ϕ, ξ, η) is normal for some smooth function β on M̄ such that (ξβ) = 0. In 1993, Kwon and
Kim [17] have constructed a non trivial example of SQ-Sasakian manifold. It is to be noted that
a SQ-Sasakian manifold is a cosymplectic manifold if and only if β = 0 and a Sasakian manifold
if and only if β = 1.

In an SQ-Sasakian manifold M̄, the following relations hold [29]

(∇̄Xϕ)(Y ) = β[g(X,Y )ξ − η(Y )X] (2.3)

(∇̄Xη)(Y ) = βg(X,ϕY ) (2.4)

R̄(X,Y )ξ = (Y β)ϕX − (Xβ)ϕY + β2[η(Y )X − η(X)Y ] (2.5)

η(R̄(X,Y )Z) = (Xβ)g(ϕY,Z)− (Y β)g(ϕX,Z) (2.6)

+ β2[g(Y,Z)η(X)− g(X,Z)η(Y )]

R̄(ξ,X)Y = g(X,ϕY )g radβ + (Y β)ϕX + β2[g(X,Y )ξ − η(Y )X] (2.7)

S̄(Y, ξ) = 2ηβ2η(Y )− ((ϕY )β) (2.8)

for all vector fields X,Y, Z on M̄ and R̄ and S̄ are the curvature tensor and Ricci tensor of M̄
respectively.
Let M be an n-dimensional submanifold of a SQ-Sasakian manifold M̄, g be the induced metric
tensor on M and ∇̄ (resp. ∇) be the covariant derivatives in M̄ (resp. M). For vector fields X
and Y tangent to the submanifold and normal vector field N , the Gauss and Weingarten formulas
are given by

∇̄XY = ∇XY + h(X,Y ), ∇̄XN = −ANX +∇⊥
XN, (2.9)

where ∇⊥ is the connection in the normal bundle T⊥M, h is the second fundamental form of M
and AN is the shape operator associated with N and satisfy

g(ANX,Y ) = g(h(X,Y ), N). (2.10)
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If R and R̄ are the curvature tensors of M and M̄ respectively, then the Gauss and Codazzi’s
equations are given by

R̄(X,Y, Z,W ) = R(X,Y, Z,W ) + g(h(X,Z), h(Y,W )) (2.11)

− g(h(X,W ), h(Y, Z)),

(R̄(X,Y, Z,W ))⊥ = (∇̄Xh)(Y,Z)− (∇̄Y h)(X,Z). (2.12)

In [13], Friedmann and Schouten introduced the notion of semi-symmetric linear connection on
a smooth manifold. A linear connection on a SQ-Sasakian manifold M̄ is said to be a semi-

symmetric connection if its torsion tensor τ of the connection ˜̄∇ given by

τ(X,Y ) = ˜̄∇XY − ˜̄∇YX − [X,Y ] (2.13)

satisfies τ(X,Y ) = η(Y )X − η(X)Y , where η is an 1-form. Further, if the semi-symmetric

connection ˜̄∇ satisfies the condition ( ˜̄∇Xg)(Y,Z) = 0 for all X,Y, Z ∈ χ(M̄) then ˜̄∇ is said to
be semi-symmetric metric connection. The relation between semi-symmetric metric connection˜̄∇ and Levi-Civita connection on SQ-Sasakian manifold M̄ is [15]

˜̄∇XY = ∇̄XY + η(Y )X − g(X,Y )ξ. (2.14)

Let ∇ and ∇̃ be the induced connection on M from the connection ∇̄ and ˜̄∇ respectively. Then
we have

˜̄∇XY = ∇̃XY + h̃(X,Y ). (2.15)

By virtue of (2.9) and (2.14), (2.15) yields

∇̃XY + h̃(X,Y ) = ∇XY + h(X,Y ) + η(Y )X − g(X,Y )ξ, (2.16)

where h and h̃ are the second fundamental forms with respect to Levi-Civita connection and semi-
symmetric metric connections respectively. The covariant derivative of the second fundamental
form h is defined as(

∇̄Xh
)
(Y,Z) = ∇⊥

X(h(Y,Z))− h (∇XY, Z)− h (Y,∇XZ) . (2.17)

If R̄ and ˜̄R are respectively the curvature tensor with respect the Levi-Civita connection ∇̄ and

semi-symmetric metric connection ˜̄∇ in a SQ-Sasakian manifold then the following relations hold

˜̄R(X,Y )Z = R̄(X,Y )Z + g(X,Z)Y − g(Y, Z)X + η(Z){η(Y )X (2.18)

− η(X)Y }+ {g(Y, Z)η(X)− g(X,Z)η(Y )}ξ + β{g(Y,Z)ϕX
− g(X,Z)ϕY +Φ(X,Z)Y − Φ(Y, Z)X},

˜̄S(Y,Z) = S̄(Y,Z)− (2n− 1){g(Y, Z)− η(Y )η(Z) + Φ(Y,Z)}, (2.19)

˜̄R(X,Y )ξ = β2{η(Y )X − η(X)Y }+ {βη(Y ) + (Y β)}ϕX (2.20)

− {βη(X) + (Xβ)}ϕY,
˜̄R(ξ, Y )Z = β2{g(Y,Z)ξ − η(Z)Y }+ {Zβ − βη(Z)}ϕY (2.21)

+ Φ(Y,Z){gradβ − βξ},

for arbitrary vector fields X,Y and Z on M̄.
A SQ-Sasakian manifold M̄ is said to be pseudo quasi-Einstein (or pseudo η -Einstein) manifold
if its Ricci tensor S̄ of type (0,2) is not identically zero and satisfies the following [28]:

S̄(X,Y ) = pg(X,Y ) + qη(X)η(Y ) + sD(X,Y ), (2.22)
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where p, q, s are non-zero scalars.
Now for any X ∈ TM, we have

ϕX = TX + FX, (2.23)

where TX is the tangential component and FX is the normal component of ϕX. Then T is an
endomorphism of TM and F is normal bundle valued 1-form on TM. T (resp. F ) is parallel if
∇T = 0 (resp. ∇F = 0).
Similarly for N ∈ T⊥M, we can write

ϕN = tN + fN, (2.24)

where tN (resp. fN) denotes the tangential and normal components of ϕN . Then f is an
endomorphism of the normal bundle and t is tangent bundle valued 1-form on T⊥M.

3 CR-submanifold of a SQ-Sasakian manifold.

In this section we are going to discuss some basic results for the CR-submanifolds of a SQ-Sasakian
manifold.

Definition 1. A submanifold M of a SQ-Sasakian manifold M̄ is said to be a CR-submanifold
if ξ is tangent to M and there exist two orthogonal differentiable distributions D and D⊥ such
that

• TM = D⊕D⊥.

• D is invariant under ϕ for each point on M, i.e., ϕDx ⊂ Dx for each x ∈ M.

• D⊥ is anti-invariant under ϕ for each point on M, i.e., ϕD⊥
x ⊂ T⊥

x M.

Also, M is called horizontal (resp. vertical) if ξ ∈ Γ(D) (resp. Γ(D⊥).

Theorem 3.1. Let M be a submanifold of a SQ-Sasakian manifold M̄. Then we have

∇XTY − T∇XY −AFYX − th(X,Y ) = β{g(X,Y )ξ − η(Y )X} (3.1)

∇⊥
XFY − F∇XY = fh(X,Y )− h(X,TY ). (3.2)

for all X, Y ∈ TM.

Proof. For any X, Y ∈ TM, from (2.3) we have

∇̄XϕY − ϕ∇̄XY = β[g(ϕX, Y )ξ − η(Y )X]. (3.3)

Now, by using Gauss and Weingartan formulas together with (2.23) and (2.24), we obtain

∇XTY − T∇XY −AFYX − th(X,Y ) +∇⊥
XFY − F∇XY (3.4)

+h(X,TY )− fh(X,Y ) = β{g(X,Y )ξ − η(Y )X}.

Comparing tangential and normal components of (3.4), we obtain the required result.

Lemma 3.1. Let M be a CR-submanifold of a SQ-Sasakian manifold M̄, then the distribution
D is integrable if and only if

h(X,TY ) = h(Y, TX), (3.5)

for all X, Y ∈ Γ(D).
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Proof. Let X, Y ∈ Γ(D), then FX = FY = 0. Therefore (3.2) becomes

F∇XY = −fh(X,Y ) + h(X,TY ). (3.6)

Now interchanging X and Y , we get

F∇YX = −fh(Y,X) + h(Y, TX). (3.7)

Subtracting (3.6) from (3.7), we obtain

h(X,TY )− h(Y, TX) = F [X,Y ].

Now [X,Y ] ∈ Γ(D) if and only if F [X,Y ] = 0, which proves our result.

Lemma 3.2. Let M be a CR-submanifold of a SQ-Sasakian manifold M̄, then the distribution
D⊥ is integrable if and only if

AFZW −AFWZ = β[η(Z)W − η(W )Z]. (3.8)

for all W,Z ∈ Γ(D⊥).

Proof. Let Z, W ∈ Γ(D⊥), then from (3.1), we obtain

−AFWZ − T∇ZW − th(Z,W ) = β[g(Z,W )ξ − η(W )Z]. (3.9)

Interchanging Z and W in (3.9), we get

−AFZW − T∇WZ − th(Z,W ) = β[g(Z,W )ξ − η(W )Z]. (3.10)

Subtracting (3.10) from (3.9), we obtain

AFZW −AFWZ − T [Z,W ] = β[η(X)Y − η(W )Z].

Now [Z,W ] ∈ Γ(D⊥) if and only if T [Z,W ] = 0, which proves the result.

Theorem 3.2. Let M be a CR-submanifold of a SQ-Sasakian manifold M̄, then we have

(i) ∇Xξ = −βTX,

(ii) h(X, ξ) = −βFX,

(iii) h(X, ξ) = 0, ∀ X ∈ Γ(D),

(iv) ∇Xξ = 0, ∀ X ∈ Γ(D⊥),

(v) ANξ ∈ Γ(D⊥), ∀ N ∈ T⊥M,

(vi) η(ANX) = 0, ∀ X ∈ Γ(D).

Proof. By using Gauss formula in (2.1) we easily obtain

∇Xξ + h(X, ξ) = −βϕX.

Now comparing tangential and normal components, we have

∇Xξ = −βTX, (3.11)
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h(X, ξ) = −βFX, (3.12)

for all X ∈ TM. These proves (i) and (ii). Now for X ∈ Γ(D), we get

h(X, ξ) = 0. (3.13)

For X ∈ Γ(D⊥), we have ∇Xξ = 0.
Again for X ∈ Γ(D), and N ∈ T⊥M

g(ANξ,X) = g(h(X, ξ), N) = 0,

which means ANξ ∈ Γ(D⊥). Also 0 = g(ANξ,X) = g(ANX, ξ) = η(ANX).

The covariant derivatives of T and F are, respectively, defined by(
∇̄XT

)
Y = ∇XTY − T∇XY (3.14)

and (
∇̄XF

)
Y = ∇⊥

XFY − F∇XY, (3.15)

also the covariant derivatives of t and f are, respectively, defined by(
∇̄Xt

)
N = ∇XtN − t∇⊥

XN (3.16)

and

(∇̄Xf)(N) = ∇⊥
XfN − f∇⊥

XN (3.17)

for any vector field X,Y tangent to M and any vector field N normal to M.

Proposition 3.1. Let M be a submanifold of a SQ-Sasakian manifold M̄. Then

(∇̄XT )(Y ) = AFYX + th(X,Y ) + β[g(X,Y )ξ − η(Y )X], (3.18)

(∇̄XF )(Y ) = fh(X,Y )− h(X,TY ), (3.19)

(∇̄Xt)(N) = AfNX − TANX, (3.20)

(∇̄Xf)(N) = −h(X, tN)− FANX, (3.21)

for any vector field X and Y tangent to M and N normal to M.

Proof. From (3.1), (3.2) and making use of (3.14), (3.15) we easily obtained (3.18) and (3.19).
Now for X ∈ TM and N ∈ T⊥M, using Gauss and Weingarten formulas together with (2.23)
and (2.24), we have

(∇̄Xϕ)N = ∇̄XϕN − ϕ∇̄XN (3.22)

= ∇̄X(tN + fN)− ϕ(−ANX +∇⊥
XN)

= ∇XtN + h(X, tN)−AfNX +∇⊥
XfN + ϕANX − ϕ∇⊥

XN

= ∇XtN + h(X, tN)−AfNX +∇⊥
XfN + TANX + FANX

− t∇⊥
XN − f∇⊥

XN.

Also from (2.3) we get

(∇̄Xϕ)N = 0. (3.23)
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From (3.22) and (3.23), we have

∇XtN + h(X, tN)−AfNX +∇⊥
XfN + TANX (3.24)

+FANX − t∇⊥
XN − f∇⊥

XN = 0.

Comparing tangential and normal components, we get (3.20) and (3.21).

Proposition 3.2. Let M be a CR-submanifold of a SQ-Sasakian manifold M̄. Then the leaf
M⊥ of D⊥ is totally geodesic in M if and only if

g(h(Y,W ), FZ) + βg(W,Z)η(Y ) = 0, (3.25)

for any Y ∈ Γ(D) and W,Z ∈ Γ(D⊥).

Proof. Putting X =W ∈ Γ(D⊥) and Y = Z ∈ Γ(D⊥) in (3.1), we have

T∇WZ = −AFZW − th(W,Z)− β[g(W,Z)ξ − η(Z)W ]. (3.26)

Now taking inner product of (3.26) with Y ∈ Γ(D), we get

g (T∇WZ, Y ) = −g(AFZW,Y )− β[g(W,Z)η(Y )], (3.27)

which implies

g (∇WZ, TY ) = g(h(Y,W ), FZ) + β[g(W,Z)η(Y )]. (3.28)

We know that D⊥ is totally geodesic in M if and only if ∇WZ ∈ Γ(D⊥), for all Z, W ∈ Γ(D⊥).
If (3.25) holds then from (3.28) we get ∇WZ ∈ Γ(D⊥), which proves that D⊥ is totally geodesic.
Conversely if D⊥ is totally geodesic then ∇WZ ∈ Γ(D⊥). From (3.28) we get (3.25).

Proposition 3.3. Let M be a CR-submanifold of a special quasi Sasakian M̄. Then the distri-
bution D is integrable if and only if

g(h(X,TY ), FZ)− g(h(Y, TX), FZ) = η(∇XZ)η(Y )− η(∇Y Z)η(X) (3.29)

− 2βη(Z)g(X,TY ),

for all X, Y ∈ Γ(D) and Z ∈ Γ(D⊥).

Proof. For X,Y ∈ Γ(D), Z ∈ Γ(D⊥), (3.1) we infer

−T∇XZ = AFZX + th(X,Z)− β{η(Z)X}. (3.30)

Taking inner product with TY

g(T∇XZ, TY ) = −g(AFZX,TY )− g(th(X,Z), TY ) + βη(Z)g(X,TY ),

which implies

g(∇XZ, Y )− η(∇XZ)η(Y ) = −g(h(X,TY ), FZ) + βη(Z)g(X,TY )

or

g(∇XY,Z) = g(h(X,TY ), FZ)− βη(Z)g(X,TY )− η(∇XZ)η(Y ). (3.31)
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Interchanging X and Y in (3.31) we get

g(∇YX,Z) = g(h(Y, TX), FZ)− βη(Z)g(Y, TX)− η(∇Y Z)η(X). (3.32)

From (3.31) and (3.32), we obtain

g([X,Y ], Z) = g(h(X,TY ), FZ)− g(h(Y, TX), FZ)− 2βη(Z)g(X,TY ) (3.33)

+ η(∇Y Z)η(X)− η(∇XZ)η(Y ).

Hence D is integrable if [X,Y ] ∈ Γ(D), i.e., g([X,Y ], Z) = 0, which proves our result.

Proposition 3.4. Let M be a CR -submanifold of a SQ-Sasakian manifold M̄, and the leaf M⊥

of D⊥ is totally geodesic in M. If the endomorphism T satisfies

(∇̄XT )Y = β[g(X,Y )ξ − η(Y )X], (3.34)

for any X, Y tangent to M. Then dimΓ(D
⊥
) = 0.

Proof. From (3.25) we get

g(AFZY + βη(Y )Z,W ) = 0, (3.35)

for any Y ∈ Γ(D), W , Z ∈ Γ(D
⊥
). For any X, Y tangent to M from (3.1) and (3.34) we get

AFYX + th(X,Y ) = 0. (3.36)

From above equation, for any Y ∈ Γ(D), th(X,Y ) = 0. Thus we have

g(h(X,Y ), ϕW ) = g(AϕWY,X) = −g(ϕh(X,Y ),W ) = 0, (3.37)

which implies AϕWY = 0. Using this in (3.35) gives βη(Y )g(Z,W ) = 0, i.e. g(Z,W ) = 0, for all

Z, W ∈ Γ(D
⊥
). Hence dimΓ (D

⊥
) = 0.

4 Contact CR-product submanifold of a SQ-Sasakian man-
ifold

Definition 2. [12] A submanifold M of a SQ-Sasakian manifold M̄ is called contact CR-product
if it is locally a Rieamnnian product of MT and M⊥, where MT and M⊥ denote leaves of the
distributions D and D⊥ respectively.

Now we prove the following:

Theorem 4.1. Let M be a ξ-horizontal CR-submanifold of a SQ-Sasakian manifold M̄. Then
M is a contact CR-product if and only if

AFZY + βη(Y )Z = 0, (4.1)

for any Y ∈ Γ(D) and Z ∈ Γ(D⊥).
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Proof. If a CR-submanifold M of a SQ-Sasakian manifold M̄ is contact CR-product then from
(3.25), we have

g (AFZW,Y ) + βη(Y )g(W,Z) = 0,

for Y ∈ Γ(D) and W,Z ∈ Γ(D⊥).
Since, the shape operator is symmetric, above equation can be written as

g (AFZY,W ) + βη(Y )g(W,Z) = 0.

From this we get

AFZY + βη(Y )Z ∈ Γ(D), (4.2)

for any Y ∈ Γ(D) and Z,W ∈ Γ(D⊥).
As D is totally geodesic in M, we have for X,Y ∈ Γ(D) that

g (AFZY + βη(Y )Z,X) = g (h(X,Y ), FZ) = −g (ϕh(X,Y ), Z)

= −g
(
ϕ∇̄XY − ϕ∇XY,Z

)
= g

(
ϕ∇̄XY,Z

)
= g

(
∇̄XϕY,Z

)
= 0,

for any X,Y ∈ Γ(D) and Z ∈ Γ(D⊥).
This means

AFZY + βη(Y )Z ∈ Γ(D⊥). (4.3)

Thus form (4.2) and (4.3) we get

AFZY + βη(Y )Z = 0.

Conversely, equation (3.25) gives

g (h(Y,W ), FZ) + g (βη(Y )Z,W ) = 0,

for any Y ∈ Γ(D),W,Z ∈ Γ(D⊥), which means by virtue of Proposition 3.2 that the leaf MT of
Γ(D) is totally geodesic in M.
Next, suppose M⊥ be the leaf of Γ(D). Then from (2.3) and (4.1), we have

g (∇XY, Z) = g
(
∇̃XY, Z

)
= g

(
ϕ∇̃XY, ϕZ

)
= g

(
∇̃XϕY − (∇̃Xϕ)Y, ϕZ

)
= g(h(X,ϕY ), ϕZ) = g (AϕZX,ϕY )

= −βη(X)g(ϕY,Z) = 0,

for any X,Y ∈ Γ(D) and Z ∈ Γ(D⊥), i.e. the leaf M⊤ of D is totally geodesic in M. Thus the
submanifold M is a contact CR-product.

Theorem 4.2. A CR-submanifold of a SQ-Sasakian manifold M̄ is a contact CR-product if and
only if T is parallel.

Proof. Let T be parallel, then from (3.18), we get

AFYX + th(X,Y ) + β[g(X,Y )ξ − η(Y )X] = 0,
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for any vector fields X,Y tangent to M. If the vector field Y is in Γ(D), then using the fact that
FY = 0, above equation becomes

th(X,Y ) + β[g(X,Y )ξ − η(Y )X] = 0.

From this, we obtain

g(th(X,Y ), Z) + g(β[g(X,Y )ξ − η(Y )X], Z) = 0,

for any X ∈ TM, Y ∈ Γ(D) and Z ∈ Γ(D⊥).
This equation means that

g (AFZY,X) + βη(Y )g(X,Z) = 0,

which gives
AFZY + βη(Y )Z = 0,

for any Y ∈ Γ(D), Z ∈ Γ(D⊥). Thus by virtue of Theorem 4.1, above equation tells us that the
submanifold M is a contact CR-product.
Conversely, in a contact CR-product of SQ-Sasakian manifold then from Theorem 4.1 we get
(4.1). From (4.1) it can be easily shown that the endomorphism T is parallel.

Proposition 4.1. Let M be a CR-submanifold of a SQ-Sasakian manifold M̄. Then, M is
contact CR-product if and only if the following assertions is satisfied.

(i) ∇XY ∈ Γ(D)⊕ {ξ}, X ∈ TM, Y ∈ Γ(D),

(ii) th(X,Y ) = 0, X ∈ TM, Y ∈ Γ(D),

(iii) h(X,ϕY ) = fh(X,Y ), X ∈ TM, Y ∈ Γ(D).

Proof. We suppose that Mn is a CR -product locally represented by M⊤×M⊥. Then M⊤ and
M⊥ are totally geodesic in Mn. Thus, the Gauss formula implies:

∇XY ∈ Γ(D)⊕ {ξ}, (4.4)

for any X,Y ∈ Γ(D)⊕ {ξ} and

∇ZW ∈ Γ(D⊥), (4.5)

for any Z,W ∈ Γ(D⊥). Now, using (4.5) and (2.1), we obtain

g (∇ZY,W ) = −g (Y,∇ZW ) = 0,

g (∇ξY,W ) = −g (−βϕY + [ξ, Y ] ,W ) = 0,

for any Y ∈ Γ(D) and Z, W ∈ Γ(D⊥). Thus, from (4.4) we get that∇XY ∈ Γ(D)⊕{ξ}, X ∈ TM
and Y ∈ Γ(D) ⊕ {ξ}. In the same way, ∇XZ ∈ Γ(D⊥), X ∈ TM, and Z ∈ Γ(D⊥). Thus (i) is
satisfied.
Next we prove other parts, from (3.1), (3.2), it follows that

∇XTY = T∇XY + β{g(X,Y )ξ − η(Y )X}+ th(X,Y ), (4.6)

and

h(X,TY ) = F∇XY + fh(X,Y ), (4.7)
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for any X ∈ TM and Y ∈ Γ(D).
Now taking inner product of (4.6) with W ∈ Γ(D⊥), we get

g(th(X,Y ),W ) = 0. (4.8)

Since ∇XY ∈ Γ(D), from (4.7) we have

h(X,ϕY ) = fh(X,Y ). (4.9)

Thus, from (4.8) and(4.9), we get that assertions (ii) and (iii) are satisfied. Conversely, suppose
that (i)− (iii) holds. Thus, the distribution Γ(D)⊕ {ξ} is integrable, since we have:

[X,Y ] = ∇XY −∇YX ∈ Γ(D)⊕ {ξ}
[X, ξ] = −βϕX −∇ξX ∈ Γ(D)⊕ {ξ},

for any X,Y ∈ Γ(D). Moreover, if M⊤ is a leaf of Γ(D) ⊕ {ξ}, then, from (i) and the Gauss
formula for the immersion of M⊤ in M, it follows that M⊤ is totally geodesic in M. Also, from
(i) we get that ∇XZ ∈ Γ(D⊥) for any X ∈ T (M) and Z ∈ Γ(D⊥). Using again the Gauss formula
for a leaf M⊥ of Γ(D⊥) we obtain that M⊤ is totally geodesic in M. So M is a CR-product.

5 Pseudo parallel CR-submanifold of SQ-Sasakian mani-
fold

Definition 3. [14] A CR-submanifold M of a SQ-Sasakian manifold M̄ is called Chaki-pseudo
parallel if h satisfies

(∇̄Xh)(Y,Z) = 2α(X)h(Y,Z) + α(Y )h(X,Z) + α(Z)h(X,Y ) (5.1)

for all X,Y, Z ∈ TM, where α is a nowhere vanishing 1-form.

In particular if α(X) = 0 then M is said to be parallel submanifold of a SQ-Sasakian manifold
M̄.
We now prove the following:

Theorem 5.1. Let M be a CR-submanifold of a SQ-Sasakian manifold M̄. Then M is mixed
totally geodesic if M is Chaki-pseudo parallel provided F∇XY + α(Y )FX = 0 and α(ξ) ̸= 0.

Proof. Putting Z = ξ in (5.1) and taking X ∈ Γ(D⊥), Y ∈ Γ(D) and using Theorem 3.2 we get

−h(ξ,∇XY ) = α(ξ)h(X,Y ) + α(Y )h(X, ξ). (5.2)

Again by using Theorem 3.2, we get

βF∇XY = −α(Y )βFX + α(ξ)h(X,Y ). (5.3)

If βF∇XY +α(Y )βFX = 0 and α(ξ) ̸= 0 then from (5.3) we get h(X,Y ) = 0, where X ∈ Γ(D⊥)
and Y ∈ Γ(D), i.e., M is mixed totally geodesic. This proves the theorem.

Definition 4. [4, 5, 11] A CR-submanifold M of a SQ-Sasakian manifold M̄ is said to be
Deszcz-pseudo parallel if h satisfies

(R̄(X,Y ) · h)(Z,U) = R⊥(X,Y )h(Z,U)− h(R(X,Y )Z,U) (5.4)
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− h(Z,R(X,Y )U)

= LhQ(g, h)(Z,U ;X,Y ),

where Lh is some function on W = {x ∈ M : (h−Hg)x ̸= 0} for all vector fields X,Y tangent
to M and the tensor Q is defined by

Q(g, h)(Z,U ;X,Y ) = g(Y, Z)h(X,U)− g(X,Z)h(Y,U) (5.5)

+ g(Y, U)h(X,Z)− g(X,U)h(Y,Z).

In particular, if Lh = 0 then M is said to be semi-parallel submanifold of a SQ-Sasakian manifold
M̄.

Theorem 5.2. Let M be a CR-submanifold of a SQ-Sasakian manifold M̄. If M is Deszcz-
pseudo parallel then it is mixed totally geodesic provide Zβ = 0, h(Ah(Y,Z)ξ, ξ) = h(A−βFY ξ, Z)
and Lh + β2 ̸= 0.

Proof. From (5.4) and (5.5) we have

R⊥(X,Y )h(Z,U)− h(R(X,Y )Z,U)− h(Z,R(X,Y )U) (5.6)

= Lh[g(Y,Z)h(X,U)− g(X,Z)h(Y,U) + g(Y, U)h(X,Z)− g(X,U)h(Y,Z)].

Substituting X = U = ξ in (5.6) and using (2.5), (2.7) and Theorem 3.2, we get

h(Ah(Y,Z)ξ, ξ)− h(A−βFY ξ, Z) = (Lh + β2)h(Y,Z), (5.7)

where Z ∈ Γ(D) and Y ∈ Γ(D)⊥. By virtue of (5.6) we get the result.

Corollary 5.3. Let M be a CR-submanifold of a SQ-Sasakian manifold M̄. If M is semi-parallel
then it is mixed totally geodesic provide Zβ = 0, h(Ah(Y,Z)ξ, ξ) = h(A−βFY ξ, Z).

Definition 5. [14] A submanifold M of a SQ-Sasakian manifold M̄ with respect to semi-
symmetric metric connection is called Chaki-pseudo parallel if h̃ satisfies

(∇̃X h̃)(Y,Z) = 2α(X)h̃(Y,Z) + α(Y )h̃(X,Z) + α(Z)h̃(X,Y ) (5.8)

for all X,Y, Z ∈ TM, where α is a nowhere vanishing 1-form.

Theorem 5.4. Let M be a CR-submanifold of a SQ-Sasakian manifold M̄ with semi-symmetric
metric connection. Then M is mixed totally geodesic if M is Chaki-pseudo parallel provided
F∇XY + α(Y )FX = 0 and α(ξ) + 1 ̸= 0, where X ∈ Γ(D⊥) and Y ∈ Γ(D).

Proof. Putting Z = ξ in (5.8) and taking X ∈ Γ(D⊥), Y ∈ Γ(D) and using Theorem 3.2 we get

−h(ξ,∇XY )− η(Y )h(X, ξ)− h(X,Y ) = α(ξ)h(X,Y ) + α(Y )h(X, ξ). (5.9)

Again by using Theorem 3.2, we get

βF∇XY = −α(Y )βFX + (α(ξ) + 1)h(X,Y ). (5.10)

If βF∇XY + α(Y )βFX = 0 and (α(ξ) + 1) ̸= 0 then from (5.10) we get h(X,Y ) = 0, where
X ∈ Γ(D⊥) and Y ∈ Γ(D), i.e., M is mixed totally geodesic. This proves the theorem.
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Corollary 5.5. Let M be a CR-submanifold of a SQ-Sasakian manifold M̄ with semi-symmetric
metric connection. Then M is mixed totally geodesic if M is parallel provided ∇XY ∈ Γ(D).

Definition 6. [4, 5, 11] A CR-submanifoldM of a SQ-Sasakian manifold M̄ with semi-symmetric
metric connection is said to be Deszcz-pseudo parallel if h̃ satisfies

( ˜̄R(X,Y ) · h̃)(Z,U) = R⊥(X,Y )h̃(Z,U)− h̃(R(X,Y )Z,U) (5.11)

− h̃(Z,R(X,Y )U)

= Lh̃Q(g, h̃)(Z,U ;X,Y ),

for all X,Y, Z,W ∈ TM, where Lh̃ is some function on W = {x ∈ M : (h̃ − Hg)x ̸= 0}. In
particular, if Lh̃ = 0 then M is said to be semi-parallel submanifold of a SQ-Sasakian manifold
M̄.

Theorem 5.6. Let M be a CR-submanifold of a SQ-Sasakian manifold M̄ with semi-symmetric
metric connection. If M is Deszcz-pseudo parallel then it is mixed totally geodesic provide Zβ = 0,
h(Ah(Y,Z)ξ, ξ) + βh(ϕY,Z) = h(A−βFY ξ, Z) and Lh + β2 ̸= 0.

Proof. From (5.11), we have

R⊥(X,Y )h(Z,U)− h(R(X,Y )Z,U)− h(Z,R(X,Y )U) (5.12)

= Lh[g(Y, Z)h(X,U)− g(X,Z)h(Y,U) + g(Y,U)h(X,Z)− g(X,U)h(Y, Z)].

Substituting X = U = ξ in (5.12) and using (2.20), (2.21) and Theorem 3.2, we get

h(Ah(Y,Z)ξ, ξ) + βh(ϕY,Z)− h(A−βFY ξ, Z) = (Lh + β2)h(Y,Z), (5.13)

where Z ∈ Γ(D) and Y ∈ Γ(D⊥). By virtue of (5.13) we get the result.

Corollary 5.7. Let M be a CR-submanifold of a SQ-Sasakian manifold M̄ with semi-symmetric
metric connection. If M is Deszcz-pseudo parallel then it is mixed totally geodesic provided
Zβ = 0, h(Ah(Y,Z)ξ, ξ) + βh(ϕY,Z) = h(A−βFY ξ, Z).

6 Almost Ricci soliton and Almost Yamabe solitons with
torse-forming vector field on CR-submanifold of a SQ-
Sasakian manifold

A Riemannian manifold (Mn, g) is said to be a Ricci soliton if there exists a vector field V on
M satisfying the following equation [21]

1

2
LV g(X,Y ) + S(X,Y ) = λg(X,Y ), (6.1)

where LV is the Lie derivative with respect to V , S(X,Y ) is the Ricci tensor of (Mn, g) and λ is
constant. If λ is a smooth function on M then (Mn, g, V, λ) is said to be an almost Ricci soliton.
A Riemannian manifold (Mn, g) is said to be a Yamabe soliton if there exists a vector field V
on M satisfying the following equation [7]

1

2
LV g(X,Y ) = (δ − λ)g(X,Y ), (6.2)
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where LV is the Lie derivative with respect to V , δ is scalar curvature on (Mn, g) and λ is
constant. If λ is a smooth function on M then (Mn, g, V, λ) is said to be an almost Yamabe
soliton. The soliton is called expanding, steady or shrinking according as λ > 0, λ = 0 or λ < 0,
respectively.
A vector field V on a Riemannian manifold (Mn, g) is known as a torse-forming vector field [34]
if it satisfies

∇XV = ψX + θ(X)V, (6.3)

where ψ is some smooth function on M and θ is a 1-form. The torse-forming vector field is

• concircular if θ vanishes identically,

• concurrent if ψ = 1 and θ = 0,

• recurrent if ψ = 1,

• parallel if ψ = θ = 0.

We now consider M be CR-submanifold of a SQ-Sasakian manifold M̄ with respect to semi-

symmetric metric connection ˜̄∇. Thus we have the following decomposition for any X, Y ∈ TM

X = PX +QX, (6.4)

where P and Q are orthogonal projections on horizontal and vertical distribution D and D⊥

respectively.
Since X, ξ ∈ TM, by equating the horizontal, vertical and normal components of (2.16) we get

P ∇̃XY = P∇XY + η(Y )PX − g(X,Y )Pξ, (6.5)

h̃(X,Y ) = h(X,Y ) (6.6)

and

Q∇̃XY = Q∇XY + η(Y )QX − g(X,Y )Qξ. (6.7)

In this section, we discuss almost Ricci solitons and almost Yamabe solitons whose potential field
is torse forming on CR-submanifold of SQ-Sasakian manifold with respect to semi-symmetric
metric connection. Here, we denote V t and V n as tangential and normal components of such
vector field.

Theorem 6.1. An almost Ricci soliton (g, V t, λ) on a CR-submanifold M of an SQ-Sasakian
manifold M̄ with a semi-symmetric metric connection and V as a torse-forming vector field
satisfies

S(X,Y ) = (λ+ η(V n)− ψ + 2n− 1)g(X,Y ) + (2n− 1){η(X)η(Y ) (6.8)

+ Φ(X,Y )} − 1

2
{θ(X)g(V, Y ) + θ(Y )g(X,V )}

for any vector fields X, Y on M.

Proof. In view of (2.9), (6.3) and (2.15), we have

ψX + θ(X)V = ˜̄∇XV = ˜̄∇X

(
V t + V n

)
= ∇XV

t + h
(
X,V t

)
−AV nX +∇⊥

XV
n + η (V n)X. (6.9)



CR-submanifolds of SQ-Sasakian manifold 135

Comparing tangential and normal components of (6.9), we obtain

∇XV
t = ψX + θ(X)V +AV nX − η (V n)X, (6.10)

and

h
(
X,V t

)
= −∇⊥

XV
n. (6.11)

From the definition of Lie derivative and (6.10), we have

LV tg(X,Y ) = g(∇XV
t, Y ) + g(X,∇Y V

t)

= 2ψg(X,Y ) + 2g (AV nX,Y )− 2η (V n) g(X,Y ) (6.12)

+ θ(X)g(V, Y ) + θ(Y )g(X,V ).

Using (6.12), (2.19) and (6.1), it yields

S(X,Y ) = (λ+ η(V n)− ψ + 2n− 1)g(X,Y ) + (2n− 1){η(X)η(Y ) (6.13)

+ Φ(X,Y )} − 1

2
{θ(X)g(V, Y ) + θ(Y )g(X,V )}.

This proves our assertion.

Corollary 6.2. An almost Ricci soliton (g, V t, λ) on a CR-submanifold M of an SQ-Sasakian
manifold M̄ with a semi-symmetric metric connection and V as a concircular vector field is
pseudo η-Einstein.

Proof. Since V is concircular, i.e. θ = 0 identically. Putting θ = 0 in (6.8) we get the corollary.

Theorem 6.3. An almost Yamabe soliton (g, V t, λ) on a CR-submanifold M of an SQ-Sasakian
manifold M̄ with a semi-symmetric metric connection and V as a torse-forming vector field
satisfies (

δ̃ − λ− ψ + η (V n)
)
g(X,Y ) = g (AV nX,Y ) +

1

2
{θ(X)g(V, Y ) (6.14)

+ θ(Y )g(X,V )}

for any vector fields X,Y on M, where δ̃ is scalar curvature on (Mn, g) with respect to semi-
symmetric connection.

Proof. By virtue of (6.12) and (6.2), we get (6.14). This proves the Theorem.

Corollary 6.4. If an almost Yamabe soliton (g, V t, λ) on a CR-submanifold M of an SQ-
Sasakian manifold M̄ with a semi-symmetric metric connection and V as a torse-forming vector

field is minimal, then
(
δ̃ − λ− ψ + η (V n)

)
n = θ(V ) holds.

Proof. Since Mn is minimal, then from (6.14) we get the corollary.
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