MULTIPLIERS FOR $|C, \delta|_k$ SUMMABILITY OF FOURIER SERIES

W.T. SULAIMAN

Abstract. Recently PANDEY[2] proved a result on |C,1| summability of Fourier series improving the conditions of some previously known theorems on the absolute (C,1) summability factors of Fourier series. In the present paper we extend that result.

1. Introduction

Let Σa_n be a given infinite series with partial sums s_n . Let σ_n^{δ} and t_n^{δ} denote the n^{th} Cesáro mean of order $\delta(\delta > -1)$ of the sequences $\{s_n\}$ and $\{na_n\}$, respectively. The series Σa_n is said to be absolutely summable (C, δ) with index $k \geq 1$, or simply summable $|C, \delta|_k$, if

$$\sum_{n=1}^{\infty} n^{k-1} \mid \sigma_n^{\delta} - \sigma_{n-1}^{\delta} \mid^k < \infty$$

or equivalently

$$\sum_{n=1}^{\infty} n^{-1} \mid t_n^{\delta} \mid^k < \infty.$$

Let f(t) be Lebesgue integrable periodic function with period 2π and $\sum_{n=0}^{\infty} A_n(t)$ denote its Fourier series. Then for $n \geq 1$,

$$\pi A_n(x) = \int_0^{\pi} \phi(t) \cos nt \ dt$$

where $\phi(t) = f(x+t) + f(x-t) - 2f(x)$.

We write

$$\varphi(t) = \int_{t}^{\gamma} u^{-1} | \phi(u) | du, \qquad 0 < \gamma \le \pi$$

$$\mu_{n} = \left(\prod_{v=1}^{\ell-1} \log^{v} n \right) (\log^{\ell} n)^{1+\epsilon}, \log^{\ell} n_{0} > 0, \ \epsilon > 0, \ \ell \ge 2,$$

where $\log^{\ell} n = \log(\log^{\ell-1} n), \dots, \log^{2} n = \log \log n$.

Recently, PANDEY[2] has proved the following theorem including some previous results

Received April 11, 1988.

Theorem A. If

$$\varphi(t) = O\{(\log^{\ell}(1/t))^{\eta}\} \text{ as } t \to +0,$$

then the series

$$\sum_{n=n_0}^{\infty} A_n(x)/\mu_n$$

is summable $\mid C, 1 \mid$ for $0 < \eta < \varepsilon$.

We give the following extension of theorem A.

Theorem B. Let $\{\lambda_n\}$ be any sequence of constants. Let g(u) and h(u) be positive functions such that H(u) = uh(u), $u^{\beta}g(1/u)$ are both nondecreasing for some β , $0 < \beta < 1$. Suppose for $k \geq 1$

$$\varphi(t) = O\{g(1/t)\}, \qquad t \to 0;$$

$$\sum_{n=1}^{\infty} n^{2k-\delta k-1} \mid \lambda_n \mid^k [h(n)]^k [g(n)]^k < \infty;$$

and

$$\sum_{n=1}^{\infty} n^{2k-1} \mid \Delta \lambda_n \mid^k [h(n)]^k [g(n)]^k < \infty.$$

Then the series $\sum n\lambda_n h(n)A_n(x)$ is summable $|C, \delta|_k$, $0 < \delta \le 1$.

2. The following results are needed:

Lemma 1[1]. If $\sigma > -1$ and $\sigma - \delta > 0$, then

$$\sum_{n=\mu}^{\infty} \frac{A_{n-\mu}^{\delta}}{n A_n^{\sigma}} = \frac{1}{\mu A_{\mu}^{\sigma-\delta-1}}.$$

Theorem 2. The series $\sum \lambda_n a_n$ is summable $|C, \delta|_k$, $k \geq 1$, $0 < \delta \leq 1$, if the following holds:

$$\sum_{n=1}^{\infty} n^{k-\delta k-1} |\lambda_n|^k |s_n|^k < \infty;$$

$$\sum_{n=1}^{\infty} n^{k-1} \mid \Delta \lambda_n \mid^k \mid s_n \mid^k < \infty.$$

Proof. Let T_n^{δ} be the nth Cesáro mean of order δ of the sequence $\{n\lambda_n a_n\}$. Then we have

$$T_n^{\delta} = \frac{1}{A_n^{\delta}} \sum_{v=1}^n A_{n-v}^{\delta-1} v \lambda_v a_v,$$

where

$$A_{n}^{\delta} = \binom{n+\delta}{n} = \frac{(\delta+1)(\delta+2)\cdots(\delta+n)}{n!} \sim \frac{n^{\delta}}{\Gamma(\delta+1)}.$$

$$T_{n}^{\delta} = \frac{1}{A_{n}^{\delta}} \Big[\sum_{v=1}^{n-1} \Big\{ -A_{n-v}^{\delta-1} \lambda_{v} s_{v} + (v+1) \Delta A_{n-v}^{\delta-1} \lambda_{v} s_{v} + (v+1) A_{n-v-1}^{\delta-1} \Delta \lambda_{v} s_{v} \Big\} + n \lambda_{n} s_{n} \Big]$$

$$= T_{n,1}^{\delta} + T_{n,2}^{\delta} + T_{n,3}^{\delta} + T_{n,4}^{\delta}, \quad say.$$

To prove the Theorem, by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} n^{-1} |T_{n,r}^{\delta}|^{k} < \infty, \qquad r = 1, 2, 3, 4.$$

Applying Hölder's inequality, we have

$$\sum_{n=1}^{m} n^{-1} | T_{n,1}^{\delta} |^{k} \leq \sum_{n=1}^{m} \frac{1}{n(A_{n}^{\delta})^{k}} \left\{ \sum_{v=1}^{n-1} A_{n-v}^{\delta-1} | \lambda_{v} || s_{v} | \right\}^{k}$$

$$\leq \sum_{n=1}^{m} \frac{1}{nA_{n}^{\delta}} \sum_{v=1}^{n-1} A_{n-v}^{\delta-1} | \lambda_{v} |^{k} | s_{v} |^{k} \left\{ \frac{1}{A_{n}^{\delta}} \sum_{v=1}^{n-1} A_{n-v}^{\delta-1} \right\}^{k-1}$$

$$= O(1) \sum_{n=1}^{m} \frac{1}{nA_{n}^{\delta}} \sum_{v=1}^{n-1} A_{n-v}^{\delta-1} | \lambda_{v} |^{k} | s_{v} |^{k}$$

$$= O(1) \sum_{v=1}^{m-1} | \lambda_{v} |^{k} | s_{v} |^{k} \sum_{n=v}^{m} \frac{A_{n-v}^{\delta-1}}{nA_{n}^{\delta}}$$

hence, by lemma 1

$$\sum_{n=1}^{\infty} n^{-1} |T_{n,1}^{\delta}|^{k} = O(1) \sum_{v=1}^{\infty} v^{-1} |\lambda_{v}|^{k} |s_{v}|^{k}$$
$$= O(1) \sum_{v=1}^{\infty} v^{k-\delta k-1} |\lambda_{v}|^{k} |s_{v}|^{k}$$

$$\sum_{n=1}^{\infty} n^{-1} | T_{n,2}^{\delta} |^{k} \leq \sum_{n=1}^{m} \frac{1}{n(A_{n}^{\delta})^{k}} \left\{ \sum_{v=1}^{n-1} (v+1) | \Delta A_{n-v}^{\delta-1} | | \lambda_{v} | | s_{v} | \right\}^{k}$$

$$(when \delta = 1, T_{n,2}^{\delta} = 0 \text{ as } \Delta A_{n-v}^{\delta-1} = 0)$$

$$\leq \sum_{n=1}^{m} \frac{1}{n(A_{n}^{\delta})^{k}} \sum_{v=1}^{n-1} (v+1)^{k} | \Delta A_{n-v}^{\delta-1} | | \lambda_{v} |^{k} | s_{v} |^{k}$$

$$\cdot \left\{ \sum_{v=1}^{n-1} | \Delta A_{n-v}^{\delta-1} | \right\}^{k-1}$$

$$= O(1) \sum_{n=1}^{m} \frac{1}{n(A_{n}^{\delta})^{k}} \sum_{v=1}^{n-1} v^{k} | \Delta A_{n-v}^{\delta-1} | | \lambda_{v} |^{k} | s_{v} |^{k}$$

$$(as \sum_{v=1}^{n-1} | \Delta A_{n-v}^{\delta-1} | = O\left\{ \sum_{v=1}^{n-1} (n-v)^{\delta-2} \right\} = O(1), \quad 0 \leq \delta < 1 \right)$$

$$= O(1) \sum_{v=1}^{m-1} v^{k} | \lambda_{v} |^{k} | s_{v} |^{k} \sum_{n=v}^{m} \frac{|\Delta A_{n-v}^{\delta-1}|}{n(A_{n}^{\delta})^{k}}$$

$$= O(1) \sum_{v=1}^{m} v^{k-\delta k-1} | \lambda_{v} |^{k} | s_{v} |^{k} \sum_{n=v}^{m} (n-v)^{\delta-2}$$

therefore

$$\sum_{n=1}^{\infty} n^{-1} | T_{n,2}^{\delta} |^{k} = O(1) \sum_{v=1}^{\infty} v^{k-\delta k-1} | \lambda_{v} |^{k} | s_{v} |^{k}$$

$$\sum_{n=1}^{m} n^{-1} | T_{n,3} |^{k} = O(1) \sum_{n=1}^{m} \frac{1}{n(A_{n}^{\delta})^{k}} \left\{ \sum_{v=1}^{n-1} v | A_{n-v}^{\delta-1} | \Delta \lambda_{v} | | s_{v} | \right\}^{k}$$

$$= O(1) \sum_{n=1}^{m} \frac{1}{nA_{n}^{\delta}} \sum_{v=1}^{n-1} v^{k} A_{n-v}^{\delta-1} | \Delta \lambda_{v} |^{k} | s_{v} |^{k}$$

$$\left\{ \frac{1}{A_{n}^{\delta}} \sum_{v=1}^{n-1} A_{n-v}^{\delta-1} \right\}^{k-1}$$

$$= O(1) \sum_{n=1}^{m} \frac{1}{nA_{n}^{\delta}} \sum_{v=1}^{n-1} v^{k} A_{n-v}^{\delta-1} | \Delta \lambda_{v} |^{k} | s_{v} |^{k}$$

$$= O(1) \sum_{n=1}^{m-1} v^{k} | \Delta \lambda_{v} |^{k} | s_{v} |^{k} \sum_{n=v}^{m} \frac{A_{n-v}^{\delta-1}}{nA_{n}^{\delta}},$$

then, by Lemma 1

$$\sum_{n=1}^{\infty} n^{-1} |T_{n,3}^{\delta}|^{k} = O(1) \sum_{v=1}^{\infty} v^{k-1} |\Delta \lambda_{v}|^{k} |s_{v}|^{k}$$

$$\sum_{n=1}^{\infty} n^{-1} |T_{n,4}^{\delta}|^{k} \leq \sum_{n=1}^{\infty} \frac{n^{k} |\lambda_{n}|^{k} |s_{n}|^{k}}{n(A_{n}^{\delta})^{k}}$$

$$= O(1) \sum_{n=1}^{\infty} n^{k-\delta k-1} |\lambda_{n}|^{k} |s_{n}|^{k}.$$

Lemma 3. Suppose g(u) is a positive function such that $u^{\beta}g(1/u)$ nondecreasing for some β , $0 < \beta < 1$. If

$$\varphi(t) = O\{g(1/t)\}, \qquad t \to 0,$$

then

$$\int_0^t |\phi(u)| du = O\{tg(1/t)\}.$$

Proof.

$$\int_{0}^{t} |\phi(u)| du = \int_{0}^{t} -u\varphi'(u)du
= \left[-u\varphi(u)\right]_{0}^{t} + \int_{0}^{t} \left\{u^{\beta}\varphi(u)\right\}u^{-\beta}du
= O\{tg(1/t)\} + O\{t^{\beta}g(1/t)\int_{0}^{t} u^{-\beta}du\}
= O\{tg(1/t)\}.$$

3. Proof of Theorem B.

Let $S_n(x)$ be the n^{th} partial sum of the sequence $\{H(n)A_n(x)\}$. Then we have

$$S_n(x) = \sum_{v=1}^n H(v) \int_0^{\pi} \cos(vu) \phi(u) du$$

$$= \left\{ \int_0^{n-1} + \int_{n-1}^{\pi} \right\} \left\{ \sum_{v=1}^n H(v) \cos(uv) \right\} \phi(u) du$$

$$= I_1 + I_2, \quad say.$$

Since H(u) is nonnegative, nondecreasing, thus, we have by Abel's lemma

$$|\sum_{v=1}^{n} H(v) \cos(vu)| = O\{H(n) \max_{1 \le r \le n} |\sum_{v=r}^{n} \cos(vu)| \}$$

$$= O\{sH(n)\},$$

where s = n or u^{-1} .

Therefore

$$|I_1| = O\{n \ H(n) \int_0^{n-1} |\phi(u)| du\} = O\{H(n)g(n)\},$$

 $|I_2| = O\{H(n) \int_{n-1}^{\pi} u^{-1} |\phi(u)| du\} = O\{H(n)g(n)\}.$

Hence

$$|S_n(x)| = O\{H(n) g(n)\},$$

 $|S_n(x)|^k = O[H(n)]^k [g(n)]^k.$

The theorem follows by making use of theorem 2.

Remark. If we are putting: k = 1, $\delta = 1$, $h(n) = n^{-1}$, $\lambda_n = \mu_n$ and $g(n) = (\log^{\ell} n)^{\eta}$ in theorem B, we obtain theorem A.

References

- [1] H.C. Chow, Note on convergence and summability factors, J. London Math. Soc., 20 (1954), 459-476.
- [2] G.S.PANDEY, Multipliers for | C,1 | summability of Fourier series, Pacific J.Math., 79 (1978), 177-182.

Department of Applied Sciences, College of Technological Studies, P.O. Box 42325, 70654 Shwaikh, Kuwait.